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0. Introduction.

This paper is primarily concerned with the geometry of hyperbolic 3-manifolds that are
topologically products of a surface with the real line. More precisely, let M be a complete
hyperbolic 3-manifold admitting a homotopy equivalence χ : M −→ Σ to a compact surface
Σ. We assume that χ is “type preserving” in the sense that each boundary curve in Σ
corresponds to a parabolic cusp in M . (We can allow for “accidental parabolics”, i.e. a
parabolic in M need not be peripheral in Σ.) It follows from [Bon] that M is homeomorphic
to intΣ×R. Manifolds of this sort have been intensively studied, for example in relation
to Thurston’s Ending Lamination Conjecture. (By lifting to an appropriate cover one can
effectively reduce, at least in the indecomposable case, to manifolds of this type.)

The purpose of this paper is to describe a “band decomposition” of M , which captures
much of its geometry. It gives a means of cutting the manifolds into simpler pieces,
which can be understood intrinsically according to some inductive principle, and then
fitted back together. One specific application is to give another proof of the conjecture
of McMullen that the thick part of such a manifold grows at most polynomially (see
[BrocCM1]), and give sharp bounds on the degree. Our polynomials are, in principle,
algorithmically computable. Another application is to the geometry of the curve complex.
One can show, for example, that the action of the mapping class group on the curve
complex is acylindrical, and that stable lengths are uniformly rational. This is described
in [Bow1]. Other applications of this work in turn show that the curve complex has finite
asymptotic dimension [BeF] and has Yu’s “property A” [K]. It thus provides an example of
hyperbolic 3-manifolds techniques being used to solve essentially combinatorial problems.

The decompositions described here have close links with Thurston’s Ending Lamina-
tion Conjecture. As observed earlier, the indecomposable case can be essentially reduced
to studying such manifolds, see [Mi2,BrocCM] and later [Bow2]. (For adaptations of these
ideas to the decomposable case see [BrocCM2] and [Bow3].) The key to this is to relate
the geometry of M to the geometry of a “model” manifold constructed combinatorially. In
principle a similar band decomposition could be constructed in the combinatorial model
and then transferred to M . (Some discussion on how this may be achieved is given in
[Bow2].) However, such an approach is very indirect, and does not give a-priori computable
constants. (At present, all known approaches to the Ending Lamination Conjecture in-
volve limiting arguments, or equivalent, at some point.) Here we work directly from the
3-manifold, by a method that is, in principle, effective. This work is logically independent
of the work on the Ending Lamination Conjecture cited above. We remark that another
decomposition of M , which appears to be related, is discussed in [S], and used there to
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study geometric limits of manifolds of this type.

1. Overview and examples.

In this section, we give an informal overview of what we mean by a “band system”
and the properties we expect of it. These will be expressed more formally in Section 2.

We begin with the case of a closed surface, Σ, and a hyperbolic 3-manifold, M ,
without cusps, which admits a homotopy equivalence to Σ. To simplify the exposition
we assume everything to be orientable. Thus, by [Bon], M is homeomorphic to Σ × R.
Its convex core, core(M), is homeomorphic to Σ × I, where I ⊆ R is connected. In the
geometrically finite case, core(M) and I are compact. We refer to the first and second
coordinates as the “horizontal” and “vertical” directions respectively. There is no canonical
homeomorphism, and so most statements in this section should be qualified with the phrase
“after choosing suitable coordinates”. In Section 2, we give a topological, coordinate-free
means of expressing these ideas. In particular, we will define a “fibre” as an embedded
closed surface whose inclusion in M is a homotopy equivalence. It is shown in [Brow] that
this has the form Σ× {t} in a suitable coordinate system.

A simple case is that of bounded geometry, i.e. where the injectivity radius is bounded
below. If that happens, then the horizontal fibres Σ × {t} (in suitable coordinates), will
have bounded diameter for all t ∈ I. In other words, we can foliate the convex hull with
bounded diameter surfaces. In the general case, however, we get a set of disjoint short
closed curves. These are unlinked, i.e. each has the form α× {t} for a closed curve α in Σ
[O1,O2]. Any such curve will be the core of a Margulis tube. This time, the fibres can be
taken to intersect the tubes in annuli, and such that the diameter of each component, after
removing the tubes, is bounded. This controls the geometry in the horizontal direction.
However there is no natural way of choosing vertical coordinates. For example, two fibres
Σ× {t} and Σ× {u} may be close together on one side of a Margulis tube, but far apart
on the other; and there might be no choice of coordinate system that will remedy this
consistantly. This is the kind of phenomenon the band system is designed to come to grips
with.

We can also bring rank-one cusps into the picture. In this case, we allow Σ to be a
closed surface with boundary. By hypothesis, each boundary component corresponds to a
cusp of M . On removing these cusps, we get a manifold homeomorphic to Σ ×R, and a
similar discussion applies to this space. We may also get “accidental” cusps — homotopic
to non-peripheral simple closed curves of Σ. These accidental cusps play a similar role
to Margulis tubes. For the purposes of exposition, we will ignore accidental cusps in the
disucussion in this section.

It may happen that the boundary of each Margulis tube has bounded area. (This is
necessarily the case if Σ is a one-holed torus or four-holed sphere (cf. [Mi1]). In such a
case, our band system will be empty. In general, however, one would expect these areas
to be unbounded. Such tubes will form the anchors of a system of bands. A “band” is a
subset of M of the form Φ × J where Φ is a proper subsurface of Σ, and J is a compact
subinterval of I. Each vertical boundary component, ∂Φ × J , is assumed to lie in the
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boundary of a Margulis tube. The band may intersect other tubes in solid tori. We should
think of bands being long in the vertical direction, and narrow in the horizontal direction
— that is narrow modulo the intersections with tubes (which are deemed not to contribute
to the width). Qualitatively, a band, B, has similar geometry to that of the convex core of
a geometrically finite manifold, N , with base surface Φ. Here, the tubes which meet the
vertical boundary components of B should be thought of has having been “opened out”
to rank-one cusps on N . This idea forms the basis of various inductive procedures, where
we carry out induction on the complexity of the base surface. The induction starts with
one-holed tori and four-holed spheres — there are no three-holed sphere bands.

Our goal will be to construct a system, A, of disjoint bands with a number of geometric
properties. Notably, we want the boundary of each Margulis tube to lie mostly inside the
bands. More precisely, for each tube, the area lying outside the union of the bands is
uniformly bounded in term of the complexity of Σ.

We can go on to construct a similar system inside each individual band, and then
proceed inductively all the way down to one-holed tori and four-holed spheres, so as to
give us a nested system, B, of bands. In practice, it is this system we construct first. We
can recover A, if we want, as the set of outermost bands of B.

The basic idea behind the construction of B is fairly simple. If there exists a sufficiently
long band, Φ × J , with any given base surface, Φ, we include in B such a band which
is almost as long as possible. By “long” we mean long in the vertical direction, in an
appropriate sense, and the qualification “almost” means that we need the band to have
collars attached at each end, in order to prevent neighbouring bands from bumping into
each other. Some slight modification may necessary in some situations to ensure that the
bands are nested, but that is mainly a technical issue. Most of the work of the proof will
be in verifying that the boundaries of Margulis tubes are mostly taken up by the bands,
so that, in some sense, the combinatorics of the band system does indeed capture most of
the large scale geometry of M .

For most of the paper, we will simplify the exposition by assuming that Σ is closed,
that M has no cusps, and that M is doubly degenerate, i.e. core(M) = M , so that I = R.
The adaptation to the general case is discussed in Section 8.

We finish this section by giving a couple of simple examples. Suppose that there is
just one Margulis tube, T , homotopic to a curve, γ, in Σ. Suppose γ separates Σ. Let Φ1

and Φ2 be the components of the complement of a small open annular neighbourhood of
γ. There are four combinatorial possibilities for A, namely: ∅, {Φ1 × J1}, {Φ2 × J2} and
{Φ1 × J1,Φ2 × J2}, where J1, J2 are intervals. (Figure 1a). Each of the bands meets ∂T
in a single annulus.

Figure 1a.

If γ is non-separating, the possiblilites are ∅ or {Φ× J}, where Φ is the complement
of an open neighbourhood of Σ. In the last case, the band meets ∂T in two annuli. This
last possibility adds some complications to the formal description of bands, but has no
particular geometric significance.

In the above, we will have B = A. More generally it is possible that the bands of A
may themselves contain tubes and smaller bands of B. Moreover, there may be many bands
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meeting any given tube. The general picture can get very complicated combinatorially.
(Figure 1b). (This figure should elongated in the vertical direction to give a more accurate
geometrical impression.)

Figure 1b.

It follows from the work on the Ending Lamination Conjecture that, in the generic
case, the band system will be non-empty. However, explicit examples are not so easy to
construct and verify. Examples of product manifolds with no lower bound on injectiv-
ity radius were given in [BonO]. Examples where the boundaries of Margulis tubes have
arbitrarily large area (so that the band system is non-empty) were constructed in [Broc].

2. Outline of results.

In this section, we outline of the construction of the band decomposition, and sum-
marise its main properties. We begin by recalling some standard facts.

For most of the paper, we will assume for simplicity that Σ is a closed orientable
surface, and that M is orientable and has no cusps. Dealing with the general case will be
mostly a matter of reinterpreting some of the definitions and constructions, as desribed in
Section 8.

We know by tameness [Bon] that M is homeomorphic to Σ × R. A fibre of M
is an embedded surface homotopic (hence isotopic) to Σ × {0}. A curve or subsurface
is unknotted if it can be embedded in a fibre. More generally, a disjoint locally finite
collection of embedded surfaces is unlinked if they can be simultaneously embedded in a
collection of disjoint fibres.

Our discussion depends on certain “Margulis constants”, η0, η1 etc. The Margulis
Lemma tells us that there is some η0 > 0 such that any closed geodesic, γ, of length at
most η0 in M is embedded, or finitely covers an embedded geodesic. Indeed, assuming it
is primitive, it is the core of a “Margulis tube”. Such a tube, T , is a solid torus, whose
boundary, ∂T , is intrinsically euclidean. It comes equipped with a homotopically well
defined meridian (bounding a disc in T ). Otal [O1,O2] shows that (provided η0 is chosen
small enough in relation to genus(Σ)), then γ is unknotted in M . Thus, ∂T also comes
with a longitude (which can be homotoped to infinity in the complement of T ). Such a
longitude can also be described in terms of the framing of γ obtained by embedding it in
a fibre. We can think of ∂T as foliated by euclidean geodesic longitudes of equal length.
It turns out that this length is bounded above and below in terms of genus(Σ) (and the
Margulis constant). This gives us a convenient normalisation: we fix a suitable η > 0
and write T (γ) = T (γ, η) for the unique Margulis tube about γ whose longitudes all have
length η. Provided η is small enough such tubes will be embedded and disjoint. We choose
some other η1 > 0 and let T be the set of all Margulis tubes, T (γ, η) for which the core
curve γ has length at most η1. If T ∈ T , we write L(∂T ) for the “vertical length” of ∂T ,
i.e. the length of the circle obtained by collapsing each longitude to a point. (In other
words, ∂T has area ηL(∂T ).) It turns out that L(∂T ) is bounded away from 0, but there
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is no upper bound in general. The point of the band decomposition is that most of the
vertical length of such a torus lies inside the union of the bands.

We write Θ(M) for the closure of M \
⋃
T — the “thick part” of M . We equip Θ(M)

with the induced path metric, d.

Definition : A horizontal surface in M is an unknotted surface, F , such that F meets
each T ∈ T , if at all, either in a single annulus whose boundary is precisely F ∩∂T , or else
in one or two (euclidean geodesic) longitudes of ∂T , both of which are boundary curves of
F . Moreover, each boundary curve of F is a longitude of some element of T .

We write TI(F ) ⊆ T for the set of tubes meeting F in annuli.
Note that, under χ, F determines a homotopy class of subsurface of Σ which we denote

by φ(F ).

Definition : We say two horizontal surfaces, F,G, are parallel if they are disjoint and
φ(F ) = φ(G).

Definition : A band , A, in M is a subset of M homeomorphic to Φ× [−1, 1], where Φ is
a proper subsurface of Σ, whose horizontal boundary, ∂HA = Φ× {−1, 1} consists of two
horizontal surfaces (necessarily parallel) and whose vertical boundary , ∂V A = ∂Φ× [−1, 1]
is a disjoint union of annuli, each lying in the boundary of some Margulis tube.

We denote the horizontal boundary components of A by ∂−A and ∂+A. (There
is a canonical choice.) Any two parallel horizontal surfaces determine a band, A, with
{∂−A, ∂+A} = {F,G}. We write A = 〈F,G〉. Write φ(A) = φ(∂−A) = φ(∂+A).

Let TI(A) ⊆ T be the set of Margulis tubes completely contained in A. Each other
tube meets A, if at all, in one or two vertical annuli, or else in a sub solid torus bounded
annuli of the form T ∩ ∂−A or T ∩ ∂+A (either one of which may be empty).

Definition : The width, W (F ), of a horizontal surface, F , is the maximum diameter of a
component of F ∩Θ(M) as measured in the path-metric, d, on Θ(M).
The width, W (A), of a band, A, is defined as W (A) = max{W (∂+A),W (∂−A)}.

In some ways, it would be more natural to define “width” in terms of intrinsic diameter
in the surface (in the induced path-metric) rather than using the ambient diameter in M .
The problem is that our topological contructions will make it difficult to control intrinsic
diameter, whereas the fact the that ambient diameters remain bounded is elementary.

Let A be a collection of bands in M . We write
⋃
A for their union. Given a Margulis

tube, T , we write L(∂T,A) for the total vertical length of the union of annuli ∂T \
⋃
A.

In the discussion that follows, properties (A1), (A2), (A3), (A5), (A6) and (A9) will
be proven later in the paper. Properties (A4), (A7) and (A8) are simple consequences, or
can be assumed without loss of generalilty.

We shall show:
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Theorem 0 : There are constants, W0, L0, depending on the topological type of Σ (and
choice of Margulis constants) such that for any hyperbolic 3-manifold with a homotopy
equivalence to Σ, we can find a collection, A, of bands satisfying:

(A1) The elements of A are disjoint.

(A2) For each A ∈ A, W (A) ≤ W0.

(A3) For each T ∈ T , L(∂T,A) ≤ L0.

We will see later that the bound on width in (A2) means that every point of A lies in
a fibre of bounded width.

Note that if two bands, A and B are parallel (i.e. φ(A) = φ(B)) then they bound a
third parallel band C. Thus A and B can be replaced by A ∪C ∪B. We see that there is
no loss in assuming, in addition, that:
(A4) No two distinct elements of A are parallel.

We also note that the bands can all be assumed to lie in the convex core of M . (See
the discussion of the “general case” below.)

There are a number of refinements we can make to Theorem 0.
Suppose A is a band. We write T0(A) = TI(A) ∪ TI(∂−A) ∪ TI(∂+A). The exterior

length, l(π,A) of a path π in A is the total (rectifiable) length of π \
⋃
T0(A).

Definition : The height , H(A) of a band A is the infimum (in fact minimum) exterior
length of any path in A connecting ∂−A to ∂+A.

In other words, H(A) is the shortest distance we need to travel to get across A, where
travelling in the Margulis tubes (other than those that contain the vertical boundaries of
A) costs us nothing.

We want a more quantitative way of saying that bands of A are disjoint, in fact a
bounded distance apart. This can be expressed using the notion of a “collar”.

Definition : If A is a band, a top (respectively bottom) collar of A is a band meeting A
precisely in ∂−A (respectively ∂+A).

In other words, it has the form 〈F, ∂+A〉 or 〈F, ∂−A〉, where F is a parallel horizontal
surface.

Note that if A+ and A− are top and bottom collars of A, then Â = A+ ∪ A ∪ A− is
another band containing A. We refer to A, or more precisely, the pair (A, Â) as a collared
band . Given h ≥ 0, we say that A is h-collared if it admits a collar so that H(A+) ≥ h
and H(A−) ≥ h.

We can refine Theorem 0 as follows:

Addendum to Theorem 0 : There is some W0 depending on the topological type of
Σ such that given any H0,H1 ≥ 0, we can find L0 (depending on H0, H1 and the type of
Σ), so that we can find a system of bands, A, satisfying (A1)–(A4) above, together with:

(A5) Each band of A is H0-collared.
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(A6) If A ∈ A, then H(A) ≥ H1.

We can also assume if we want that W (Â) ≤ W0 for all A ∈ A. By choosing H1 > 0, we
can assume that for each band, A, A∩Θ(M) is connected (see the discussion of “primitive”
bands in Section 3.

We shall see (Lemma 4.1) that H(A) is uniformly bounded whenever φ(A) is a 3-holed
sphere. Thus, by choosing H0 or H1 large enough, we can assume in addition that:

(A7) If A ∈ A, then φ(A) is not a 3-holed sphere.

Putting together (A3) and (A5), we see that there must be a bound on the number of
components of ∂T \

⋃
A for any T ∈ T . This must in turn be at least the number of bands

that meet ∂T . We deduce:

(A8) There is some N0 such that for all T ∈ T , at most N0 elements of A meet ∂T .

Here N0 depends on the topological type of Σ.
Finally, by choosing H0 and/or H1 large enough, we can ensure that our bands satisfy

a topological property (defined in Section 2), namely:

(A9) The elements of A are unlinked in M .

As we have stated it, Theorem 0 says nothing about the intrinsic geometry of the
bands. However, one could apply a similar construction to the interior of each band (cf.
the discussion of the general case below). Altogether, this would give us a larger system
of bands, say B, which are nested (see (A1′) below), rather than disjoint (as was required
by (A1)), but which in addition satisfies a relative version of (A3) namely:

(A3′) For each B ∈ B and T ∈ T0(B) we have L(∂T ∩B,B(B)) ≤ L0.

Here B(B) ⊆ B is the set of bands strictly contained in B. In practice, we shall construct
such a system B directly, and recover A as the set of outermost bands of B.

There are some further refinements one can make to the band system, B.

Definition : Given k > 0, we say that two bands, A and B, are k-nested if one of
the following three conditions holds: N(A ∩ Θ(M), k) ⊆ B, N(B ∩ Θ(M), k) ⊆ A or
d(A ∩Θ(M), B ∩Θ(M)) ≥ k.

Here d is the path-metric on Θ(M), and N(., k) denotes k-neighbourhood in Θ(M).
Given any H2 > 0, we can replace (A1) by:

(A1′): The elements of B are H2-nested.

Of course, this may be at the cost of increasing L1, depending on H2.
The basic construction of the band system B is fairly simple. The constant W0 is

determined by the geometry of M (see (M2), Section 4). We choose some H4 ≥ 0 large
enough in relation to H0 and H1. If A is a band with W (A) ≤ W0 and H(A) ≥ H4 then we
choose such an A so as to maximise H(A) among such bands with the same base surface
φ(A). (Here we really mean “minimise” up to a small positive constant.) We can now
find a subband, B ⊆ A, so that by setting B̂ = A, B is an H0-collared band. By choosing
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H0 large enough, we can ensure that any two such bands will be disjoint, at least modulo
minor modification if one base surface should be contained in the other. We let B be the
set of bands arising in this way. Most of the work is in verifying (A3). In fact, we will
verify inductively a stronger version of (A3), starting with bands whose base surfaces have
minimal complexity and working upwards to Σ. This procedure is discussed in Section 6.

In this section, we have only dealt explicitly with a special case. In general, we need
to allow for parabolic cusps. One can also, in principle, account for the non-orientable
case. Most of this will be outlined in Section 8. The main differences will be that in
(A3) we should measure only vertical length in the convex core, but we can also allow for
boundaries of accidental Margulis cusps. We may also need to allow for a finite number of
“long bands” where one or more of the horizontal boundary components is at infinity.

We finally remark on the special case where Σ is a one-holed torus or four-holed sphere.
This case is well understood by [Mi1]. We know by (A7) that B = ∅. We recover (using
(A3)) the fact that in such a manifold, the boundary of any Margulis tube has uniformly
bounded vertical length, and hence bounded area.

3. The topology of M .

First we consider band systems from a purely topological point of view. To simplify
the exposition, we assume that Σ is a closed surface. (For the general case, see Section 8.)

Let X be the set of simple closed curves in Σ, defined up to homotopy. Unless otherwise
stated, a subsurface, Φ, of Σ will be assumed to be connected, proper and essential (i.e.
Φ 6= ∅, Φ 6= Σ and Φ is not homotopic to a point). Indeed we shall normally assume that
Φ is not an annulus, and that each boundary component of Φ is essential. (We allow for
the complement of Φ in Σ to contain annular components.) We regard Φ as defined up
to homotopy (or equivalently isotopy) in Σ. We write F for the set of (homotopy classes
of) such surfaces. Given Φ ∈ F , we write X(Φ) ⊆ X for the set of curves that can be
homotoped into Φ, and X(∂Φ) ⊆ X(Φ) for the set of homotopy classes of boundary curves.
(Note that two curves in ∂Φ that bound an annular complementary component will get
mapped to the same element of X(∂Φ).)

Given Φ,Ψ ∈ F , we write Φ ⊆ Ψ to mean that Φ can be homotoped into Ψ. Note
that this is equivalent to saying that X(Φ) ⊆ X(Ψ). A convenient way to imagine this
would be fix any hyperbolic structure and identify the interior, intΦ, of Φ with an open
subsurface with geodesic boundary. Such a realisation is unique. Moreover, Φ ⊆ Ψ in the
above sense, if and only if their realisations satisfy intΦ ⊆ intΨ.

Definition : Given Φ,Ψ ∈ F , we say that Ω ∈ F is a component of Φ ∩ Ψ if we can
homotope Φ, Ψ and Ω so that Ω is a connected component of Φ ∩Ψ in the usual sense.

The following is easily verified:

Lemma 3.1 : Suppose Φ,Ψ,Ω ∈ F . Then Ω is a component of Φ ∩ Ψ if and only if
X(Ω) ⊆ X(Φ) ∩X(Ψ) and X(∂Ω) ⊆ X(∂Φ) ∪X(∂Ψ). ♦
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Given Φ ∈ F , write |∂Φ| for the number of boundary components. (This will be bigger
than |X(∂Φ)| whenever there is a complementary annular component.)

Definition : The complexity , κ(Φ), of Φ is defined by κ(Φ) = 3 genus(Σ) + |∂Φ| − 2.

Note that if Φ ⊆ Ψ, then κ(Φ) ≤ κ(Ψ), with equality only if Φ = Ψ. Moreover,
κ(Φ) = 1 if and only if Φ is a 3-holed sphere.

Now let M = Σ×R, and let χ : M −→ Σ be the projection map. We want to express
various topological notions without making explicit reference to any co-ordinate system on
M .

Definition : A fibre of M is the image of an injective homotopy equivalence of Σ to M .

It turns out [Brow] that any fibre is ambient isotopic to Σ × {0}. Continuing in-
ductively, we see that if S1, . . . , Sn are disjoint fibres, then S1 ∪ · · · ∪ Sn has the form
Σ× {1, . . . , n} up to isotopy (and permutation).

Definition : By an unknotted surface in M we mean a subsurface F of a fibre S, whose
projection to Σ lies in F t {Σ}.

This projection is well defined up to homotopy. We denote it by φ(F ) ∈ F t {Σ}.

Definition : A collection of disjoint (unknotted) surfaces, F1, . . . , Fn is unlinked if there
are disjoint fibres, S1, . . . , Sn with Fi ⊆ Si for each i.

One can generalise this to an infinite locally finite collection. In this case, the ambient
fibres are disjoint, locally finite, and indexed by N or Z.

We can extend the above definitions to include closed curves in M (necessarily simple
and essential in Σ). A collection of disjoint solid tori in M are said to be unlinked if their
cores are unlinked. We define φ(γ) ∈ X and φ(T ) ∈ X in the obvious way for an unknotted
curve, γ, or solid torus, T .

As discussed in Section 2, if T ⊆ M is an unknotted torus, then ∂T has a well defined
meridian and longitude up to homotopy. (Together these generate H1(∂T ).)

Pushing surfaces.

We describe a procedure for “pushing” one fibre off another to make them disjoint.
We normally want to do this while fixing some subsurface or curve in the fibre. The main
applications of this process (and its variants discussed later) will come in Section 7.

Suppose that S, Z ⊆ M are fibres and that F ⊆ Z is an essential surface or curve not
meeting Z. We will produce a fibre, S′, containing F , disjoint from Z, and contained in
an arbitrarily small neighbourhood of S ∪ Z.

We can assume that S and Z meet transversely. Let GS be the closure of the compo-
nent of S \ Z containing F .
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Step 1: We first arrange that each boundary curve of GS is essential. For if not, start
with a homotopically trivial boundary curve, α ⊆ ∂GS ∩ Z, which is innermost in Z
among such boundary curves. It bounds a disc, DS , in S and a disc, DZ , in Z. Since
F is essential, we have F ∩ DS = ∅. Now replace DS in S by DZ pushed slightly off
Z, and adjoin DZ to GS to get rid of the boundary curve α. We continue to perform
such disc replacements until we rid ourselves of all such trivial boundary curves. Our new
surface, S, may not be embedded. (It may intersect itself along certain trivial curves.)
However it remains a homotopy equivalence, and GS is embedded in M and still contains
F . Moreover, GS ∩ Z = ∂GS .

Step 2: Since each boundary curve of GS is essential, there is a subsurface GZ ⊆ Z with
∂GZ = ∂GS ⊆ M and with φ(GZ) = φ(GS) (allowing for the possibility that GS and
GZ are both annuli). There is thus a natural bijection between the components of S \GS

(as an immersed surface) and those of Z \ GZ . We can thus replace each component of
S \ GS with the corresponding component of Z \ GZ , pushed slightly off Z. (Note that
GS is connected, and hence lies to one side of Z.) Since Z ∩ GS = ∂GS , the resulting
surface is embedded. It is clearly a homotopy equivalence, and hence a fibre containing F ,
as required.

A simple consequence of the pushing process is the following:

Lemma 3.2 : Suppose the S1, . . . , Sn are a set of fibres of M and for each i, Fi ⊆ Si is
an unknotted surface or curve. If Fi ∩Sj = ∅ for all distinct i and j, then the surfaces, Fi,
are unlinked in M .

Proof : Assume inductively that we have disjoint fibres, S′1, . . . , S
′
m with Fj ⊆ S′j for all

j ≤ m, and Fi ∩ S′j = ∅ for all i > m. Now inductively pust Sm+1 off each of the fibres S′j
to obtain a fibre S′m+1 containing Fm+1, disjoint from each of the other S′j , and contained
in a small neighbourhood of Sm+1∪

⋃
j≤m S′j . We see that Fk∩S′m+1 = ∅ for all k ≥ m+2.

We eventially get the Fi lying in disjoint fibres as required. ♦

Thick surfaces.

A “thick surface” will give us a topological formulation of band.

Definition : An (unknotted) thick surface, A, in M is the image of an embedding of
Φ×[−1, 1] for some Φ ∈ F , such that Φ×{t} is unknotted for some, hence every, t ∈ [−1, 1].

We can assume that these surfaces map back to Φ under the projection χ. We write
φ(A) = Φ. We refer to φ(A) as the base surface of A.

We can write ∂A = ∂HA ∪ ∂V A, where ∂HA = Φ× {−1, 1} and ∂V A = ∂Φ× [−1, 1]
are respectively the horizontal and vertical boundaries of A. Indeed we can write ∂HA =
∂+At ∂−A, where ∂±A lies in a fibre S±, where S+ separates S− from the positive end of
M . One can check this is well-defined. By a fibre of A we mean the image of an injective
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homotopy equivalence of Φ into A \ ∂HA, with ∂Φ = Φ ∩ ∂V A. As with M , a fibre of A,
in isotopic in A to Φ× {0}.

Lemma 3.3 : Suppose A ⊆ M is a thick surface and F ⊆ M is an unknotted surface
with F ∩ ∂HA = ∅. Let G be a non-annular component of F ∩ A meeting ∂V A only in
essential (core) curves. Then φ(G) is a component of φ(F ) ∩ φ(A).

Proof : It is easy to see that X(φ(G)) ⊆ X(φ(F ))∩X(φ(G)) and X(∂φ(G)) ⊆ X(∂φ(F ))∪
X(∂φ(A)), and so the result follows by Lemma 3.1. ♦

Corollary 3.4 : Suppose A ⊆ M is a thick surface and S ⊆ M is a fibre with S∩∂HA = ∅.
Suppose S meets each component of ∂V A if at all in a single core curve. Then S ∩ A is
either empty or a fibre of A.

Proof : If S ∩ A 6= ∅, let G be a component of S ∩ A. This cannot be an annulus. We
apply Lemma 3.3 with F = Σ to see that φ(G) is a component of φ(A), and hence equal
to it. Thus the inclusion of G in A is a homotopy equivalence. Since ∂G ⊆ ∂V A, it follows
that G is a fibre. In particular, G meets each component of ∂V A, and so G = S ∩A. ♦

Definition : We say that a set of disjoint thick surfaces in unlinked if some (hence any)
set of disjoint fibres thereof is unlinked.

Horizontal surfaces and bands.

We now bring our topological Margulis tubes into play. Suppose that T is a locally
finite disjoint collection of unlinked solid tori in M . There is a map φ : T −→ X, which
we assume to be injective. We also assume that for each T ∈ T , ∂T comes equipped with
a foliation by longitudes (referred to as horizontal longitudes if we need to clarify). We
write Θ(M) for the closure of M \

⋃
T . For surfaces, the use the term “horizontal” to

mean that it intersects the Margulis tubes nicely. More precisely:

Definition : A horizontal surface is an unknotted surface, F ⊆ M , such that there are
two disjoint subsets T∂(F ) and TI(F ) of T such that:
(1) For all T ∈ T \ (TI(F ) ∪ T∂(F )), T ∩ F = ∅.
(2) For all T ∈ TI(F ), T ∩ F is an annulus whose boundary is precisely ∂T ∩ F .
(3) For all T ∈ T∂(F ), T ∩ F = T ∩ ∂F consists of one or two horizontal longitudes.
(4) ∂F ⊆

⋃
T∂(F ).

(See Figure 3a.)

Figure 3a.
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Definition : A horizontal fibre is a horizontal surface that is also a fibre.

Clearly, if F is a horizontal fibre, then T∂(F ) = ∅. Otherwise, F ∈ F .

Definition : Two horizontal surfaces are parallel if φ(F ) = φ(G) and F ∩G = ∅.

Note that this implies that T∂(F ) = T∂(G).

Definition : A horizontal surface, F , is primitive if TI(F ) = ∅.

Definition : A piece of a horizontal surface, F , is a connected component of F ∩Θ(M).

Note that a piece of F is a primitive horizontal surface. (Note also that F ∩ Θ(M)
might be connected even if F is not primitive.)

Next we come to the notion of a band. As discussed earlier, this a thick surface whose
vertical boundary lies in the boundary of tubes. All other tubes, meet it, if at all, in solid
tori. We need to allow for the possibility of a tube cutting all the way through a band, from
the top to the bottom surface. If this doesn’t happen, the band will be called “primitive”.
Here is a formal account.

Definition : A band is an unknotted thick surface, B ⊆ M , such that there are subsets
T∂(B), TI(B), T+(B) and T−(B) of T satisfying:
(1) The three sets T∂(B), TI(B) and T+(B) ∪ T−(B) are mutually disjoint.
(2) If T ∈ T \ (T∂(B) ∪ TI(B) ∪ T+(B) ∪ T−(B)) then T ∩B = ∅.
(3) If T ∈ TI(B), then T ⊆ B and T ∩ ∂±B = ∅.
(4) If T ∈ T∂(B), then T ∩ B = ∂T ∩ B has one or two components, (each of) which is a
component of ∂V B and lies between two horizontal longitudes of ∂T .
(5) ∂V B ⊆

⋃
T∂(B).

(6) If T ∈ T+(B), then T ∩ ∂+B is an annulus whose boundary is ∂T ∩ ∂+B and consists
of two horizontal longitudes of ∂T .
(7) As with (6) with − instead of +.

(See Figure 3b.)

Figure 3b.

Note that ∂±B is a horizontal surface, with T∂(∂±B) = T∂(B) and TI(∂±B) = T±(B).
If T ∈ T+(B)∪ T−(B), then T meets B in a sub solid torus. (Note that its complement in
T will have two components if T ∈ T+(B) ∩ T−(B).)

We write T0(B) = TI(B) ∪ T+(B) ∪ T−(B).

12
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Clearly ∂+B and ∂−B are parallel. Conversely, if F and G are parallel horizontal
surfaces, then F and G determine a unique band, B, with {F,G} = {∂+B, ∂−B}. We
write B = 〈F,G〉.

Definition : A band, B, is primitive if T+(B) ∩ T−(B) = ∅.

Definition : A piece of a band B is the closure of a connected component of B\
⋃

(T+(B)∩
T−(B)).

(See Figure 3c.)

Figure 3c.

Note that a piece of a band is a primitive band.

Definition : A horizontal fibre of a band B is a fibre of B that is a horizontal surface.

We note that a fibre, F , of a band, B, divides F into two bands, namely 〈F, ∂−B〉
and 〈F, ∂+B〉. We also note the following consequence of Lemma 3.3 and Corollary 3.4:

Lemma 3.5 : Let B be a band.

(1) If F ⊆ M is a horizontal surface with F ∩ ∂±B = ∅ and G is a component of F ∩ B,
then G is a horizontal surface with φ(G) = φ(F ) ∩ φ(B).
(2) If S is a horizontal fibre with S ∩B 6= ∅ and S ∩ ∂±B = ∅, then S ∩B is a horizontal
fibre of B. ♦

Pushing horizontal fibres.

We need to elaborate on the pushing procedure described earlier, in order to take
account of the positions of the tubes.

Suppose that S, Z are horizontal fibres, and that F is an essential surface or curve
lying in some piece of F , with F ∩Z = ∅. As before, we want to “push” S off Z to obtain
a fibre S′ containing F . We need to refine our previous “pushing” procedure slightly in
order to ensure that the resulting fibre is horizontal.

We can assume that S meets Z transversely. We can also assume that if T ∈ TI(S)∩
TI(Z), then ∂T ∩S ∩Z = ∅, and that the annuli S ∩ T and Z ∩ T , meet, if at all, in single
core curve. Let GS be the closure of the component of S \ Z containing F . Thus, each
boundary curve of GS is either a core curve of some solid torus, or else lies in a piece of Z.
Step 1: First get rid of the homotopically trivial components of ∂GS as before, noting that
each of the discs, DZ , lies in some piece of Z.
Step 2: Let GZ ⊆ Z be the subsurface with ∂GZ = ∂GS and φ(GS) = φ(GZ). Let S1

be the surface obtained by replacing the components of S \ GS with the corresponding
components of Z \GZ . As before, S1 is a fibre containing F .

13
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Step 3: We may need to adjust S so that it becomes horizontal. Suppose that T ∈ T .
Now S1 ∩ T is empty or consists of one or two annuli (each of the form S ∩ T or Z ∩ T
pushed slightly, or obtained by surgery on S∩T and Z∩T in the case where they intersect
in a core curve.) Thus, the only thing that can go wrong is that we may have a torus, T ,
with S1 ∩ T = P tQ, where P,Q are annuli. These are homotopic in S1 and hence bound
a third annulus, R ⊆ S1. Now if S1 ∩ F = ∅, then we can just push R into T so that
S1 ∩ T becomes a single annulus. After doing this a finite number of times, we obtain our
horizontal fibre.

It remains to worry about the case where F meets, and hence is contained in R. Now
we cannot have GS ⊆ R (otherwise the process of obtaining S1 would not have produced
any such double annuli). Nor can we have R ⊆ GS (since GS ⊆ S, and we are assuming
S to be horizontal). It follows that the annulus V = GS ∩ R ⊆ F has one boundary
component, α, in T ∩ S, and the other boundary component, β, in ∂GS ⊆ Z.

At this point, we forget about Step 2, and instead do:
Step 2′: Recall that we have F ⊆ V ⊆ S with V ∩ T = α, V ∩ Z = β, ∂V = α t β and
T ∩ Z 6= ∅. Now T ∩ Z and β bound an annulus, W ⊆ Z. Let γ be the boundary curve
of T ∩ Z on the other side of W ∩ T . We connect γ to α by an annulus Y ⊆ T , and now
replace (T ∩Z)∪W in Z by Y ∪V . Pushing this surface slightly off Z, we get our desired
horizontal fibre, S′.

We finally note that this pushing process can be applied to subsurfaces in the following
sense.

Suppose that S is a fibre, and F ⊆ S∩Θ(M) is an essential surface or curve. Suppose
that J ⊆ S is a horizontal surface containing F , and that K is another horizontal surface
with φ(K) = φ(J), and with K ∩ S ⊆ J . We can form a fibre Z with K ⊆ Z and
with Z agreeing with S on all complementary horizontal surfaces. Now applying the
above procedure, we see that S remains unchanged on the complement of K (modulo
modifications in the solid tori containing boundary components of K). We have thus
effectively pushed S off K, while retaining F unchanged.

4. Metric properties.

So far, we have only considered the topological structure of M . In this section we
summarise its key metric properties. We shall assume that M is (constant curvature)
hyperbolic, though the essential points can be interpreted for more general metrics, for
example, in pinched negative curvature.

Again, we assume that M has no parabolic cusps, and admits a homotopy equivalence
χ : M −→ Σ to a closed surface Σ. By [Bon], M is homeomorphic to Σ×R. By [O1,O2],
the set, T , of Margulis tubes is unlinked. We write Y = core(M).

Recall that Θ(M) is the thick part of M , with induced path metric d. At least once
the essential properties are derived, only the geometry on Θ(M) will be relevant to future
discussion.

We note the following four geometric features of M .

14
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(M1) Geometry of tori.

We shall assume that the “thick part” of M is defined in such a way as to simplify the
handling of constants. The standard definition of thick part involves fixing a sufficiently
small Margulis constant, ε > 0, and defining it to be the set of points where the injectivity
radius is at least ε. In this way, the thin part is a disjoint union of tubes. However, we
get a similar qualitative picture if we allow for different tubes to be defined by different
injectivity radii, provided they range between two fixed positive constants. This allows us
to make certain additional metric assumptions about the tubes that will simplify further
disucssion.

Suppose T ∈ T . The geodesic core of a Margulis tube lies in the convex core, Y , of
M . The boundary, ∂T , is a euclidean torus, foliated by geodesic longitudes. It meets ∂Y ,
if at all, in a collection of geodesic longitudes. In fact, T either lies in Y or meets Y is a
solid torus bounded by one or two annuli.

It is convenient to assume that all geodesic longitudes of all ∂T they all have the
same length, say η. This can be achieved by noting that every longitude in ∂T ∩ Y lies
inside some horizontal fibre. (This follows from work of Otal [O1,O2], see the discussion
under (M2) below.) In general, its length will necessarily be bounded between two positive
constants, and so, using the observation of the preceding paragraph, it can be assumed to
be fixed. The constant, η, can be chosen to depend only on the complexity, κ(Σ), of Σ
(though could also be taken to be arbitrarily small). These geodesic longitudes are deemed
to be horizontal. We can also assume that there is a lower bound on the distance between
two such Margulis tubes, which we can also take to be η. We will also want to assume
that the boundaries of a Margulis tube T has extrinsic curvature close enough to 1 (the
extrinsic curvature of a horosphere). This can be achieved by assuming the length of the
core geodesic is small in relation to η, so that it lies deep inside T . (Again, using the
principle of the first paragraph.) Note that, by definition, there is some some lower bound
on the lengths of closed geodesics in the thick part, Θ(M). This depends on the Margulis
constant, η, we have fixed, and the maximal lengths of core curves of tubes that we are
allowing.

(M2) Horizontal fibres.

There is some constant, W0, depending on κ(Σ) (and η) such that any point of Y ∩
Θ(M) is contained in a horizontal fibre S ⊆ Y of width W (S) < W0. (Recall that W (S)
is defined as the maximal diameter of any piece of S measured in the path metric d on
Θ(M).) In particular, any horizontal longitude of any torus is contained in such a surface.
Note that by taking strict inequality, we can push such a surface slightly off itself to give
a disjoint surface while maintaining the same bound.

This can be achieved using various standard arguments. The main ideas of the con-
struction can be found in [O1,O2]. We first need to use the fact that every point of M
lies in the image of a uniformly lipschitz homotopy equivalence, φ : Σ −→ M , where Σ
carries some hyperbolic metric. The usual argument for this is based on some form of
interpolation of pleated surfaces (cf. [T]). A technically simpler approach is to use singular
hyperbolic surfaces of the type described in [Bon]. In particular, the “filling theorem” of
[C], gives us what we need. (The latter gives us a singular hyperbolic metric on Σ, but
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that works just as well.) Now the intrinsic diameter of each component of Σ ∩ φ−1Θ(M)
is bounded in terms of κ(Σ) (and η). We can homotop φ a bounded distance so that the
preimage of the set of tubes is a set of non-parallel essential annuli in Σ, whose boundary
curves are horizonal. We can now perform a variant of the construction of [FHS], as de-
scribed in [O2], to give us an embedded surface, F , in an arbitrarily small neighbourhood
of φ(Σ). (Some care is needed to ensure that the original longitude remains in F .) Now,
the ambient diameter of each component of F ∩ Θ(M) remains bounded. (In principle,
one can achieve a bound on the intrinsic diameters of such components, but this would
require more work.)

(M3) Bounded geometry.

Since the injectivity radius of Θ(M) is bounded below, it has “bounded geometry”.
One way of exploiting this is as follows (cf. [G]). Let r > 0 be the lower bound on injectivity
radius, as in (M1), and assume that any pair of distinct tubes are distance at least 2r
apart. A subset V ⊆ Y ∩ Θ(M) is said to be r-separated if d(x, y) ≥ r for all distinct
x, y ∈ V . We can form a graph, ∆(V ), with vertex set V , and with x, y ∈ V adjacent
in ∆(V ) if d(x, y) ≤ 3r. Bounded geometry implies that the degree of any vertex of such
a graph is uniformly bounded. We note that we could choose V so that Θ(M) lies in a
(2r)-neighbourhood of V . Such a set is called an r-net . In this case, the “nerve”, ∆(V ),
approximates distance in Θ(M) to within linear bounds.

From our choice of r, the r-ball about any point x ∈ Θ(M) a distance at least r from
any tube will be isometric to an r-ball in hyperbolic 3-space. If x is close to a tube T ,
then it will have a piece of this tube removed, and slightly distorted geometry. (Since we
are defining balls in terms of the metric d.) In any case, it is a nice contractible set.

(M4) Three-holed spheres.

The following (while not really essential to the construction) will tell us that no band in
our system has base surface a 3-holed sphere. (In retrospect, this explains why boundaries
of Margulis tubes have bounded are in the case of a 1-holed torus or 4-holed sphere.)

Lemma 4.1 : There is a constant, H3 > 0 such that if B ⊆ M is a band with base
surface, φ(B), a 3-holed sphere and with W (B) ≤ W0, then we can connect ∂+B to ∂−B
by a path in B of length at most H3.

Proof : Let T∂(B) = T0(B) = {T1, T2, T3}, and let γ±i = Ti ∩ ∂±B. There is a path, σ±i
in Θ(M) connecting γ±i to γ±i+1 of length at most W0 (taking indices mod 3). Since we
are dealing with a 3-holed sphere, we see that each σ+

i is homotopic to σ−i rel ∂Ti ∪∂Ti+1.
Lifting this picture to H3, we get six paths, σ̃±i connecting the three sets T̃i, each of these
sets being a uniform neighbourhood of a bi-infinite geodesic. Simple hyperbolic geometry
now gives us a bound on the distance between σ̃+

i and σ̃−i in the boundary of T̃i. Projecting
back to M gives the result. ♦

We shall assume henceforth that we have fixed the constants η and r (depending on
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κ(Σ)). The constants W0 and H3 are thus determined.
We remark that there are other important properties of the geometry of M , for ex-

ample the “Uniform Injectivity Theorem” for pleated surfaces (which seems central to the
Ending Lamination Conjecture). However, we make no use of this here — which means
that all our constants are, in principle, computable functions of κ(Σ).

5. The band system.

In this section, we describe more carefully the construction of a nested band system,
B.

Definition : The exterior length, l(π), of a path π in M is the rectifiable length of
π ∩Θ(M).

Definition : A vertical fibre of a band, A, is a path in A \ ∂V A connecting ∂+A to ∂−A.

Definition : The height, H(A), of a band, A, is the infimum of the exterior lengths of
vertical fibres.

Note that A is primitive if and only if H(A) > 0. In fact, when this is positive it
is more convenient to take H(A) to be this infimum plus an arbitrarily small positive
constant. Thus we can assume we have a vertical fibre of length at most H(A).

Definition : Given x ∈ A, the depth of x in A, denoted D(x,A) is the infimum of l(π) as
π varies over all paths in A connecting x to ∂HA in A \ ∂V A.
If Q ⊆ A, we write D(Q, A) = inf{D(x,A) | x ∈ Q} for the depth of Q in A.

Again it is convenient to add a small positive constant, or to pretend that the infimun
is attained.

Let ν = ν(Σ) be minus the Euler characteristic. This is the number of 3-holed spheres
in any pants decomposition of Σ. It thus bounds the number of pieces in any horizontal
surface in M .

Lemma 5.1 : Suppose A is a band, F ⊆ M is a horizontal surface, and x ∈ F ∩A with
D(x,A) > νW (F ). Let G be the component of F ∩A containing x. Then G is a horizontal
surface with φ(G) a component of φ(F ) ∩ φ(A). In particular, if F is a horizontal fibre of
M , then F ∩A is a horizontal fibre of A.

Proof : By Lemma 3.5, it’s enough to show that F ∩ ∂HA = ∅.
If not, we could find a path π in F connecting x to ∂HA never entering twice the same

piece of F . We can straighten this to a path, π′ in A, with l(π′) ≤ νW (F ), giving the
contradiction that D(x,A) ≤ νW (F ). ♦

Indeed continuing the same argument, we see easily that D(G, A) ≥ D(x,A)−νW (F ).
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Definition : A horizontal surface, F , is said to be narrow if W (F ) < W0.

Thus (M2) tells us that every point of Θ(M) is contained in a narrow fibre.
Let D0 = νW0.
A particular case of Lemma 3.1 and the subsequent remark is:

Corollary 5.2 : If A a band and S is a narrow horizontal fibre and x ∈ S ∩ A with
D(x,A) ≥ D0, then S∩A is a horizontal fibre of A. Moreover, D(S∩A,A) > D(x, A)−D0.

♦
In particular every point of depth at least D0 in A is contained in a narrow horizontal

fibre of A.

Definition : A band B is narrow if W (B) < W0.

Recall, from Section 1, the definition of a “collared band”, B ⊆ B̂, where B̂ =
B− ∪B ∪B+ and B− and B+ are the top and bottom collars of B. Note that D(B, B̂) =
min{H(B−),H(B+)}. We say that B is narrow as a collared band if both B and B̂ are
narrow. We say that B is h-collared if D(B, B̂) ≥ h.

We will observe that sufficiently long bands will always contain parallel collared bands
of bounded width. This will ultimately reduce us to considering only collared bands. One
advantage of this is that they statisfy a certain nesting property (Lemma 5.3). This nesting
property, a-priori, only applies to base surfaces. The bands themselves need not be nested.
This is a complicating factor, that will need to be addressed later (after the proof of Lemma
5.4.)

Lemma 5.3 : Suppose h ≥ 0 and A is a band with H(A) ≥ 2h + 4D0. Then A contains
a narrow band B with h ≤ D(B,A) ≤ h + D0 and with H(B) ≥ H(A)− 2h− 4D0.

Proof : Let π be a vertical fibre of A with l(π,A) = H(A). Let x± be points of π\
⋃
T0(A)

at external distance h + D0 away from ∂±A. By Corollary 5.2 there are narrow horizontal
fibres, F±, of A containing x±. As in the proof of Lemma 5.1, we see that H(〈F±, ∂±A〉) ≥
h + D0 − D0 = h and H(〈F−, F+〉) ≥ H(A) − 2(h + D0) − 2D0 = h − 4D0. We set
B = 〈F−, F+〉. ♦

In particular, if we set B̂ = A, we get a h-collared band, (B, B̂).

Lemma 5.4 : Suppose that B1, B2 are narrow primitive (2D0)-collared bands. If B1 ∩
B2 6= ∅, then either φ(B1) ⊆ φ(B2) or φ(B2) ⊆ φ(B1).

Proof : Let x ∈ B1 ∩ B2 ∩ Θ(M). By (M2), x lies in a narrow horizontal fibre, S, of
M . Now D(x, B̂i) ≥ D0 and so by Lemma 5.2, Fi = S ∩ B̂i is a horizontal fibre of B̂i

containing x. Moreover, D(Fi, B̂i) ≥ 2D0 −D0 = D0. Let G be the component of F1 ∩F2

containing x. Thus, φ(G) is a component of φ(B1) ∩ φ(B2).
Suppose that φ(B1) is not a subset of φ(B2), or equivalently that F1 6⊆ F2. There

must be a boundary curve, say α, of G contained in the interior of F1. Thus, α ⊆ ∂F2.
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Now α is a longitude of some T ∈ T . Since F2 is a fibre of B̂2, T ∈ T∂(B̂2) = T∂(B2).
Since α lies in the interior of F1, T /∈ T∂(B1). Moreover, from the last paragraph, we see
that D(∂T, B̂1) ≥ D0.

Now T ∈ T∂(∂±B2). Let γ± ⊆ T ∩∂±B2 be longitudes of ∂T on the same side of T as
α, i.e. so that γ+, γ− and α all lie in the same component of ∂V B̂2. Since D(γ±, B̂1) ≥ D0,
by Lemma 5.1, it follows that there are horizontal subsurfaces, G±, of ∂± containing γ±,
so that φ(G+) and φ(G−) are both components of φ(B1) ∩ φ(∂±B2) = φ(B1) ∩ φ(B2).
Since γ+ and γ− are on the same side of T , with respect to B2, they must map to the same
boundary curve of φ(B2). In particular, φ(G+)∩ φ(G−) 6= ∅, and so φ(G+) = φ(G−) = J ,
say.

Now if φ(B2) 6⊆ φ(B1), there must be some boundary curve, β, of J lying in the
interior of φ(B2). We have β = φ(T ) for some T ∈ T . Since β ⊆ ∂φ(G±) there must be
curves δ± ⊆ ∂G± which are longitudes in T . Since δ± are not boundary curves of ∂±B2, It
follows that T ∈ TI(∂±B2) = T±(B2). In particular, T+(B2) ∩ T−(B2) 6= ∅, contradicting
the assumption that B2 is primitive. ♦

We remark that by the same argument, we can arrive at the same conclusion assuming,
for any k > 0, that B1 and B2 are (2D0+k)-collared, and that d(B1∩Θ(M), B2∩Θ(M)) ≤
k.

It would be nice if we could go on to conclude that collared bands were nested.
However, it is still possible that a horizontal boundary component of the larger band (the
one with larger base surface) may cut through the smaller band. This is a phenomenon that
will need to be described and dealt with. This is the purpose of the following discussion.

Let B be a band. Note that the horizontal boundary, ∂HB = ∂+B∪∂−B meets Θ(M)
precisely in the relative boundary of B ∩ Θ(M) in Θ(M). If A is a primitive band, then
A∩Θ(M) is connected. We see easily that one of A ⊆ B, A∩B = ∅ or A∩∂HB 6= 0 must
hold.

Recall that A,B are nested if A ⊆ B, B ⊆ A or A ∩ B = ∅. Suppose that A,B are
non-nested primitive narrow (2D0)-collared bands. Since A∩B 6= ∅, applying Lemma 5.4,
we have either φ(A) ⊆ φ(B) or φ(B) ⊆ φ(A). Suppose that φ(A) ⊆ φ(B). Since A 6⊆ B,
we have A∩∂HB 6= ∅, so without loss of generality, A∩∂+B 6= ∅. Applying Corollary 5.2,
we see that F = Â∩∂+B is a horizontal subsurface of B that is a fibre of Â. In particular,
T∂(F ) = T∂(A) ⊆ T∂(∂+B) ∪ TI(∂+B) = T∂(B) ∪ T+(B).

Before continuing, we remark that the same argument would apply if we assume that A
and B are not k-nested and that A and B are (2D0+k)-collared. Note that N(A∩Θ(M), k)
is connected, so in this case d(A ∩ Θ(M), ∂HB ∩ Θ(M)) ≤ k, which is sufficient to make
the argument work.

Now suppose that φ(A) 6= φ(B), so that F is a proper subsurface of ∂+B. We see that
T∂(A)\T∂(B) 6= ∅. Note that T∂(A)\T∂(B) ⊆ T+(B). (We also remark that it follows that
A ∩ ∂−B = ∅, otherwise a similar argument would give T∂(A) \ T∂(B) ⊆ T−(B), showing
that T∂(B) ∩ T−(B) 6= ∅, and contradicting the assumption that B is primitive.) One can
also see easily that A ⊆ B̂ (see Lemma 5.5 below).

Now let B′ be the band with ∂−B′ = ∂−B and with ∂+B′ the horizontal surface ob-
tained from ∂+B by replacing F ⊆ ∂+B with the parallel surface ∂−A, pushed downwards
slightly so that if becomes disjoint from ∂−A. The remainder of ∂+B remains unchanged
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apart from suitable adjustments of the annuli in the tubes of T∂(A) \ T∂(B). We can
assume that B′ remains narrow. Clearly φ(B′) = φ(B). In fact:

Lemma 5.5 : We have A ∩ B′ = ∅ and B′ ⊆ B̂. Moreover, H(B) ≤ H(B′) and
D(B, B̂) ≤ D(B′, B̂).

Proof : The fact that A ∩B′ = ∅ follows easily from the construction. Let h = D(B, B̂).
Choose some T ∈ T∂(A) ∩ TI(B). Now D(T, B̂) ≥ h. Moreover T ∈ T∂(∂±Â) and Â is a
assumed to be narrow. Thus D(Â, B̂) = D(∂HÂ, B̂) ≥ h−D0 ≥ D0. In particular, Â ⊆ B̂
and so B′ ⊆ B.

Let π be a path in B̂ \∂V B̂ with (close to) minimal external length l(π) that connects
∂−B = ∂−B′ to ∂+B′. Let x be its endpoint in ∂+B′. Now if x lies the subsurface we
pushed off ∂−A, then π has to cross A− = 〈∂−A, ∂−Â〉. This contributes at least (almost)
2D0 to l(π), so it would have been quicker simply to follow ∂+Â to T (straightening in
Θ(M)) and then go through T to reach the unaltered part of ∂+B′. In other words, we
arrive at a point of ∂+B, and so H(B′) ≥ L(π) ≥ H(B).

The fact that D(B′, B̂) ≥ D(B, B̂) is similar, but even simpler. Note that it would be
stupid for a vertical fibre of B′

+ to go all the way through A+ and A in order to reach ∂−A,
when it could just go directly to T . Moreover, the bottom collar, B− remains unchanged.

♦

The above results show us how to arrange any pair of (2D0)-collared bands to be
nested, except possibly if φ(A) = φ(B). The construction of the band system will involve
choosing at most one band (of almost maximal height) with a given base surface, so that
the last situation will not arise.

Recall that we have fixed constants W0, D0 and H3 depending on κ(Σ) (as described in
Section 4). We fix further constants, H0 ≥ 2D0 and H1 ≥ 0, and let H4 = H1+2H0+4D0.
We assume that H4 ≥ H3.

The aim is to construct a set, B, of bands satisfying:

(B1) The elements of B are nested.
(B2) No two elements of B have the same base surface.
(B3) Each element of B is a narrow H0-collared band.
(B4) Each B ∈ B has H(B) ≥ H1.
(B5) If F is a narrow horizontal surface parallel to B ∈ B, then either H(〈F, ∂+B〉) ≤
H0 + 2D0 or H(〈F, ∂−B〉) ≤ H0 + 2D0.
(B6) If A is any narrow band with H(A) ≥ H4, then there is some band in B with the
same base surface.

To construct B, let F0 be the set of Φ ∈ F for which there is a narrow band, A,
with φ(A) = Φ and H(A) ≥ H4. For convenience, we assume that the maximal height is
attained, say by A. Lemma 5.3 then gives us a sub-band B ⊆ A, so that setting B̂ = A, we
get a H0 collared band, with H(B) ≥ H(A)− 2D0 − 4D0 ≥ H1. Properties (B2)–(B6) are
more or less immediate. To obtain nestedness, (B1), we need to carry out the modification
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procedure described above. We start with bands with base surfaces of minimal complexity,
and proceed inductively over complexity. A given band B might meet other bands A with
φ(A) strictly contained in φ(B). Inductively, the set of all such bands A meeting B is
nested. We can thus perform the construction described before Lemma 5.5 to the set of
outermost such bands simultaneously (or in any order) to give us a band, B′. We now
replace B by B′. After a finite number of such modifications, we arrange that B is nested
with all other bands. We do this for all bands with the same complexity, and then move
on to bands with the next higher complexity. By the time we reach κ(Σ) − 1, we obtain
our nested band system B.

Note that the existence of collars (B3) also implies that d(∂+B∩Θ(M), ∂−B∩Θ(M)) ≤
H0, i.e. a band does not approach itself on the outside.

We note that it is possible to refine slightly the above procedure. As we have stated it,
if A and B are bands with φ(A) ⊆ φ(B), then it is possible for ∂−A to be very close to ∂+B.
There is a slight modification of the process that will ensure that d(A∩Θ(M), B∩Θ(M)) ≥
H2 for an arbitrarily chosen constant, H2 > 0. To achieve this, we construct our initial
bands to be doubly collared. In other words, for each B ∈ B is initially contained in two
larger bands, B ⊆ B̄ ⊆ B̂, with H2 ≤ D(B, B̄) ≤ H2 + D0 and H1 ≤ D(B̄, B̂) ≤ H2 + D0.
If A ∈ B with Ā ∩ ∂+B 6= 0, then we can assume there is a horizontal subsurface, F , of
∂+B, with φ(F ) = φ(A). We modify ∂+B replacing F by ∂−Ā. Similarly, if C ∈ B with
C̄ ∩ ∂+B̄ 6= 0, then there is a subsurface, G, of ∂+B̄ with φ(G) = φ(C). We modify ∂+B̄
by replacing G with ∂−C̄. We do this for all such A and C, and proceed inductively for
over the complexity of φ(B). We can do the same thing for the bottom surfaces (swapping
+ and −). Finally we forget about the intermediate bands, B̄, and get a system of collared
bands as before.

Putting this together with the earlier remarks, and by taking our bands to be at least
(2D0 + H2)-collared, we can assume that the set B is H2-nested.

We want to explore properties of B. Most of the work, carried out in Section 6, is
to verify property (A3) of Section 1. We begin here with some preliminary discussion of
pushing surfaces off bands. As one consequence of this, we will deduce that our bands
are unlinked in M . For the remaining discussion of this section, we will not need (B6).
We note that properties (B1)–(B5) pass to any subset of B, in particular to the set of
outermost bands of B.

Let us recall the process of pushing fibres. Suppose that S, Z are horizontal fibres,
and F ⊆ S \ Z an essential subsurface or curve contained in a piece of S. Let S′ be the
horizontal surface obtained pushing S off Z as described in Section 3.

Now each piece of S′ is obtained by gluing together subsets of pieces of S and Z.
Some of the subsets of Z may be discs, but there is a combinatorial bound in terms of
κ(Σ) on the number of non-disc components glued together in this way. Thus, W (S′) is
bounded above by some (linear) function of W (S) and W (Z). The same discussion applies
to pushing S off a horizontal surface K parallel to a horizontal subsurface of S. In this
case, we get a (linear) bound in terms of W (S) and W (K).

Now, let B be a collection of bands satisfying (B1)–(B5) above. Let A ⊆ B be the
subset of outermost bands. Clearly

⋃
A =

⋃
B.
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Suppose that S is a narrow horizontal surface, and F ⊆ S∩Θ(M)\
⋃
B is an essential

subsurface or curve. Suppose that B ∈ A and S ∩ B 6= ∅. By Lemma 5.2, G = S ∩ B̂
is a horizontal fibre of B̂. If F ∩ G = ∅, then we can replace G is S by ∂+B, pushed
slightly off B. The fibre S remains narrow. After doing this for each such B, we can
assume that F ∩ G 6= ∅, and so F ⊆ G. In this case we can apply the above pushing
construction to as to push S first off K = ∂+B and then off K = ∂−B. The resulting
fibre still contains F , does not meet B, and has width bounded above in terms (depending
on κ(Σ)) of W (S) ≤ W0 and W (B) ≤ W0. We now apply this successively to all such
B. Since they are each parallel to a horizontal subsurface of our original fibre, there is a
combinatorial bound on the number of such B in terms of κ(Σ). We thus finally obtain a
fibre, S′ ⊇ F with S′ ∩

⋃
B = ∅, and with W (S′) bounded above by some constant W1

depending only on κ(Σ).
Putting this together with property (M2) of Section 4, we obtain, in particular:

Lemma 5.6 : If T ∈ T and α is a horizontal longitude of ∂T disjoint from
⋃
B, then α

is contained in a horizontal fibre, S, with W (S) < W1 and S ∩
⋃
B = ∅. ♦

We can apply this to show that the set, A, of outermost bands of B are unlinked in
M . Given any A ∈ A, let S(A) be any narrow horizontal fibre in M meeting A in a fibre,
F (A), of A. Now the collection of bands A\{A} also satisfies (B1)–(B5) above, so applying
the above construction, we can push S(A) off each element of A\{A} while keeping F (A)
unchanged. We thus obtain fibres (S′(A))A∈A with F (A) ⊆ A and F (A) ∩ S′(B) = ∅ for
all distinct A,B ∈ A. Now Lemma 3.2 tells us that the surfaces, F (A), and hence, by
definition, the bands A are unlinked. In other words, we have shown:

Lemma 5.7 : A set of outermost bands satisfying (B1)–(B5) is unlinked in M . ♦

6. Bounding vertical lengths.

The main purpose of this section is show that a set of bands satisfying (B1)–(B6) of
Section 5 will also satisfy (A3) of Section 2. Having constructed such a set of bands in
Section 5, this will prove the main result, namely Theorem 0.

Given T ∈ T , recall that L(∂T,B) is defined as the total vertical length of ∂T \
⋃
B.

We aim to show:

Proposition 6.1 : There is some L0 such that for all T ∈ T , L(∂T,B) ≤ L0.

Here, L0 depends on κ(Σ) and the choice of H0 and H1.

Convention : Throughout this section, we will use the term “band” only to refer to
elements of B. Other bands (as we have defined them) will be termed “strips”. Unless
otherwise stated, each “horizontal surface” will be assumed disjoint from

⋃
B, and any

strip will be assumed nested with the elements of B, and not contained in any element of
B.
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A horizontal surface, F , will be said to be “narrow” if its width, W (F ), is less than W1.

We have thus strengthened the notion of “horizontal surface”, but weakened the def-
inition of “narrow” (as given in Sections 2 and 5 respectively). By Lemma 5.6, it remains
the case that every point of M lies in a narrow horizontal surface.

To exploit bounded geometry, we will use the following variation of the nerve of a
covering. The construction will also be used in Section 7. Recall, from Section 4, the
definition of an “r-net”, V ⊆ Θ(M). It will be convenient to construct V as follows. Given
T ∈ T , let V (∂T ) be an r-net in ∂T . The condition on r ensures that

⋃
T∈T V (∂T ) is

r-separated in Θ(M). We now extend
⋃

T∈T V (∂T ) to an r-net, V , for Θ(M).
Let ∆ be the graph with vertex set V (∆) = V and x, y ∈ V adjacent if d(x, y) ≤ 3r in

Θ(M). The vertices of ∆ have bounded degree. Note that if R ⊆ Θ(M), then R ⊆ N(P, r),
where P = V ∩N(R, r).

Given T ∈ T , let Υ(∂T ) be the complete graph on V (∂T ) = V ∩ ∂T . Let Υ =
∆∪

⋃
T∈T Υ(∂T ). In other words, Υ has the same vertex set, V , but we have added more

edges across the Margulis tubes.
The idea behind this construction is that Υ approximates the geometry of M after

each Margulis tube has been shrunk to bounded diameter. Lengths in Υ thus correspond
to exterior lengths in M to within linear bounds. Here is a more precise formulation.

If p is a path in Υ, then we obtain a path π = π(p) in M as follows. Suppose x, y are
adjacent vertices of p. If the edge between them lies in ∆, then we connect x to y by a
path of length at most 3r in Θ(M). If it lies in Υ(∂T ) for some T ∈ T , then we connect
x to y by any path in the interior of T . (Its homotopy class in T will not be important.)

Conversely, given any path in M , recall that l(π) is its exterior length, i.e. the length
of π ∩ Θ(M). We can find a path p = p(π) in Υ, whose combinatorial length is at most
l(π)/r and for which π(p(π)) remains within a distance 3r of π in Θ(M).

We also recall the straightening process used in Section 5, for example in the proof of
Lemma 5.1. If π is a path in M , then we can replace any segment of π∩Θ(M) by a shortest
path with the same endpoints, give us another path π′ (not assumed to be homotopic to
π). Thus, l(π′) will be at most the sum of the diameters of the components of π ∩Θ(M).
This straightening is necessary because the bounds on width refer only to the ambient
diameters in Θ(M) rather than intrinsic diameters. However, it is a technical point that
can be ignored for the purposes of following the overall logic.

A key step in the proof of Lemma 6.2 is the following:

Lemma 6.2 : Given L,W ≥ 0, there is some E = E(L,W ) with the following property.
Suppose that A is a strip in M with φ(A) 6= Σ and W (A) ≤ W . Suppose that L(∂T ∩
A,B) ≤ L for all T ∈ T0(A). If T ′ ∈ T∂(A), then L(∂T ′ ∩A,B) ≤ E.

(Recall that T0(A) = TI(A) ∪ T+(A) ∪ T−(A).)
Recall that our eventual aim is to prove (A3), namely that the vertical length of the

boundary of each Margulis tube in the exterior of the bands is bounded. This lemma
will deal with the inductive step in the argument. It says that if we know this for the
intersections of tubes in T0(A), then we know it also for the tubes in T∂(A).
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Lemma 6.2 would follow fairly easily if we could bound the total volume of A\
⋃
B, in

other words, the number of components of A\
⋃
B, and the volume of each such component.

For the latter, by general principles of bounded geometry, it would be enough to bound the
diameter of each component. We can deal with these two issues simultaneously by making
a combinatorial approximation to the geometry. This uses the graph, Υ, defined above.
We can reinterpret the volume in terms of the number of vertices. To bound this, in turn,
it is sufficient to bound the diameter of Υ and the degree of its vertices. In the case where
the height, H(A), is bounded, the diameter bound follows from the fact that every fibre of
M must meet A− ∪ π ∪ A+, where π is any vertical fibre of A. For the degree bound, we
use the bounded geometry of Θ(M), together with the hypothesis on the Margulis tubes
in T0(A). If H(A) is very large, on the other hand, by construction of the band system,
there will be a band, B ∈ B, with the the same base surface as A. We can then apply the
above to the components of A \B.

We now give a formal proof.

Proof of Lemma 6.2 : Let us first suppose that H(A) is less than some constant H,
and give a bound in terms of L, W and H. (Note that we allow the possibility for A be
non-primitive, i.e. H(A) = 0.)

Let π be a vertical fibre of A \ ∂V A with l(π) ≤ H. Let a± be its endpoint in ∂±A.
We can assume that π meets the boundary of each Margulis tube in at most two points.

If x ∈ ∂±A, then we can connect x to a± by a path, π, in ∂±A which only enters
Margulis tubes in T0(A), and then at most once. We can thus straighten to π to a path π′

in Θ(M), with l(π′) ≤ νW (A) ≤ νW , and which only meets boundaries of Margulis tubes
in points of A \

⋃
B.

Suppose y ∈ A ∩ Θ(M) \
⋃
B. By Lemma 5.6, y is contained in a narrow horizontal

fibre of M (in the sense above). This fibre must intersect π ∪ ∂HA at some point x. As
above, y can be connected by a path of exterior length at most νW1, and entering and
leaving Margulis tubes only in points of A \

⋃
B.

We see that any two points, v, w ∈ A \
⋃
B can be connected by a path τ in M with

l(τ) ≤ H + 2νW + 2νW1, and if τ meets T ∈ T , then T ∈ T0(A) and τ ∩ ∂T ⊆ R(∂T ),
where R(∂T ) = (∂T ∩ π)∪ (∂T ∩A \

⋃
B). If v, w ∈ V , then we can connect v and w by a

path p = p(π) in Υ of combinatorial length at most l(τ)/r. Moreover, if x, y are adjacent
vertices of p connected by an edge in Υ(∂T ) for some T ∈ T , then T ∈ T0(A) and x and y
lie in N(R(∂T ), 2r). But now π ∩ ∂T consists of at most two points, and by assumption,
the vertical length of A∩∂T \

⋃
B is at most L. It follows that there is a universal bound,

in terms of L, for the number of possible x and y, and hence on the number of possible
edges along which p can cross Υ(∂T ).

Given the bound on the degrees of vertices in ∆ and on the length of p, we see that
there is a bound on the number of possibilities for such a path p, in terms of L, W and
H. This bounds the cardinality of V in terms of L,W,H. Indeed (given the bound on the
degrees of vertices in ∆), we get a bound on the cardinality of P = V ∩N(A \

⋃
B, 2r).

But now, since V is an r-net in Θ(M), we have A ∩ Θ(M) ⊆ N(P, r). In particular,
if T ∈ T∂(A), then ∂T ∩ A \

⋃
B ⊆ N(P, r). But the intersection of ∂T with N(P, r) has

bounded area for all x ∈ Θ(M). This places a bound on the area, and hence vertical length
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of ∂T ∩A \ B in terms of L, W and H as claimed.
We finally need to remove the dependence on the height of A.
First, suppose there is no band of B with base surface φ(A). By property (B6), this

means that any strip, B, with φ(B) = φ(A) and with W (B) ≤ W0 must have H(B) ≤
H4 = H1 + 2H0 + 4D0. Applying Lemma 5.3 (with h = 0) we see that H(A) ≤ H4 + 4D0.
Thus, we can apply the above result with H = H4 + 4D0.

Secondly, suppose there is some B ∈ B with φ(A) = φ(B). There are two subcases.
Either B ⊆ A or A ∩B = ∅.

Suppose first that B ⊆ A. Now, B has two collars in A, namely A+ = 〈∂+B, ∂+A〉
and A− = 〈∂+B, ∂−A〉. Let us consider A+. By hypothesis, W (∂+A+) = W (∂+A) ≤ W ,
and W (∂−A+) = W (∂+B) ≤ W0. We can assume that W ≥ W0, so W (A+) ≤ W . We
also have H(A+) ≤ H0 +4D0, otherwise, as in Lemma 5.3, we could find a horizontal fibre,
F , in A+ with D(F, ∂+B) ≥ H0 + 3D0 and W (F ) ≤ W0. In particular, 〈F,A+〉 would be
narrow and of height greater than H0+2D0, in contradiction to (B5). (Note that we cannot
apply (B5) directly to F = ∂+A, since the bound on its width might not be sufficient — W
may be bigger than W0.) We can now see that the hypotheses of the lemma are satisfied
by the band A+, since if T ∈ T0(A+) ⊆ T0(A), then L(∂T ∩ A+,B) ≤ L(∂T ∩ A,B) ≤
L. The bounded height case of the lemma now shows that if T ′ ∈ T∂(A) = T∂(A+),
then L(∂T ′ ∩ A+,B) is bounded. Similarly we see that L(∂T ′ ∩ A−,B) is bounded. But
L(∂T ′ ∩A,B) = L(∂T ′ ∩A+,B) + L(∂T ′ ∩A−,B), and the result follows in this case.

The remaining case is when A ∩ B = ∅. But now a similar argument, using Lemma
5.3 and (B5) shows that H(A) is bounded, and we are reduced to the earlier case. ♦

Let us return to the pushing process. We say that a strip, C, is full if φ(C) = Σ.
Suppose that C is a full strip, that S ⊆ M is a fibre, and that F ⊆ S ∩ Θ(M) is an
essential curve or surface. Pushing S successively off ∂+C and ∂−C, we obtain another
fibre, S′ ⊇ F , with W (S′) bounded above in terms of W (S) and W (C). (As usual, S,
∂HC and S′ are all assumed disjoint from

⋃
B.)

Applying Lemma 5.6, we obtain:

Lemma 6.3 : There is a non-decreasing function, f : [0,∞) −→ [0,∞) such that if C is
a horizontal strip, T ∈ T and α is a horizontal fibre of ∂T contained in A \

⋃
B, then α is

contained in a horizontal fibre, S of C with W (S) ≤ f(W (C)). ♦

Note that S divides C to two full substrips, each of width at most f(W (C)).
Given n ≥ 1, define Wn inductively by Wn+1 = f(Wn), starting with W1, the constant

of Lemma 5.6.
The following lemma represents the core of the argument. We deal inductively with

tubes lying in bigger and bigger strips. To give the idea, suppose, for example, we have
some T ∈ TI(A), lying in the interior of a strip, A, with L(∂T,B) very large. We can
find two fibres, S and S′ cutting through T , so that on one side, they bound an annulus,
Ω ⊆ ∂T , with L(Ω,B) also very large. Now Ω is the vertical boundary component of a
piece, A′, the full strip, 〈S, S′〉, so that A′ ⊆ A has smaller complexity. Using induction
and Lemma 6.2, we then bound L(Ω,B), which would give a contradiction. This argument
therefore bounds L(∂T,B). Of course, there are also other cases to be considered. To make
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the induction hypothesis work smoothly, we shall phrase everything in terms of pieces of
full strips. Here is a precise statement:

Lemma 6.4 : Suppose κ ∈ {2, . . . , κ(Σ)}. Suppose that C is a full strip with W (C) ≤
W2κ(Σ)−2κ, and suppose that A is a piece of C with κ(φ(A)) ≤ κ. Then there is some Lκ

such that for all T ∈ T0(A) we have L(∂T ∩A,B) ≤ Lκ.

Here Lκ depends only on κ and κ(Σ). In the case where κ = κ(Σ), we interpret the
statement by setting A = C = M , and the conclusion means that L(∂T,B) ≤ Lκ(Σ) for all
T ∈ T . This will therefore imply Proposition 6.1 on setting L0 = Lκ(Σ).

Proof of Lemma 6.4 : The proof will be by induction on κ. First note that the case
κ = 1 is vacuously true, since φ(A) is then a 3-holed sphere and so T0(A) = ∅.

Let us now suppose that we have verified the statement for some κ < κ(Σ). If
κ < κ(Σ) − 1, let A,C be as in the hypotheses, with κ(φ(A)) = κ + 1, so that W (C) ≤
W2κ(Σ)−2κ−2. (The case where κ = κ(Σ) − 1 will be commented upon at the end.) Let
T ∈ T0(A). We want to bound l = L(∂T ∩A,B).

Suppose first that T ∈ TI(A). Choose any horizontal longitude, α, of ∂T . By
Lemma 6.3, there is a horizontal fibre S ⊆ C, containing α with W (S) ≤ f(W (C)) ≤
f(W2κ(Σ)−2κ−2) = W2κ(Σ)−2κ−1. Let β be the other intersection of S with ∂T . This is
another horizontal longitude of ∂T . Thus, α and β together bound an annulus, Ω ⊆ ∂T ,
with L(Ω,B) ≥ l/2.

Let α′ ⊆ ∂T \
⋃
B be the horizontal longitude that cuts Ω into two annuli, each having

equal vertical length in the complement of
⋃
B. (Figure 6a.)

Figure 6a.

This vertical length must be at least l/4. As before, α′ lies in some fibre, S′ ⊆ C,
disjoint from S, with W (S′) ≤ f(W (S)) ≤ W2κ(Σ)−2κ. Let β′ be the other intersection
of S′ with ∂T . Since S ∩ S′ = ∅, we see that β′ ⊆ Ω. Swapping α with β if necessary,
we can assume that β′ does not lie in the annulus, Ω′ ⊆ Ω, bounded by α and α′. Now
S and S′ bound a strip, C ′ ⊆ C, with W (C ′) ≤ W2κ(Σ)−2κ. Also T ∈ T+(C ′) ∩ T−(C ′)
and Σ ⊆ ∂T ∩ C ′. Thus, Ω′ is a vertical boundary component of some piece, A′, of C ′.
Thus, W (A′) ≤ W (C ′) ≤ W2κ(Σ)−2κ. Since ∂HA′ ∩ ∂HC = ∅, we see that A′ ⊆ A, and
so φ(A′) ⊆ φ(A). Moreover, since T /∈ TI(A′), φ(A′) 6= φ(A) and so κ(φ(A′)) < κ(φ(A)).
Thus κ(φ(A′)) ≤ κ. Now the induction hypothesis tells us that L(∂T ′ ∩ A′,B) ≤ Lκ for
all T ′ ∈ T0(A′). Thus, Lemma 6.2 tells us that L(Ω′,B) ≤ E(Lκ,W2κ(Σ)−2κ), and so
l ≤ 4L(Ω′,B) is bounded as required.

We next consider the case where T ∈ T±(A). Without loss of generality, T ∈ T+(A).
The discussion only differs from the above in the choice of α and β.

Let l = L(∂T ∩A,B) as before. Let α′ divide ∂T ∩A into two annuli, each of vertical
length l/2 in the exterior of

⋃
B. Let S ⊆ C be a horizontal fibre containing α with

W (S) ≤ W2κ(Σ)−2κ−1, and let β be the other intersection of S with ∂T . Let Ω ⊆ ∂T ∩ A
be the annulus bounded by α and ∂T ∩∂+A not containing β. Let C ′ be the strip bounded
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Figure 6b.

by S and ∂+A, and let A′ be the piece of C ′ containing Ω. Thus Ω is a vertical boundary
component of A′. (Figure 6b.)

As before, κ(φ(A′)) ≤ κ and we get a bound on L(Ω,B) and hence on l as required.
This proves the induction step when κ < κ(Σ) − 1. We can define Lκ+1 in terms of

the bounds we have obtained for l.
Finally, we should comment briefly on the final step of the induction, namely when

κ = κ(Σ) − 1. In this case, we deal with an arbitrary T ∈ T in the same way as we did
with T ∈ TI(A) above. We obtain two disjoint fibres, S and S′, with W (S) ≤ W1 (by
Lemma 5.6) and with W (S′) ≤ f(W1) ≤ W2. Thus, W (C) ≤ W2 = W2κ(Σ)−2κ, and we
proceed as before. ♦

Proof of Proposition 6.1 : This is just Lemma 6.4, interpreted for κ = κ(Σ) and
setting L0 = Lκ(Σ). ♦

Proof of Theorem 0 : Let B be the band system constructed in Section 5, and let
A ⊆ B be the set of outermost bands. Properties (A1), (A2), (A4), (A5) and (A6) are
immediate from the construction, and property (A8) follows directly from these. Property
(A7) follows by Lemma 4.1, and (A9) by Lemma 5.7. Finally (A3) is Proposition 6.1. ♦

We note that we also have the following relative version, (A3′), for the intrinsic ge-
ometry of the band. Again, we suppose that B satisfies (B1)–(B6). Given B ∈ B, let B(B)
be the set of bands of B strictly contained in B. Given T ∈ T0(B), write L(∂T ∩B,B(B))
for the total vertical length of ∂T ∩B \

⋃
B(B).

Proposition 6.5 : There is some L0 such that if B ∈ B and T ∈ T0(B), then L(∂T ∩
B,B(B)) ≤ L0.

Proof : The proof is essentially the same as that of Proposition 6.1. Note that in this
case a “horizontal surface” is assumed to be disjoint from ∂HB and

⋃
B(B). Only tori in

T0(B) and bands in B(B) are relevant to the discussion. ♦

As mentioned in Section 5, we can also assume (A1′), namely that the bands in B are
H2-nested.

7. Volume growth.

In this section, we show:

Theorem 7.1 : There is a sequence, (fν)ν∈N of polynomials, with fν of degree ν, with the
following property. Suppose that M is a complete hyperbolic 3-manifold admitting a type-
preserving homotopy equivalence to a compact surface Σ, with ν(Σ) = ν. Let Θ(M) be the
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thick part of M and core(M) be the convex core of M . Suppose that x ∈ core(M)∩Θ(M)
and that N(x, t) is the ball of radius t about x in Θ(M) for any t ≥ 0. Then the volume
of core(M) ∩N(x, t) is at most fν(t).

Recall that ν(Σ) is minus the Euler characteristic of Σ. The sequence (fν)ν depends
only on the choice of Margulis constant. The “type-preserving” condition means that each
boundary curve of Σ corresponds to a parabolic cusp of M . The “thick part”, Θ(M), of
M consists of M with the interior of the Margulis tubes and Margulis cusps removed. The
t-ball, N(x, t), is taken with respect to the induced path metric.

The existence of such a polynomial bound was conjectured by McMullen and proven
in [BrocCM1].

The idea of the argument is as follows. Given B ∈ B. we write ν(B) = ν(φ(B)).
If ν(B) = 1, then the boundaries of the Margulis tubes it contains all have bounded
vertical length by (A7) (cf. [Mi1]) and we see that B has linear growth. We then proceed
inductively. For a general band, B, (or M itself) only linearly many outermost sub-bands
C ⊆ B with ν(C) < ν(B) are reached in a given time, and by induction, each of these has
growth at most polynomial of degree less than ν(B). Thus the growth rate of B is at most
polynomial of degree ν(B).

There is a slightly subtle issue involved in obtaining the degree, ν(Σ). If one pro-
ceeded simply by induction on complexity as previously defined, we would end up with a
polynomial of degree κ(Σ). The refinement arises from the observation that a band, A,
may contain a sub-band, B, whose base surface, φ(B) is obtained from φ(A) by removing
some set of annuli, so that ν(B) = ν(A) (whereas κ(B) < κ(A)). In such a case, B∩Θ(M)
disconnects A ∩ Θ(M) — a fact that allows us to discount bands of this sort from the
discussion. This will be the purpose of Lemma 7.7 below.

To make the argument more precise, it will be convenient to reformulate it in combina-
torial terms. We will construct a graph, Π, and a uniform quasi-isometry, θ : Π −→ Θ(M),
where Π has growth bounded by a uniform polynomial of degree at most ν(Σ). Here, and
in what follows, “uniform” is interpreted to mean dependence only on ν(Σ) and on the
Margulis constant defining Θ(M).

First, we make some general remarks.
Let Π be a graph (not necessarily connected) and let P ⊆ Π be a full subgraph (that

is, a maximal subgraph with given vertex set). We write Π/P for the quotient graph
obtained by collapsing each component of P to a single vertex. (Thus, Π \ P injects into
Π/P .) If Q ⊆ P is full, then Π/P = (Π/Q)/(P/Q). Also, if Π′ ⊆ Π is any subgraph, then
Π′ ∩ P is full in Π′, and we write Π′/P for Π′/(Π′ ∩ P ) viewed as a subgraph of Π/P .

Definition : If Π is a graph and f is a non-decreasing function, we say that “Π is O(f)”
if for all x ∈ V (Π) and all n ≥ 0, the number of edges in the combinatorial n-ball about x
is at most f(n)/2.

(Note that the degree of Π is bounded above by f(1)/2.)
For us, this a convenient way of bounding volume growth in view of the following

easily verified lemma.
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Lemma 7.2 : Suppose Π is a graph and P ⊆ Π is a full subgraph. If P is O(f) and
Π/P is O(g), then Π is O(fg). ♦

Thus if ∅ = Π0 ⊆ Π1 ⊆ · · · ⊆ Πn = Π is an increasing sequence of full subgraphs and
Πi/Πi−1 is O(fi), then Π is O(f1f2 · · · fn).

A subset, Q, of a graph Π is said to be k-quasidense in Π if Π is the k-neighbourhood
of Q. The degree of a graph Π the maximal degree of its vertices. The following is a simple
observation.

Lemma 7.3 : Given k1, k2 ∈ N there is a linear function f such that if Π is a graph of
degree at most k1 containing k2-quasidense geodesic, then Π is O(f). ♦

Now let M be a manifold as in the hypotheses of Theorem 7.1. It will be convenient
to assume that Σ is closed and that M is doubly degenerate so that core(M) = M . The
general case will follow by simple reinterpretation of the arguments.

We will use various graphs that approximate the geometry of M . As before, ∆ ap-
proximates the thick part, Θ(M), and Υ approximates the thick part (or M itself) after
each Margulis tube has been collapsed to bounded diameter. (These graphs have already
been described in Section 6. These constructions make no reference to our band system
B (other than assuming their vertex sets to be in general postion with respect to B). For
purely technical reasons, we will introduce another graph, Π, obtained by adding some
extra edges to ∆, depending on B. The graphs, Π, and Π ∪ Υ, can also be viewed as
approximating Θ(M), and Θ(M) with collapsed tubes, respectively. To each band, B ∈ B,
we will associate full subgraphs, ∆(B) and Π(B) of ∆ and Π. The purpose of introducing
Π is that Π(B) will be nicely embedded in Π, whereas it is difficult to ensure that ∆(B) is
nicely embedded in ∆ (since our control over the local geometry of ∂HB is rather weak).
For the purposes of understanding the overall logic, one could simply imagine each band
of B to be nicely embedded locally, and just pretend that ∆ and Π are identical. We now
proceed to a more formal argument.

Let B be a nested system of bands satisfying (A2)–(A9) and (A1′) and (A3′) of Section
2.

As in Section 4 we fix some uniform r > 0 suitably small in relation to the Margulis
constant, as well as the constants featuring in the properties of B. We construct an r-net,
V , for Θ(M) as in Section 6, as follows. First we choose an r-net for ∂T for each T ∈ T ,
and then extend

⋃
T∈T V (∂T ) to an r-net, V , for Θ(M). We can assume that V ∩∂HB = ∅

for all B ∈ B.
Let ∆ be the graph with vertex set V (∆) = V and with x, y ∈ V adjacent if d(x, y) ≤

3r. We construct a map θ : ∆ −→ Θ(M) as the identity on V and mapping each edge
to a (in fact, the) shortest path between its endpoints in Θ(M). Thus θ is a uniform
quasi-isometry.

Given Q ⊆ M , write ∆(Q) for the full subgraph of ∆ with vertex set V ∩ Q. Note
that

⋃
T∈T ∆(∂T ) is a full subgraph of ∆, and that θ(∆(∂T )) ⊆ ∂T .

Given B ∈ B, let EH(B) be the set of edges of ∆ with exactly one endpoint in B. Write
VH(B) for those vertices of

⋃
EH(B) which lie in B. If e ∈ EH(B), then θ(e) crosses ∂HB

(an odd number of times). We can thus partition EH(B) as E+(B) t E−(B) depending
on whether θ(e) crosses ∂+B or ∂−B. We similarly partition VH(B) as V+(B) ∪ V−(B).
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Given A ∈ B, let B(A) = {B ∈ B | B ⊆ A,B 6= A}, and write U =
⋃
B(A) ⊆ B.

Thus ∆(U) =
⊔

B∈B(A) ∆(B).
Suppose T ∈ T0(A). By (A8) at most N0 elements of B(A) meet ∂T , and by (A3′),

∂T \ U has vertical length at most L0. It follows easily that:

Lemma 7.4 : The quotient graph, ∆(∂T ∩ A)/∆(∂T ∩ U) had uniformly bounded
diameter. ♦

Now VH(A)∩U = ∅ and so we can regard VH(A) as a subset of ∆(A)/∆(U). Moreover,
we can connect V+(A) to V−(A) by a path q in ∆(A) (obtained by approximating any
vertical fibre of A by a path in the image of θ). This gives a path q/∆(U) from V+(A) to
V−(A) in ∆(A)/∆(U). Indeed any such path p ⊆ ∆(A)/∆(U) has this form: if p passes
through the vertex obtained by collapsing some ∆(B) ⊆ ∆(A) we can lift this vertex to a
path in ∆(B) ⊆ ∆(A) connecting the two incident edges of q.

Recall, from Section 6, that Υ(∂T ) is the complete graph on V ∩ ∂T , and Υ =
∆ ∪

⋃
T∈T Υ(∂T ). Given Q ⊆ M , write Υ(Q) for the full subgraph of Υ on V ∩Q.

Now let q be a path in ∆(A) connecting V+(A) to V−(A). The endpoints of θ(q) ⊆
Θ(M) lie within distance 3r of ∂±A∩Θ(M). It is possible that θ(q) may cross ∂HA, but by
taking a subpath and/or adding short paths to the endpoints, we get a path π ⊆ B∩Θ(M)
connecting ∂+B to ∂−B.

Any point x ∈ V ∩ B lies in a horizontal fibre, S, of M with W (S) ≤ W0. Clearly
S∩(π∪∂HA) 6= ∅, and so we get a path, s, of bounded length connecting x to q∪VH(A) in
Υ(A). This path may cross certain graphs Υ(∂T ). However, we can apply Lemma 7.4 to
get around these in ∆(A∩∂T )/∆(U∩∂T ) ⊆ ∆(A)/∆(U), adding a bounded amount to the
length of s/∆(U). Thus x lies a bounded distance from (q/∆(U))∪VH(A) in ∆(A)/∆(U).
As observed above, any path p from V+(A) to V−(A) in ∆(A)/∆(U) has the form q/Π(U).
We conclude:

Lemma 7.5 : If p is any path from V+(A) to V−(A) in ∆(A)/∆(U), then p ∪ VH(A) is
uniformly quasidense in ∆(A)/∆(U). ♦

We would like to say that p is itself quasidense. However there is the technical irritation
that the boundary of A may be rather wriggly. We can get around this by adding some
extra edges to ∆ so as to reduce the diameter of V±(A). This will give us our graph, Π,
referred to earlier.

Suppose B ⊆ B, and that F is a piece of ∂±B. Let E(F ) ⊆ E±(B) be the set
of e ∈ E±(B) such that θ(e) crosses F . Since W (∂±B) = W (B) is bounded, so is the
diameter of F in Θ(M), and it follows that E(F ) is of bounded diameter in ∆. We extend
E(F ) to a complete bipartite graph by connecting each vertex of V ∩B ∩

⋃
E(F ) to each

vertex of V ∩ E(F ) \ B. Note that EH(B) is a disjoint union of such sets E(F ). We
perform this construction for all such F and all B ∈ B. This gives us a graph Π ⊇ ∆ with
the same vertex set V . Moreover (since W (B) is bounded), we can extend θ to a uniform
quasi-isometry θ : Π −→ Θ(M). Bounded geometry tells us that Π has uniformly bounded
degree. The earlier discussion of ∆ applies equally well to Π. In particular, given Q ⊆ M ,
we write Π(Q) for the full subgraph of Π on V ∩ Q. Also we have a graph Π ∪ Υ on the
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vertex set V . This time, we see that if A ∈ B, then V±(A) has bounded diameter in Π∪Υ,
and so applying Lemma 7.4 as before, we see that it has bounded diameter in Π(A)/Π(U).
Now ∆(A)/∆(U) is a subgraph of Π(A)/Π(U) with the same vertex set, so putting this
together with Lemma 7.5, we deduce:

Lemma 7.6 : Any path connecting V+(A) to V−(A) in Π(A)/Π(U) is uniformly quasi-
dense in Π(A)/Π(U). ♦

This observation is sufficient to tell us that Π(A)/Π(U) has linear growth (cf. Lemma
7.8 below). This, in turn, is enough to give us polynomial growth of Π and hence of Θ(M)
(cf. Lemma 7.9). However, to obtain a polynomial of degree ν(Σ), we need to refine this
as follows.

Suppose B ∈ B(A) with ν(B) = ν(A). Now ∂±B can be extended to a horizontal
fibre of A by adding a number of annuli in Margulis tubes (in T∂(B)\T∂(A)). This follows
from the condition that ν(B) = ν(A). (Indeed we can extend B to a non-primitive band
C ⊆ A with φ(C) = φ(A) by adding some sub-solid tori in Margulis tubes.) It follows
that ∂+B ∩ Θ(M) and ∂−B ∩ Θ(M) both separate ∂+A ∩ Θ(M) from ∂−A ∩ Θ(M) in
A∩Θ(M). In other words, any path from ∂+A to ∂−A in A∩Θ(M) must pass through B.
Interpreting this in terms of the graph Π, we see that any path from V+(A) to V−(A) in
Π(A) contains a subpath connecting V+(B) to V−(B) in Π(B). It is possible that B may
itself contain other sub-bands of this type, so we will need to give an inductive argument.

Now let B0(A) = {B ∈ B(A) | ν(B) < ν(A)} and write U0 =
⋃
B0. We refine Lemma

7.6 as follows: (If one does not care about the degree, one can go straight to Lemma 7.8,
replacing B0 by B, U0 by U and ν by κ.)

Lemma 7.7 : Any path connecting V+(A) to V−(A) in Π(A)/Π(U0) is uniformly quasi-
dense in Π(A)/Π(U0).

Proof : There is a uniform combinatorial bound on the length of a strictly increasing
sequence of bands, B1 ⊂ B2 ⊂ · · · ⊂ Bn = A with Bi ∈ B and ν(B1) = ν(A). We prove
Lemma 7.7 by induction in the maximal such length, n = n(A).

If n = 1, then B0(A) = B(A), so Lemma 7.7 reduces to Lemma 7.6.
Suppose n(A) = n, and we have verified the lemma for n − 1. Let p be any path in

Π(A)/Π(U0) from V+(A) to V−(A). This has the form q/Π(U0), where q connects V+(A)
to V−(A) in Π(A). Let B1(A) be the set of bands C ∈ B(A) that are outermost in B(A)
and satisfy ν(C) = ν(A). Thus U =

⋃
B(A) =

⋃
(B0(A) ∪ B1(A)) = U0 ∪ U1, where

U1 =
⋃
B1(A).

Suppose C ∈ B1(A). Then n(C) = n − 1 and B0(C) = B0(A) ∩ B(C). Thus
Π(C)/Π(U0) = Π(C)/Π(

⋃
B0(C)). Now q contains a subpath, qC , connecting V+(C) to

V−(C) in Π(C). By the induction hypothesis, qC is uniformly quasidense in Π(C)/Π(U0).
By Lemma 7.6, q/Π(U) is uniformly quasidense in Π(A)/Π(U). Thus, if x ∈ V ∩ A,

then x can be connected to q by a path s in Π(A) with s/Π(U) of bounded length. If
q ∩ Π(U1) = ∅. then s/Π(U) = s/Π(U0) and we are happy. If not, then s enters some
C ∈ B1(A) for the first time at some y ∈ Π(C). From the previous paragraph, we see that
there is a path, t, from y to q in Π(C) with t/Π(U0) of bounded length. By joining together
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s/Π(U0) and t/Π(U0) we see that x is a bounded distance from q/Π(U0) in Π(A)/Π(U0),
and the lemma follows by induction. ♦

Another point to note is that since W (B) is bounded for all B ∈ B, there is a bound
on the number of edges e of Π such that θ(e) crosses ∂HB. Thus there is a bound on
the number of edges of Π with exactly one endpoint in Π(B), and hence on the degree of
Π/Π(

⋃
B′) for any subset B′ of B. In particular, the degree of Π(A)/Π(U0) is uniformly

bounded.
Putting this observation together with Lemma 7.3 and Lemma 7.7, taking any shortest

path from V+(A) to V−(A) in Π(A)/Π(U), we conclude:

Lemma 7.8 : There is a uniform linear function, f , such that for all A ∈ B, the quotient
Π(A)/Π(U0) is O(f), where U0 =

⋃
B0(A). ♦

(Here f , may depend on ν(Σ).)
Now exactly the same argument applies to M itself, taking a bi-infinite geodesic in

Π/Π(U0), where U0 =
⋃
B0, and B0 = {B ∈ B | ν(B) < ν(Σ)}. Thus, Π/Π(U0) is also

O(f).
Now, given n ∈ {1, 2, . . . , ν(Σ) − 1}, let Bn = {B ∈ B | ν(B) = n}. Let Cn ⊆ Bn be

the set of bands of Bn that are outermost, and let C =
⋃ν(Σ)−1

n=1 Cn. Thus if A,B ∈ C with
B strictly included in A, then ν(B) < ν(A). If A ∈ C then B0(A) = B(A) ∩ C.

Given n, let Un =
⋃
Cn =

⋃
Bn, and let Πn = Π(Un). Each component of Πn has the

form Π(A) for some A ∈ Cn. Each component of Πn−1 inside Πn has the form Π(B) for
some B ∈ B(A) ∩ C = B0(A). Thus Πn−1 ∩ Π(A) = Π(

⋃
(B0(A)), and so Π(A)/Πn−1

∼=
Π(A)/Π(

⋃
B0(A)) is O(f) by Lemma 7.8. Since this applies to each component of Πn, we

see that Πn/Πn−1 is O(f).
Now setting Πν = Π and using the remark following Lemma 7.8, we see that Πν/Πν−1

is O(f). Also, Π0 = ∅, and so we have an increasing sequence of full subgraphs, ∅ = Π0 ⊆
Π1 ⊆ · · · ⊆ Πν = Π, where Πn/Πn−1 is O(f) for all n. Applying Lemma 7.2, we see that
Π is O(fν). But gν = fν is a polynomial of degree ν. We have shown:

Lemma 7.9 : There is a sequence, (gν)ν of polynomials, gν of degree ν, such that any
graph Π constructed in this way is O(gν). ♦

Since θ : Π −→ Θ(M) is a uniform quasi-isometry, and since Π has uniformly bounded
degree, it follows easily that the volume growth of Θ(M) about any point is bounded by
some uniform polynomial, fν , of degree ν = ν(Σ).

We have assumed that M is doubly degenerate, and pretended that Σ is a closed
surface, but the general case proceeds in essentially the same way (see Section 7).

This proves Theorem 7.1.

8. The general case.

In most of this paper, we have only dealt explicitly with the special case where Σ is a
closed orientable surface, and M is orientable and without cusps. Moreover, we have mostly
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supposed that M is doubly degenerate. This has been mainly to simplify the exposition.
The general case of a manifold admitting a type-preserving homotopy equivalence to a
compact surface can be dealt with by fairly routine reinterpretations of various definitions
and constructions as outlined below. In particular, Theorem 7.1 remains valid as stated
in the general case.

Let M be a complete orientable hyperbolic 3-manifold admitting a homotopy equiv-
alence to a compact surface Σ. We assume that this is type-preserving , that is, each
boundary curve of Σ corresponds to a cusp of M . We write X(Σ) for the set of homotopy
classes of non-peripheral closed curves in Σ. We shall assume for the moment that Σ and
M are orientable.

After fixing some Margulis constant, we have, as before, a set, T , of Margulis tubes.
In addition, we have a set, P, of Margulis cusps. If P ∈ P, then ∂P is a euclidean
cylinder foliated by euclidean geodesic “longitudes” of fixed length. We write N(M) =
M \

⋃
P∈P int P for the non-cuspidal part of M , and Θ(M) = N(M) \

⋃
T∈T intT for the

thick part of M .
Let P∂(M) be the set of Margulis cusps that correspond to boundary components of

Σ, and let Q(M) = M \
⋃

P∈P∂(M) intP . (Thus Θ(M) ⊆ N(M) ⊆ Q(M).) By tameness
[Bon], Q(M) is homeomorphic to Σ×R. We refer to the ends Σ×[0,∞) and Σ×(−∞, 0] as
the positive and negative ends of Q(M). Note that ∂Q(M) =

⋃
P∈P∂(M) ∂P ≡ ∂Σ×R. A

fibre of Q(M) is the image of a homotopy equivalence from Σ to Q(M) where the preimage
of ∂Q(M) in Σ is precisely ∂Σ.

Let PA(M) = P \ P∂(M). These are the accidental parabolic cusps of M . We can
write PA(M) = P+(M) t P−(M) depending on whether the cusp lies in the positive or
negative end of Q(M). Each P ∈ PA(M) is homotopic to a curve α(P ) ∈ X(Σ). The
set {α(P ) | P ∈ P±(M)} a multicurve in Σ, i.e. the elements are mutually disjoint. In
particular, P±(M) and hence P are finite.

A surface Φ ∈ F is assumed to have the property that each boundary curve in Φ that
is peripheral in Σ is equal to this boundary curve, and that all other boundary curves of Φ
lie in int Σ. As before, we can define an unknotted surface, F ⊆ M , where we assume that
F ∩ ∂Q(M) are precisely the boundary curves of F that are peripheral in Q(M). Again,
we have φ(F ) ∈ F \ {Σ}. We can similarly define a thick surface.

We need to modify the definitions of “horizontal surface” and “band”.
A horizontal surface is now an unknotted surface, F ⊆ Q(M) such that there are two

disjoint subsets, T∂(F ) and TI(F ) of T , satisfying (1)–(3) as before, and in addition, two
disjoint subsets, P∂(F ) and PI(F ) of P which satisfy (1′)–(3′), where T , T∂(F ) and TI(F )
are replaced by P, P∂(F ) and PI(F ). Condition (4) gets replaced by:

(4′) ∂F ⊆
⋃
T∂(F ) ∪

⋃
P∂(F ).

Note that, necessarily, PI(F ) ⊆ PA(M).
We similarly modify the definition of a band. It is now a thick surface, B, in Q(M),

with subsets T∂(B), TI(B), T+(B), T−(B) ⊆ T satisfying (1)–(4), (6) and (7), as before,
together with subsets P∂(B),P+(B),PI(B) ∈ P satisfying (1′), (2′), (4′), (6′) and (7′)
where T gets replaced by P etc., and PI(B) = ∅. Condition (5) gets replaced by

(5′) ∂V B ⊆
⋃
T∂(B) ∪

⋃
P∂(B).
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As before, we assume that φ(B) 6= Σ.
We necessarily have P±(B) ⊆ PA(B) and P−(B) ∩ P+(M) ⊆ P+(B) and P+(B) ∩

P−(M) ⊆ P−(B). We say that B is primitive if T+(B) ∩ T−(B) = P+(B) ∩ P−(B) = ∅.
In this case, P+(B) ∩ P−(M) = P−(B) ∩ P+(M) = ∅.

Let Y = core(M) be the convex core of M , and let ∂Y denote the boundary of Y in
M . The inclusion of ∂Y ∩Θ(M) into ∂Y is a homotopy equivalence. Each component, F ,
of ∂Y ∩N(M) is a horizontal surface with PI(F ) = T∂(F ) = ∅. Moreover, F cuts N(M)
into two components, one of which, C(F ), homeomorphic to F × [0,∞). We can refer to
F , and hence the corresponding component of ∂Y , as positive or negative depending on
whether C(F ) lies in the positive or negative end of Q(M). We write ∂−Y (respectively
∂+Y ) for the union of positive (negative) components, so that ∂Y = ∂+Y t ∂−Y .

Now each Margulis tube, T ∈ T , meets Y . Indeed, we can write T = TI(Y )∪T−(Y )∪
T+(Y ) with TI(Y ) ∩ (TI(Y ) ∪ T+(Y )) = ∅, so that for all T ∈ TI(Y ), T ⊆ Y , and for all
T ∈ T±(T ), ∂±Y meets T in an annulus.

Let’s first consider the case where M is geometrically finite. This means that Y ∩Θ(M)
is compact, so that T is finite, and Y ∩ N(M) is compact. Indeed we can find disjoint
horizontal fibres, S+ and S− of Q(M), such that S± ∩ N(M) = ∂±Y ∩ N(M). Now S+

and S− bound a compact region, K, in Q(M). In fact, K, is like a band in Q(M), with
TI(K) = TI(Y ), T±(K) = T±(Y ), T∂(K) = ∅, P±(K) = P±(Y ) and P∂(K) = P∂(M),
except that φ(K) = Σ, which we have disallowed.

The statement of Theorem 0 is similar to that given in Section 2. We construct a
nested set, B, of bands satisfying (B1)–(B6) of Section 5. This time, we assume that
each band lies in the interior of Y . We let A ⊆ B be the set of outermost bands. These
bands satisfy (A1), (A2) and (A4)–(A9) of Section 2. Property (A3) should now say that
L(∂T ∩ Y,A) ≤ L0 for all T ∈ T , and L(∂P ∩ Y,A) ≤ L0 for all P ∈ PA(M). To the
statement of (A3′), we should add that: L(∂P ∩B,B(B)) ≤ L0 for all P ∈ PA(M).

The case where there are no accidental parabolics — PA(M) = ∅ — is similar. In
this case, each of ∂+Y and ∂−Y is either empty or a horizontal fibre, and so we have have
a division into geometrically finite, singly degenerate and doubly degenerate cases. The
statement of Theorem 0 is as for the geometrically finite case above.

For a non geometrically finite manifold with accidental parabolics, the situation a bit
more complicated. One way of dealing with it is to allow for “long bands” where one of
the horizontal boundary components may be at infinity.

More precisely, a semi-infinite thick surface, B, is the image of a proper embedding
of Φ× [0,∞) into Q(M), where Φ ∈ F . We write ∂HB for the image of Φ× {0} and ∂V B
for the image of ∂Φ × [0,∞). A long band is now a semi-infinite thick surface B, with
∂V B ⊆

⋃
P and with ∂HB a horizontal surface.

We now allow B to contain (a necessarily finite number of) long bands. We can assume
that B satisfies (B1)–(B6). For a long band, B, (B4) is redundant and (B5) means that
if F is parallel to B, then H(〈F, ∂HB〉) ≤ H0 + 2D0. If A is the set of outermost bands,
then conditions (A1)–(A9) are satisfied, with (A3) and (A3′) modified as above. Indeed,
if P ∈ PA(M), then ∂P ∩ Y \

⋃
A is compact.

Let C ⊆ B be the set of innermost long bands. These are disjoint. If C ∈ C, and
P ∈ P, then P ∩C ⊆ ∂P , otherwise we could find smaller long bands contained in C. Thus
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C ⊆ N(M). Let F+ be the union of ∂HC as C varies over positive bands in C. We can
find a horizontal fibre, S+, of Q(M) such that S+ ∩ N(M) = (F+ ∪ ∂+Y ) ∩ N(M). We
can similarly find a disjoint fibre, S−. Let K be the compact region of S+ and S−.

We see that K behaves like the compact region K constructed in the geometrically
finite case. (Note K ∩ N(M) need not be connected.) Similarly, each band of C behaves
like the convex core of a singly degenerate manifold with smaller base surface. Thus, in
some sense, the general case is a union of geometrically finite and singly degenerate cases.

Finally, we remark that the non-orientable case can also be similarly accounted for.
In this case, Margulis tubes may be solid tori, and boundaries of Margulis cusps may
be Möbius bands. Also, there may be no canonical choice of “positive” or “negative”
boundaries of bands.
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