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0. Introduction.

In this paper, we describe some of the interconnections between the end structure of
graphs, groups acting on protrees, and convergence actions on Cantor sets. Our work ties
in with recent work of Gerasimov and Dunwoody and earlier work of Bergman.

It was shown by Hopf in the 1930s that the space of ends of (any Cayley graph of) a
finitely generated group, Γ, either consists of 0, 1 or 2 points, or else is a Cantor set. In the
late 1960s, Stallings used topological methods to show that in the last case Γ splits non-
trivially over a finite subgroup. Shortly afterwards, Bergman [Ber] gave a different proof
of the same result. One can interpret his construction as giving us a Γ-invariant nested
subset of the boolean algebra of clopen sets of the space of ends, and hence a splitting
of the group via Bass-Serre theory. In fact, one can think of this algebra combinatorially
in terms of cuts of the Cayley graph, i.e. finite sets of edges which separate the graph
into more than one infinite subset (cf. [Du1]). Bergman’s proof uses a certain “norm”
defined on the set of such cuts. Recently Dunwoody and Swenson showed how one can use
Bergman’s norm to construct nested generating sets of arbitrary invariant subalgebras of
the algebra of cuts of a locally finite graph (see [DuS] and Section 7). In this paper we
generalise Bergman’s norm, and some its consequences, to certain non-locally finite graphs
(see Section 10). One of the main applications we describe here will be to convergence
group actions on Cantor sets. Similar results have already been obtained by Gerasimov
[Ger], by other methods. One can also use these ideas to give a simplified proof of the
Almost Stability Theorem of [DiD] (see Section 15).

The notion of a convergence group was defined by Gehring and Martin [GehM]. It
extracts the essential dynamical features of a kleinian group acting on the boundary of
(classical) hyperbolic space. This generalises to boundaries of proper hyperbolic spaces in
the sense of Gromov [Gr], see for example, [T2,F,Bo3]. The celebrated result of [T1,Ga,CJ]
tells us that every convergence action on the circle arises from a fuchsian group. (In
particular, the work of Tukia [T1] deals with the case of cyclically ordered Cantor sets.)
There has also been a study of convergence actions on more general continua and their
applications to hyperbolic and relatively hyperbolic groups (see for example [Bo2] and
the references therein). Here we turn our attention to the opposite extreme, namely
convergence actions on Cantor sets. An extensive study of such actions in relation to
median algebras can be found in [Ger]. An example of such an action is that of a finitely
generated group acting on its space of ends, which is a Cantor set if the group is not
virtually cyclic and splits non-trivially over a finite subgroup. We shall see that, under
some finiteness assumptions on the group, this type of example is typical.
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Via Stone duality, a convergence action of a group, Γ, on a Cantor set is equivalent to
a certain kind of action on a Boolean algebra. To obtain a splitting of Γ from this action,
there are two issues to be addressed. The first is to find a Γ-invariant nested generating
set for the boolean algebra, and the second is to arrange that this set is cofinite (in other
words to show that the algebra is finitely generated as a Γ-boolean algebra). To get a
handle on these issues, we assume that Γ is (relatively) finitely generated, and work with
the algebra of cuts of a connected Γ-graph given by this hypothesis. The nested generating
set is obtained using the Bergman norm (see Sections 7 and 10). In [Ger], a similar result
is obtained via the theory of median algebras. For the second part, we need to assume that
Γ is (relatively) almost finitely presented. We use a result of [DiD] (or [BesF]) to obtain
a cofinite generating set (Section 12). This is really an issue of accessibility. (We remark
that it is shown in [DiD] that a finitely generated group, Γ, is accessible if and only if the
boolean algebra of almost invariant subsets is finitely generated as a Γ-boolean algebra.)

I am indebted to Victor Gerasimov for explaining to me some of his work in this
area. I have benefited greatly from discussions with Martin Dunwoody, in particular for
introducing me to the work of Bergman, as well as explaining to me how accessibility
results could be use to obtain finitely generated algebras (see Sections 11 and 12). Some
of the work for the present article was carried out while visiting the Centre de Recerca
Matemàtica in Barcelona. I am grateful for the support and hospitality of this institution,
and for helpful discussions with Warren Dicks while there.

1. Summary of results about convergence groups.

We shall introduce some of the results of this paper by giving a series of results,
which are, in some sense, increasingly general, but which require greater elaboration in
their formulation. They will be proven is Section 13. As mentioned in the introduction,
most of these results have been obtained, in some form, by Gerasimov using other methods
[Ger]. The results will be made more precise in later sections. We shall assume throughout
that the convergence actions are minimal, i.e. that there is no discontinuity domain. For
definitions regarding convergence actions, see Section 8.

The simplest example of a convergence action on a Cantor set is that of a (virtually)
free group acting on its space of ends (which is the same as its boundary as a hyperbolic
group). Such an action has no parabolic points. One result says that this is typical:

Theorem 1.1 : If Γ is an almost finitely presented group acting as a minimal convergence
group on a Cantor set, M , without parabolic points, then Γ is virtually free, and there is
a Γ-equivariant homeomorphism from M to the space of ends of Γ.

By almost finitely presented we mean that Γ admits a cocompact properly discontinu-
ous action on a connected 2-complex, Σ, with H1(Σ;Z2) = 0. (Without loss of generality,
one can assume that the action on Σ is also free.) Clearly, finite presentability in the usual
sense implies almost finite presentability.

More generally, it is well-known that any finitely generated group acts as a convergence
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group on its space of ends (see Section 9). If Γ is finitely presented, then Dunwoody’s
accessibility theorem [Du2] tells us that we can represent Γ as a finite graph of groups with
finite edge groups and finite or one-ended vertex groups. The one-ended vertex groups
are uniquely determined as the maximal one-ended subgroups of Γ, and are precisely the
maximal parabolic subgroups with respect to this convergence action. We have a converse:

Theorem 1.2 : Suppose that Γ is an almost finitely presented group and acts as a
minimal convergence group on a Cantor set, M , with all maximal parabolic subgroups
finitely generated and one-ended. Then, M is equivariantly homeomorphic to the space of
ends of Γ.

The hypothesis on parabolic subgroups in the above result is somewhat unnatural.
Note that the splitting given by Dunwoody’s accessiblity result gives us, via Bass-Serre
theory, an action on a simplicial tree with finite edge stabilisers and finite quotient. To
such a tree, we can associate a “boundary” as described in Section 5. The group acts as
a convergence group on this boundary, with the infinite vertex stabilisers as the maximal
parabolic subgroups. If these happen to be one-ended, then we recover the space of ends
Γ. We also have a converse:

Theorem 1.3 : Suppose that Γ is an almost finitely presented group and acts as a
minimal convergence group on a Cantor set, M . Then, Γ has a representation as a finite
graph of groups with finite edge groups such that M is equivariantly homeomorphic to the
“boundary” of the associated Bass-Serre tree.

In fact, we only really require that Γ be finitely presented relative to a set of parabolic
subgroups. More precisely,

Theorem 1.4 : Suppose that a group, Γ, acts as a minimal convergence group on a
Cantor set, M . Suppose that G is a finite collection of parabolic subgroups of Γ with
respect to this action. Suppose that Γ is almost finitely presented relative to G. Then, the
conclusion of Theorem 1.3 holds.

The definition of Γ being “almost finitely presented relative to G” will be elaborated
on in Section 3.

Note that, from the conclusion of Theorem 1.3, one may deduce that there are only
finitely many conjugacy classes of maximal parabolic subgroups. In fact, it follows that the
action of Γ on M is geometrically finite, and that Γ is hyperbolic relative to the collection
of maximal parabolic subgroups (see Section 8 for definitions). Moreover, the boundary of
Γ as a relatively hyperbolic group may be identified with the boundary of the Bass-Serre
tree.

We can further weaken the hypotheses, and assume only that Γ is finitely generated
(relative to a class of parabolic subgroups). However, in this case we can only be assured
of an action of Γ on a protree, as opposed to a simplicial tree. From this, one can deduce
that the original action onM is an inverse limit of geometrically finite actions of the above
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type. This is elaborated on in Section 14.

2. Results concerning boolean algebras

In Section 10, we give a generalisation of the result of Bergman concerning the boolean
algebra of slices of a connected graph. By the argument of [DuS], this allows us to construct
nested systems of generators for such algebras. We describe below how a special case of
this relates to the results outlined in Section 1.

Suppose that K is a connected graph. By a (directed) K-slice, we mean a subset, A,
of the vertex set, V (K), of K, such that only finitely many edges of K have precisely one
endpoint in A. (It will sometimes be more convenient to work with undirected K-slices, i.e.
unordered pairs {A,A∗}, where A is a K-slice.) The set of K-slices is a boolean subalgebra
of the power set of V (K). We say that two K-slices are nested if one is contained in the
other, or in the complement of the other.

Suppose that Γ acts on K with finite edge stabilisers and such that there are finitely
many orbits of edges, and finitely many orbits of circuits of any given length. If K (or
equivalently Γ) is countable, we shall show that any boolean subalgebra, A, of the algebra
of K-slices of K has a Γ-invariant (pairwise) nested generating set.

In fact, we can weaken the above hypotheses. What we really require is that the
graph, K, has finite quotient, and that for any A ∈ A, and any distinct x, y ∈ V (K), only
finitely many distinct Γ-images of A contain x but not y. This is automatically satisfied
in the set-up of the previous paragraph.

In the situation described in Section 1, the finite generation hypotheses on the group,
Γ, give us our graph, K, and the boolean algebra of clopen sets of M gives us the boolean
subalgebra of K-slices. The nested system of generators supplied by the above result gives
us a treelike structure, or more precisely a protree in the sense of Dunwoody [Du4], on
which the group acts. If we assume in, an addition, that Γ is (relatively) almost finitely
presented, then an accessibility result (see Section 12) tells us that our boolean subalgebra
must be finitely generated, and we end up with a simplicial tree. This gives us our required
splitting of Γ via Bass-Serre theory. Stone duality tells us that the “boundary” of this tree
is equivariantly homeomorphic to the original space, M .

Some other applications of the constructions of Section 10 are outlined in Section 15.

3. Finiteness conditions.

In this section, we elaborate on the finiteness conditions featured in Section 1. These
are most conveniently expressed in terms of group actions on sets (cf. [Bo4]).

Suppose Γ is a group. A Γ-set , V , is a set on which the group Γ acts. Given x ∈ V , we
write Γ(x) = {g ∈ Γ | gx = x}. We write V∞ = {x ∈ V | |Γ(x)| = ∞}. We can interpret a
property of V as a property of the group, Γ “relative to” the set of infinite point stabilisers,
{Γ(x) | x ∈ V∞}. We shall also speak of “Γ-graphs”, “Γ-trees” and “Γ-boolean algebras”
etc. for such objects admitting Γ-actions.
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We shall say that the Γ-set, V , is cofinite if |V/Γ| is finite. A pair stabiliser is a
subgroup of the form Γ(x) ∩ Γ(y) for x 6= y. We shall frequently assume that V has finite
pair stabilisers. We shall say that V is “0-connected” if it can be identified with the vertex
set, V (K), of a connected cofinite Γ-graph, K (or equivalently, as a Γ-invariant subset of
V (K) containing V∞(K)). We say the V is 1-connected if it is the vertex set of a cofinite
simply connected CW-complex (or equivalently, a Γ-invariant subset containing V∞(Σ) of
the vertex set of a cofinite simplicial complex, Σ.) Note that 1-connectedness is equivalent
to the assertion that for some (or equivalently any) cofinite connected Γ-graph with vertex
set V , there is some n such that Ωn(K) is simply connected. Here Ωn(K) is the 2-complex
obtained by attaching a 2-cell along every circuit of length n in K. More generally, we say
that V is Z2-homologically 1-connected if Ωn(K) is Z2-acyclic, i.e. H1(Ωn(K);Z2) = 0.

We say that a graph, K, is fine if, for each n, there are only finitely many circuits
of length n containing any given edge. Clearly, this implies that the complex Ωn(K)
described above is locally finite away from V = V (K) (and can thus be subdivided to give
a simplicial complex that is locally finite away from V ). We say that a Γ-set is fine if some
(hence any) cofinite connected Γ-graph, K, with vertex set V , is fine. Here, the fineness of
K is equivalent to saying that there are finitely many circuits of any given length modulo
Γ.

Note that if V is fine and (Z2-homologically) 1-connected we can embed V equivari-
antly in the vertex set, V (Σ), of a cocompact simply connected (Z2-acyclic) 2-dimensional
simplicial complex, Σ, which is locally finite away from V (Σ), and such that the stabiliser
of each element of V (Σ)\V is finite. Indeed, we can easily arrange that each such stabiliser
is trivial.

Suppose that G is a non-empty collection of self-normalising subgroups of Γ, which
is a finite union of conjugacy classes, and such that the intersection of any two distinct
elements of G is finite. We may view G as a Γ-set with Γ acting by conjugation. We
say that Γ is finitely generated relative to G if G is 0-connected. We say that Γ is finitely
presented relative to G if G is 1-connected. In the case of interest to us, G will always
be fine. (Arguably it might be more natural to include the hypothesis of fineness in the
definition of relative finite presentability, though this will not matter to us here.)

Suppose Γ acts as a convergence group on a Cantor set, and Π is a cofinite Γ-invariant
subset of parabolic points. The corresponding collection, G, of maximal parabolic sub-
groups of Γ is isomorphic to Π as a Γ-set. Moreover, we shall see (Lemma 8.2) that Π (or
equivalently G) is necessarily fine.

4. Boolean algebras.

For the next few sections, we forget about our group, Γ, and review a few of the
connections between boolean rings (or algebras), topological spaces and treelike structures
of various sorts.

Let B be a boolean ring, i.e. a commutative ring with a one, 1, satisfying x2 = x for
all x ∈ B. We write x∗ = 1 + x, x ∧ y = xy and x ∨ y = x + y + xy. Thus, (B,∧,∨, ∗) is
a boolean algebra. We write x ≤ y to mean that xy = x. Thus ≤ is a partial order on B,

5



Cantor sets

and [x 7→ x∗] is an order reversing involution.
Given any set, X , its power set, P(X) is a boolean algebra with P ∗ = X \ P , P ∧

Q = P ∩ Q and P ∨ Q = P ∪ Q, for P,Q ∈ P(X). If C is a subalgebra of X and
Y ⊆ X , we write Y ∧ C for the boolean subalgebra, {P ∩ Y | P ∈ C}, of P(Y ). The map
[P 7→ P ∩ Y ] : C −→ Y ∧ C is an epimorphism of boolean algebras.

Suppose M is a compact totally disconnected topological space. The set, B(M) of
clopen subsets of M is a boolean algebra.

The Stone duality theorem [St] tells us that every boolean algebra arises in this way
(see for example [Si]). Suppose that B is a boolean algebra. We associate to B a compact
totally disconnected space Ξ = Ξ(B), called the Stone dual , such that B(Ξ) ∼= B. This can
be described in a number of equivalent ways. For example we can define Ξ as the set of
boolean ring homomorphisms from B to Z2. This is a closed subset of the Tychonoff cube
ZB

2 , and we topologise Ξ accordingly.
Alternatively, we define Ξ as the maximal ideal spectrum of the ring B with the

Zariski topology (or the prime ideal spectrum if we remove the zero ideal). Note that the
complement of a maximal ideal in B is an ultrafilter. We therefore get the same thing by
taking the set of ultrafilters on B. From this point of view, we can define a basis for the
closed sets, by taking a typical basis element to be the set of all ultrafilters that contain a
given element of B.

If M is compact and totally disconnected, then Ξ(B(M)) = M . The isomorphism
from M to Ξ(B(M)) is given by [x 7→ O(x)], where O(x) is the ultrafilter {P ∈ B(M) |
x ∈ P} (or, equivalently, the set of homomorphisms from B(M) to Z2 which send each set
containing x to 1).

Note that if f : B −→ B′ is a homomorphism, we get a continuous dual map, f∗ :
Ξ(B′) −→ Ξ(B). If f is surjective, then f∗ is injective, so we can identify Ξ(B′) as a closed
subset of Ξ(B).

We say that two non-zero elements x, y ∈ B are nested if xy is equal to 0, x, y or
1 + x+ y. This is equivalent to saying that one of xy, xy∗, x∗y or x∗y∗ equals 0. We say
that a subset, E ⊆ B is nested if 0, 1 /∈ E and every pair of elements of E are nested.

Suppose that B is a subalgebra of P(X) for some set X . If x ∈ X , then O(x) = {P ∈
B | x ∈ P} determines a point of Ξ(B), so we get natural map from X to Ξ(B).

5. Simplicial trees.

Let T be a simplicial tree with vertex set V = V (T ) and edge set E(T ). We write
~E(T ) for the directed edge set. Given ~e ∈ ~E(T ), we write e for the underlying undirected
edge, and −~e for the same edge pointing in the opposite direction. We write T (~e) for the
component of T \ e containing the head of ~e (where we think of ~e as directed from its tail

to its head), and write V (~e) = T (~e) ∩ V (T ). If ~e, ~f ∈ ~E(T ), we write ~e < ~f to mean that
~f points towards ~e and ~e points away from ~f . (In some papers the opposite convention

is used.) Note that this is equivalent to saying that V (~e) is strictly contained in V (~f).

Clearly ≤ is a partial order on ~E(T ) with order reversing involution [~e 7→ −~e]. Moreover,

if ~e, ~f ∈ ~E(T ), then precisely one of the statements ~e < ~f , −~e < ~f , ~e < −~f , −~e < −~f ,
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~e = ~f or ~e = −~f holds.

A subset, F ⊆ ~E(T ) is a transversal if, for all ~e ∈ ~E(T ), precisely one of ~e or −~e
lies in F . A transversal, F , is a flow on T if no two elements of F point away from each
other (i.e. there do not exist ~e, ~f ∈ F with ~e ≤ −~f). A flow must be of one of two types.
Either there is some (unique) v ∈ V (T ) such that each element of F points towards v, or
else there is some infinite ray, α ⊆ T such that all edges of F ∩ E(α) point away from its
basepoint, and all other elements of F point towards α. We can alternatively think of a
flow of the second kind as a cofinality class of rays in T , where two rays are cofinal if they
intersect in a ray. We can identify the set of such flows (as a set) with the boundary, ∂T ,
of T thought of as a hyperbolic space in the sense of Gromov [Gr]. Here, however, we shall
want to think of the boundary of T as the set of all flows with an appropriate topology
which we now go on to describe.

Given W ⊆ V (T ), we shall write I(W ) ⊆ E(T ) for the set of edges with precisely one
endpoint in T . Clearly, I(W ∗) = I(W ). Let B = B(T ) be the boolean algebra consisting
of those W ∈ P(V ) for which I(W ) is finite. Let E = E(T ) = {W ∈ B | |I(W )| = 1} =

{V (~e) | ~e ∈ ~E(T )}. The map [~e 7→ V (~e)] therefore gives an identification of ~E(T ) with E .

Note that the relation, ≤, defined on ~E(T ) above agrees with the partial order defined in
the boolean algebra B. Moreover, the involution [~e 7→ −~e] corresponds to the involution
[W 7→ W ∗] on B. We see, in fact, that E is a nested set of generators for B.

Let Ξ(T ) = Ξ(B(T )) be the Stone dual of B(T ). If we think of an element of Ξ(T ) as
an ultrafilter on B(T ), then the elements of E lying in that ultrafilter define a flow on T . In
other words, we may identify Ξ(T ) with the set of flows on T , and hence with V (T )⊔ ∂T .

Now, T is fine (as defined in Section 3) and hyperbolic (in the sense of Gromov). It
thus has associated with it a compact space ∆T , as in [Bo4]. As a set, ∆T may be defined
as V (T )⊔∂T . Note that any two elements, x, y ∈ ∆T can be “connected” by a unique arc,
[x, y], which may be compact, a ray, or a bi-infinite geodesic depending on whether or not
x, y ∈ V (T ). Given x ∈ ∆T and I ⊆ E(T ), let B(x, I) = {y ∈ ∆T | I ∩E([x, y]) = ∅}. We
define a topology on ∆T by taking a neighbourhood base of x ∈ ∆(T ) to be the collection
{B(x, I)}I as I runs over all finite subsets E(T ). In this topology, ∆T is compact and
hausdorff. This construction can be used to define the “boundary” of a relatively hyperbolic
group, as in [Bo4]. In our particular case, the topology can be equivalently defined as
follows. First not that if S ⊆ T is a subtree, then ∆S is a subset of ∆T . If x ∈ V (T ),
we take a neighbourhood base of x to consist of sets of the form ∆S, where S runs over
subtrees of T which consist of all but finitely may branches of T based at x. If x ∈ ∂T ,
then a neighbourhood base of x is given by {∆T (~e) | ~e ∈ F}, where F is the flow on T
corresponding to x. It now follows easily that the topologies on Ξ(T ) and ∆T agree. In
other words, we can identify Ξ(T ) with the ideal boundary, ∆T , of T as defined in [Bo4].

We note that V (T ) is dense in ∆T , since if x ∈ ∂T then the sequence of vertices in
any ray representing x converges to x in the topology on ∆T . Note that it follows that
the boolean algebra of sets of the form A ∩ V (T ), as A runs over clopen subsets of ∆T , is
isomorphic to the original boolean algebra B(T ).

Note that each finite-degree vertex of T is isolated in ∆T . We shall define the ideal
boundary ∆0T , of the tree, T , as the space ∆T minus the vertices of T of finite degree.
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6. Protrees and nested sets.

We begin by recalling the definition of a “protree” due to Dunwoody, see for example
[Du4].

A protree is a set Θ, with an involution [x 7→ x∗] and a partial order, ≤, with the
property that for any x, y ∈ Θ, precisely one of the six relations x < y, x∗ < y, x < y∗,
x∗ < y∗, x = y, x = y∗ holds. We refer to a ∗-invariant subset of Θ as a subprotree. This
clearly has itself the structure of a protree.

An example of a protree is the directed edge set of any simplicial tree, as described
in the last section. In fact, any finite protree can be realised as the directed edge set of a
finite tree (a property which could serve as an equivalent definition). More generally any
“discrete” protree can be realised as the directed edge set of a simplicial tree. A protree is
said to be discrete if, for all x, y ∈ Θ, the set {z ∈ Θ | x ≤ z ≤ y} is finite. We can define
transversals and flows on a protree, exactly as for simplicial trees. (However, we cannot in
general classify flows in the same way.)

Suppose Θ is a protree. Let F = F(Θ) be the boolean ring with generating set Θ, and
with relations x+ x∗ = 1 for all x ∈ Θ and xy = 0 for all x, y ∈ Θ satisfying x < y∗. Note
that it follows that if x, y ∈ Θ are distinct, then xy must be equal to 0, x, y or 1 + x+ y.
In particular, it follows that any element of F can be written as a sum of finitely many
elements of Θ. Note that if x ∈ Θ, then we can define an epimorphism, θ : F −→ Z2 by
θ(x) = 1 and θ(y) = 0 for all y ∈ Θ \ {x}. It therefore follows that x 6= 0 for all x ∈ F .

Suppose that F ⊆ Θ is any transversal. We may identify F as a subset of F(Θ),
and as such, it generates F(Θ) as a ring (indeed as an additive group). If x, y ∈ F , then
precisely one of the relations xy = 0, x∗y = 0, xy∗ = 0, x∗y∗ = 0 holds. Thus, Θ is a
nested set of generators for F(Θ). Any element of F(Θ) can be written in a standard form
ǫ+

∑n

i=1 xi where ǫ ∈ {0, 1} and x1, . . . , xn are distinct elements of F .

If Θ is a discrete protree, and T is the corresponding simplicial tree, then there is an
epimorphism φ : F(Θ) −→ B(T ) defined by φ(x) = V (~e), where ~e ∈ ~E(T ) is the directed
edge corresponding to x ∈ Θ. Let F ⊆ Θ be any transversal. If x1, . . . , xn ∈ F are distinct,
then the corresponding elements of B(T ) are distinct. If n 6= 0, it follows easily that their
symmetric difference can be neither ∅ nor V (T ). In other words, we see that any standard
form of any element in the kernel of φ must be trivial. Hence, the kernel is trivial, so φ is,
in fact, an isomorphism.

We now return to the case of a general protree, Θ, with transversal F . Suppose that
Φ ⊆ Θ is any subprotree. Then, there is a natural epimorphism, θ : F(Θ) −→ F(Φ)
defined by θ(x) = x if x ∈ Φ, and θ(x) = 0 if x ∈ Θ \ Φ. In particular, suppose x1, . . . , xn
are distinct. We get an epimorphism from F(Θ) to F(Φ), where Φ =

⋃n

i=1{xi, x
∗
i }. Now,

F(Φ) is isomorphic to the boolean algebra on a finite tree, as above, and so it follows that
x1 + · · · + xn /∈ {0, 1}. We see that the standard form of an element of Θ (with respect
to a given transversal, F ) is unique. We therefore have an explicit description of the ring
F(Θ).

If Φ ⊆ Θ is again any subprotree, we also get a homomorphism from F(Φ) to F(Θ)
which extends the inclusion of Φ in Θ. From the above description, it is clear that this
is injective. We therefore get a surjective map from Ξ(Θ) to Ξ(Φ). If Θ is an increasing
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union of subprotrees, (Θn)n∈N, then it is easily seen that Ξ(Θ) in an inverse limit of the
system (Ξ(Θn))n of topological spaces.

Let Ξ(Θ) = Ξ(F(Θ)) be the Stone dual. If we think of an element of Ξ(Θ) as an
ultrafilter on F(Θ), then its intersection with Θ is a flow on Θ. We may therefore identify
Ξ(Θ) with the set of flows on Θ. For non-discrete protrees, however, we not get a clear
distinction between vertices and boundary points, as in the simplicial case.

Suppose that B is any boolean algebra with a nested set of generators, E ⊆ B. Now,
E has the structure of a protree, with involution and partial order induced from B. We
can therefore construct the boolean algebra F(E) as above, and identify B as a quotient
of F(E). Note that Ξ(B) can thus be identified as a closed subset of the space Ξ(E).

In fact, we can say more than this. We can formally identify E as a subset of F .
When composed with the canonical epimorphism from F to B, this gives the inclusion of
E into B. Let I be the kernel of the canonical epimorphism from F to B. Note that if
x, y ∈ E , then x, y, x+ y /∈ I (since, by the definition of a nested set, they correspond to
distinct non-zero elements of B). Now a combinatorial argument shows that I is generated
by elements of the form 1+

∑n

i=1 xi, where x1, . . . , xn ∈ E have the property that xixj = 0
for i 6= j, and if y ∈ E then for some i ∈ {1, . . . , n}, we have yxi ∈ {xi, 1+xi+y}. In other
words, we can think of the elements x1, . . . , xn as a set of edges whose tails all meet at a
“vertex” of degree n of the protree E . (This statement is precise if the protree E happens
to be discrete, and hence the edge set of a simplicial tree.) Suppose that a ∈ Ξ(E) \ Ξ(B).
Now a corresponds to a flow, F , on E . This cannot be identically zero on I and so must
be non-zero on some generator of I of the above form. From this, it is easy to see that F
converges to some vertex of finite degree. But such a point is easily seen to be isolated in
Ξ(E). We have shown that every point of Ξ(E) \ Ξ(B) is isolated.

Finally, suppose that B is a subalgebra of P(V ) for some set, V . There is a natural
map from V to Ξ(B) as defined at the end of Section 4. We therefore get a map from V
to Ξ(E). The image of a point x ∈ V in Ξ(E) is defined by the flow {A ∈ E | x ∈ A} on E .

7. Construction of nested generating sets.

It was shown in [DuS] how the Bergman norm can be used to construct invariant
nested subsets of a boolean algebra. Dunwoody has observed how an elaboration of this
argument in fact gives us nested generating sets. The central idea may be formulated in a
general fashion as follows.

Let B be a boolean ring. We say that two elements, x, y ∈ B are disjoint if xy = 0.

Suppose that S is an ordered abelian group (or cancellative semigroup). Suppose that
to each disjoint pair, x, y ∈ B, we have associated an element σ(x, y) ∈ S. We suppose that
σ(x, y) = σ(y, x) ≥ 0, and that σ(x, y) > 0 if x, y 6= 0. Moreover, if x, y, z ∈ B are pairwise
disjoint, then σ(x, y+ z) = σ(x, y)+ σ(x, z). Given any x, y ∈ B, we write µ(x) = µ(x, x∗)
and µ(x|y) = σ(xy, x∗y). Clearly µ(x∗) = µ(x) and µ(x∗|y) = µ(x|y).

Suppose now that x, y ∈ B are non-nested, i.e. that xy, x∗y, xy∗, x∗y∗ are all non-zero.

9
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If µ(y|x) ≤ µ(x|y∗), then

µ(xy) = σ(xy, (xy)∗)

= σ(xy, x∗ + xy∗)

= σ(xy, x∗) + σ(xy, xy∗)

≤ σ(xy, x∗) + σ(xy∗, x∗y∗)

< σ(xy, x∗) + σ(xy∗, x∗y∗) + σ(xy∗, x∗y)

= σ(xy, x∗) + σ(xy∗, x∗y∗ + x∗y)

= σ(xy, x∗) + σ(xy∗, x∗)

= σ(x, x∗)

= µ(x).

Similarly, if µ(y|x) ≤ µ(x|y), then µ(xy∗) < µ(x).
Now, if we allow ourselves to permute x, y, x∗, y∗, then we can always arrange that

µ(y|x) is minimal among {µ(x|y), µ(y|x), µ(x|y∗), µ(y|x∗)}, so that max{µ(xy), µ(xy∗)} <
µ(x).

Lemma 7.1 : If µ(B \ {0, 1}) is well-ordered (as a subset of S), then B has a nested set
of generators.

Proof : Let E ⊆ B\{0, 1} be the set of x ∈ B such that x does not lie in the ring generated
by {z ∈ B \ {0, 1} | µ(z) < µ(x)}. Clearly, E generates B. Moreover, E is nested. For
if x, y ∈ E were not nested, then, without loss of generality, max{µ(xy), µ(xy∗)} < µ(x).
But x = xy + xy∗, giving a contradiction. ♦

8. Convergence groups.

The notion of a convergence group was defined in [GehM]. For further discussion, see
[T2,Bo3,T3].

Suppose that M is a compact metrisable space and that Γ is a group acting by
homeomorphism onM . We say that this is a convergence action (or that Γ is a convergence
group) if the induced action on the space of distinct triples of M (i.e. M ×M ×M minus
the large diagonal) is properly discontinuous. This is equivalent to the statement that if
(gn)n∈N is any infinite sequence of distinct elements of Γ, then there are points, a, b ∈M ,
and a subsequence (gni

)i such that gni
|M \ {a} converges locally uniformly to b. We refer

to the latter statement as the “convergence property” of Γ.
A subgroup, G, of Γ is parabolic if it is infinite, and fixes a unique point. Such a

fixed point, x, is a called a parabolic point , and its stabiliser, Γ(x), is a maximal parabolic
subgroup of Γ. We say that x is a bounded parabolic point if (M \ {x})/Γ(x) is compact.
(We allow for the possibility of a parabolic group being an infinite torsion group.)

A point x ∈ M is a conical limit point if there is a sequence of elements gn ∈ Γ, and
distinct points, a, b ∈M such that gnx → a and gny → b for all y ∈M \ {x}. It is shown

10



Cantor sets

in [T3] that a conical limit point cannot be a parabolic point. We say that the action of Γ
on M is geometrically finite if every point ofM is either a conical limit point or a bounded
parabolic point. Such actions have been studied by Tukia [T3].

By the space of distinct pairs of M , we mean M ×M minus the diagonal.

Lemma 8.1 : Suppose that Γ acts on M as a convergence group, and that x, y ∈M are
distinct and not conical limit points. Then, Γ(x) ∩ Γ(y) is finite, and the Γ-orbit of (x, y)
is a discrete subset of the space of distinct pairs.

Proof : Suppose, for contradiction, that gn ∈ Γ is a sequence of distinct elements of Γ
with gnx→ a and gny → b with a, b ∈M distinct. The convergence property tells us that
after passing to a subsequence, either gn|M \{x} converges (locally uniformly) to b, or else
gn|M \ {y} converges (locally uniformly) to a. Thus, either x or y is a conical limit point.

♦

Recall the terms “connected” and “fine” as defined in Section 3.

Lemma 8.2 : Suppose that Γ acts on M as a convergence group, and that Π ⊆ M is a
Γ-invariant subset. Suppose that no point of Π is a conical limit point. If Π is connected
(as a Γ-set) then it is fine.

Proof : We show that ifK is any cofinite Γ-graph with vertex set V (K) = Π, then modulo
Γ, there are only finitely many circuits of length n for any given n. Since Π is connected,
we can take K to be connected, and we see that K is fine. Together with the first part of
Lemma 8.1, this implies that Π is fine as claimed.

Suppose, for contradiction, that (βk)k∈N is an infinite sequence of circuits of length
n in K, each lying in a different Γ-orbit. We write βk = xk1 . . . x

k
n, taking subscripts mod

n. Passing to a subsequence, we can suppose that for all i each of the edges {xki x
k
i+1}k

lie in the same Γ-orbit. Thus, modulo Γ, we can suppose that xk0 = x0 and xk1 = x1 are
independent of k. Now by Lemma 8.1, the set of pairs {(x1, x

k
2) | k ∈ N} is discrete in the

space of distinct pairs. Thus, again after passing to a subsequence, we can suppose that
either xk2 = x2 is constant, or that xk2 → x1. In the latter case, we can suppose that the xk2
are all distinct, so since the set of pairs (xk2 , x

k
3)k is discrete, we must also have xk3 → x1.

It follows inductively that xki → x1 for all i, giving the contradiction that x0 = xkn → x1.
We can thus assume that xk2 = x2 is constant. But now, the same argument tells us that
xk3 is constant, so by induction, xki is constant for all i. We derive the contradiction that
βk is constant. ♦

Note that, by the result of Tukia [T3], Lemma 8.2 applies to a set of parabolic points.
A standard example of a convergence group is the action induced on the boundary,

∂X , by any properly discontinuous action of a group, Γ, on a proper (complete locally
compact) hyperbolic space, X . If the action on ∂X is geometrically finite, we say that
Γ is hyperbolic relative to the set, G, of maximal parabolic subgroups of Γ. (In [Bo4], we
impose the additional requirement that each element of G be finitely generated, but this
need not concern us here.) It is necessarily the case that G is cofinite and connected (and
hence fine) as a Γ-set. Relatively hyperbolic groups were introduced by Gromov [Gr]. It

11
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turns out that they can be characterised dynamically as geometrically finite convergence
groups [Y].

We note that, in the case where M is totally disconnected, we can express the conver-
gence property in terms of the boolean algebra, B = B(M) of clopen subsets of M . By a
ternary partition of B, we mean a triple of pairwise disjoint non-zero elements, A,B,C ∈ B
such that A + B + C = 1. (In other words, M = A ⊔ B ⊔ C.) Note that A × B × C is a
compact subset of the space of distinct triples of M .

In general, if Γ acts by isomorphism on a boolean algebra, B, then we say that the
action is a convergence action if, for any two ternary partitions, (a1, a2, a3) and (b1, b2, b3)
of B, then {g ∈ Γ | b1∧ ga1 6= 0, b2∧ ga2 6= 0, b3∧ ga3 6= 0} is finite. To see that this agrees
with the notion already defined for M , note that compact subset of the set of distinct
triples of M can be finitely covered by sets of the form A × B × C, where A,B,C is a
ternary partition of M .

We finally note that if M is an inverse limit of compact spaces, (Mn)n∈N, each ad-
mitting a Γ-action that commutes with the inverse limit system, then the action of Γ on
M is a convergence action if and only if the action on each Mn is a convergence action.

9. Ends of graphs.

Let K be a connected graph, with vertex set V = V (K), and edge set E(K). Let
V0 = V0(K) be the set of vertices of finite degree. As in the case of simplicial trees, if
W ⊆ V (K) we write I(W ) for the set of edges with precisely one endpoint inW . We write
B = B(K) for the boolean algebra of K-slices (i.e. those W ⊆ V (K) for which I(W ) is
finite). We write Ξ(K) = Ξ(B) for the Stone dual of B.

There is a natural map, ξ : V −→ Ξ(K), defined by sending x ∈ V to the ultrafilter of
elements of B containing x. Note that ξ|V0 is injective, and every point of ξ(V0) is isolated
in Ξ(K). We write Ξ0(K) = Ξ(K) \ ξ(V0). This is a closed subset of Ξ(K). Note that if
K is locally finite, then Ξ0(K) is the space of ends of K. If T is a simplicial tree, then we
can identify Ξ0(T ) with the ideal boundary, ∆0T , of T , as defined in Section 5.

Another way to define Ξ0(K) is as follows. Let I be the ideal of B consisting of finite
subsets of V , and let C(K) be the quotient B/I. There is an inclusion of Ξ(C) in Ξ(B)
whose image is precisely Ξ0(K).

We shall say that K is one-ended if Ξ0(K) consists of a single point, i.e. no finite set
of edges separates K into two or more infinite subgraphs.

Lemma 9.1 : If a group Γ acts on a connected graph, K, with finite edge stabilisers,
then the induced action of Γ on Ξ(K) is a convergence action.

Proof : Note that if F ⊆ E(K) is any finite set of edges, then {g ∈ Γ | F ∩ gF 6= ∅} is
finite.

Suppose that (A1, A2, A3) and (B1, B2, B3) are ternary partitions of B. Let I =
I(A1) ∪ I(A2) ∪ I(A3) and J = I(B1) ∪ I(B2) ∪ I(B3). Let X and Y be connected finite
subgraphs of K containing I and J respectively.

12
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Suppose that E(X)∩E(Y ) = ∅. Now, I ∩E(Y ) = ∅ and so all the vertices of Y must
lie in the same element of {A1, A2, A3}, say V (Y ) ⊆ Ai. Similarly, V (X) ⊆ Bj for some j.
We claim that V (K) ⊆ Ai ∪ Bj. For suppose x ∈ V (K) \ (Ai ∪ Bj). Let α be a shortest
path connecting x to Ai ∪Bj . Let y, z be, respectively, the last and last but one vertices
of α. Without loss of generality, y ∈ Ai. Now z /∈ Ai, and so the edge connecting y and z
must lie in I ⊆ E(X). It follows that z ∈ V (X) ⊆ Bj , giving a contradiction, and hence
proving the claim. Note that if k 6= i, j, then Ak ∩Ai = Bk ∩Bj = ∅, so that Ak ∩Bk = ∅.

Now, if (A1, A2, A3) and (B1, B2, B3) are ternary partitions of B, and g ∈ Γ with
Bi ∩ gAi 6= ∅ for each i = 1, 2, 3, then, by the previous paragraph, we see that E(Y ) ∩
gE(X) 6= ∅. But the set of such g is finite. This shows that Γ is a convergence group as
claimed. ♦

In particular, we deduce the well-known fact that any finitely generated group acts a
convergence group on its space of ends. (Take K to be any Cayley graph of Γ.)

Suppose that f : K −→ L is a contraction of a connected graph, L (i.e. such that the
preimage of each edge of L is an edge of K, and the preimage of every vertex of L is a
connected subgraph of K). There is a natural inclusion of B(L) into B(K). If the preimage
of every finite-degree vertex of L is finite, then this descends to an injection from C(L) to
C(K). If, in addition, the preimage of every infinite degree vertex of L is one-ended, then
this is an isomorphism, so that Ξ0(K) and Ξ0(L) are canonically homeomorphic.

Suppose that Γ acts on a simplicial tree, T , with finite edge stabilises, then the induced
action on Ξ(T ) ≡ ∆T is a convergence action. In fact, if the action of Γ on T is cofinite,
then the action on ∆T is geometrically finite, with the infinite vertex groups precisely the
maximal parabolic subgroups. Thus, Γ is hyperbolic relative to the infinite vertex groups,
and its boundary can be identified with Ξ0(T ) ≡ ∆0T (see [Bo4]). Moreover, if Γ is finitely
generated, and each infinite vertex group is finitely generated and one-ended, then from
the discussion of the previous paragraph, we see that ∆0T is canonically homeomorphic
to the space of ends of Γ.

10. A variation on the Bergman norm.

In this section, we give a generalisation of Bergman’s result [Ber].
Let V be a set, and let P(V ) be its power set. In this section, it will be more convenient

to work with the set, R = R(V ) of binary partitions of V , i.e. pairs {A,B} ⊆ P(V )
such that V = A ⊔ B. We say that {A,B} is non-trivial if A,B 6= ∅. Note that R
has the structure of an abelian group, with addition defined by {A,A∗} + {B,B∗} =
{(A ∩ B) ∪ (A∗ ∩ B∗), (A ∩ B∗) ∪ (A∗ ∩ B)}. The same structure can be obtained by
quotienting the additive group of the boolean ring P(V ) by the subgroup {0, 1}.

Let Ψ be the set of unordered pairs of V . If π ∈ Ψ and P = {A,A∗}, we say that π
crosses P if π ∩ A 6= ∅ and π ∩A∗ 6= ∅. Let Ψ(P ) be the set of π ∈ Ψ such that π crosses
P .

Suppose that (Ψn)n∈N are subsets of Ψ with Ψ =
⋃

n∈N
Ψn. Given P ∈ R, we write

Ψn(P ) = Ψn ∩Ψ(P ).
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Definition : We say that a partition, P ∈ R, is an (undirected) slice (with respect to
(Ψn)n) if Ψn(P ) is finite for all n.

Let NN be the set of infinite sequences of natural numbers. This has the structure of
an ordered abelian group with the lexicographic order. We define a map, µ : S −→ NN

by setting µ(P ) = (µn(P ))n, where µn(P ) = |Ψn(P )|.
Now suppose that Γ acts on V preserving each Ψn, with V/Γ and Ψn/Γ finite for all

n. Thus, Ψn determines a Γ-graph, Kn, with vertex set V and edge set Ψn.

Recall that V is connected if it is the vertex set of some connected Γ-graph with finite
quotient (i.e. some finite union of the Kn is connected). We show:

Theorem 10.1 : Let V be a connected cofinite Γ-set. Then µ(S) ⊆ NN is well-ordered,
and the map µ is finite-to-one modulo the action of Γ.

In the above, we could for example take (Ψn)n to be an enumeration of the Γ-orbits of
Ψ, if V is countable. However, it will be more convenient for the proof to assume that sets
Ψn are increasing, i.e. Ψm ⊆ Ψn whenever m ≤ n. There is no loss of generality in doing
this, for if we set Ψ′

n =
⋃

m≤n Ψm, then if (Pα)α∈N is an infinite sequence of slices which
is non-increasing with respect to the order determined by (Ψn)n, then some subsequence
will be non-increasing with respect to the order determined by (Ψ′

n)n. We may as well
also assume that K0, and hence every Kn, is connected.

It is easily verified that if n ∈ N, then µn(P + Q) ≤ µn(P ) + µn(Q), with equality
precisely if no element of Ψn crosses both P and Q.

We now set about the proof of Theorem 10.1.

For the moment, we forget about the group, Γ. Let K be a connected graph, with
vertex set V (K) = V and edge set E(K). A finite subset, I ⊆ E(K) is separating if K \ I
is disconnected.

Definition : A cut is a finite non-empty subset, I ⊆ E(K), such that every circuit (or
equivalently, cycle) in K contains an even number of edges of I.

Thus, every cut is separating. A cut is minimal if it contains no proper subcut.
We similarly define minimality for separating sets. It is easily verified that if I ⊆ E(K) is
finite, then the following three conditions are equivalent: I is a minimal cut, I is a minimal
separating set, or K \ I has precisely two connected components.

Note that each cut I ⊆ K determines a non-trivial partition, P (K, I) = {A,A∗},
where each path from A to A∗ contains an odd number of edges of I. Conversely, each
non-trivial partition P = {A,A∗} determines the subset, I = I(K,P ), of edges which cross
from A to A∗. If I is finite, then it is a cut, and we say that P is a K-slice. There is thus
a natural bijection between cuts and K-slices.

Given two cuts I and J , we write I + J for their symmetric difference. This is also a
cut, and the operation agrees with that already defined on the set of partitions. If J ⊆ I
is a subcut, then I \ J = I + J is also a subcut, and I = J + (I \ J). We shall measure the
“size” of a cut by its cardinality.
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We note:

Lemma 10.2 : Suppose e ∈ E(K) and n ∈ N. There are finitely many minimal cuts of
size n containing e.

Proof : Suppose, for contradiction, that the set, I, of such minimal cuts is infinite.
Choose I ⊆ E(K) maximal such that I is contained in infinitely many elements of I. Let
J = {J ∈ I | I ⊆ J}. Now, I cannot separate K (otherwise I would be a minimal cut,
and J = {I}). Let γ be a path in K \ I connecting the endpoints of e. Now each element
of J contains some edge of γ, and so some infinite subset of elements of J all contain the
same edge, say f , of γ. But now I ∪{f} is contained in infinitely many elements of J and
hence of I, contradicting the maximality of I. ♦

Definition : We say that a cut, I, is blocklike if every pair of elements of I lie in a minimal
subset of I.

Clearly, in Lemma 10.2, one can replace “minimal cut” by “blocklike cut”. Every cut can
be uniquely decomposed into maximal blocklike cuts. One way to see this is as follows.

Suppose Υ is a finite connected graph. A block of Υ is a maximal 2-vertex-connected
subgraph. Two blocks intersect, if at all, in a single vertex. If e, f ∈ E(Υ) are distinct,
then e, f lie in the same block if and only if they lie in some circuit in Υ, and if and only
if they lie in some minimal separating set. Note that Υ is bipartite (i.e. E(Υ) is a cut) if
and only if each of its blocks is bipartite.

Suppose that K is any connected graph, and I ⊆ E(K) is a cut. Let Υ = Υ(K, I)
be the graph obtained by collapsing each connected component of K \ I to a point. Thus,
Υ is a finite connected bipartite graph. There is a canonical surjective map φ : K −→ Υ.
The preimage of every connected subgraph is connected.

Now it is easily checked that the preimage of every cut in Υ is a subcut of I. Moreover,
every subcut, J , arises in this way: J = φ−1(φJ). We also see easily that J is minimal if and
only if φJ is minimal (sinceK\J has the same number of components as φ(K\J) = K\φJ).
Thus if follows that J is blocklike if and only if φJ is blocklike. We can thus decompose I
canonically by taking the preimages of (the edge sets of) blocks of Υ.

If P is a K-slice, then we shall write Υ(K,P ) = Υ(K, I(K,P )). The canonical de-
composition of I(K,P ) gives us a canonical decomposition of P (depending on K).

Now suppose that K ′ is another graph on the same vertex set, V , with K ⊆ K ′. Let
φ : K −→ Υ = Υ(K,P ) and φ′ : K ′ −→ Υ′ = Υ(K ′, P ) be collapsing maps described
above. We can obtain Υ′ from Υ by identifying certain vertices of the same colour and/or
adding edges between vertices of different colours. There is thus a natural map, ψ :
Υ −→ Υ′, such that ψ ◦ φ = φ′ ◦ ι, where ι is the inclusion of K in K ′. If we measure
the complexity, c(Υ), of a finite graph, Υ, by the number of edges in the complementary
graph, i.e. c(Υ) = 1

2
|V (Υ)|(|V (Υ)|−1)−E(Υ), then we see that the map ψ cannot increase

complexity. We have c(Υ′) = c(Υ) if and only if ψ is an isomorphism. In this case, the
canonical decomposition of P with respect to K is identical to its canonical decomposition
with respect to K ′. Note also that in general, |V (Υ′)| ≤ |V (Υ)| ≤ |I(K,P )|+ 1.
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Suppose now that V is a set with (Ψn)n an increasing collection of sets of pairs of V
as described above. We thus get an increasing collection of graphs, (Kn)n. We suppose
that K0 (and hence each of these graphs) is connected. If P is any slice, then the sequence
of complexities, c(Υ(Kn, P )), is non-increasing in n. Moreover, the cut I(Kn, P ) will be
minimal for all sufficiently large n (depending on P ). In this case, Υ(Kn, P ) consists of a
single edge (so its complexity is 0).

Suppose that T ⊆ S is an infinite set of slices with µ0(P ) = |I(K0, P )| bounded,
by ν, say for P ∈ T . Thus, for each P ∈ T and n ∈ N, we have |V (Υ(Kn, P ))| ≤
|V (Υ(K0, P ))| ≤ µ0(P ) + 1 ≤ ν + 1, so there are only finitely many possibilities for the
graph Υ(Kn, P ). Given a graph Υ, and n ∈ N, let T (n,Υ) = {P ∈ T | Υ(Kn, P ) = Υ}.
For any fixed n, this partitions T into finitely many subsets. We can therefore choose
Υ = Υ0 minimal complexity, c(Υ0), with the property that for some n = n0, say, the
set T0 = T (n0,Υ0) is infinite. For any n ≥ n0, Υ(Kn, P ) = Υ0 for all but finitely many
P ∈ T0. (Since c(Υ(Kn, P )) ≤ c(Υ(Kn0

, P )) = c(Υ0), and if we had strict inequality for
infinitely many P , then we would contradict the minimality of c(Υ0).)

We now introduce the action of Γ. Note that by Lemma 10.2, Kn has only finitely
many blocklike cuts of size s modulo Γ, for any n, s ∈ N.

Suppose that (Pα)α∈N is a sequence of cuts all lying in distinct Γ-orbits. Suppose
that µ(Pα) is non-increasing. We want to derive a contradiction.

First note that applying the construction of the first paragraph, with T = {Pα |
α ∈ N}, we can assume that, after passing to a subsequence, (Pα)α has the following
property. There exist n0 ∈ N and a finite bipartite graph, Υ0, such that if n0 ≤ n ≤ α,
then Υ(Kn, P

α) = Υ0. For notational convenience (replacing Ψ0 by Ψn0
), we can assume

that n0 = 0.

Now for each α, we decompose the cut I(K0, P
α) into its maximal blocklike subcuts,

I(K0, P
α) = Iα1 + · · · + Iαp . Note that p is the number of blocks of Υ0, and therefore

constant. After passing to a subsequence, we can assume that each cut, Iαi , is the Γ-image
of some fixed cut Ji, independent of α. Let Pα

i = P (K0, I
α
i ) and Qi = P (K0, Ji). Thus,

Pα = Pα
1 + · · ·+ Pα

p . Note that since the Pα all lie in different Γ-orbits, we have p ≥ 2.

Now we know that, for each α, I(Kn, P
α) is a minimal cut for all sufficiently large

n. Thus, there is some n (depending on α) such that the cuts {I(Kn, P
α
i )}

p
i=1 are not

disjoint. Let n(α) be the smallest such n, and let m = min{n(α) | α ∈ N}. (Thus m > 0.)
If n < m, then for all β ∈ N, the cuts {I(Kn, P

α
i )}

p
i=1 are disjoint. Thus, for n < m, we

have µn(P
β) = µn(P

β
1 ) + · · ·+ µn(P

β
p ) = µn(Q1) + · · ·+ µn(Qp), which is independent of

β.

Now for some α, the cuts {I(Km, P
α
i )}

p
i=1 are no longer disjoint, so this time we

get strict inequality: µm(Pα) < µm(Q1) + · · · + µm(Qp). However, for β ≥ m, we have
Υ(Km, P

β) = Υ0 = Υ(K0, P
β), and the natural map from Υ(K0, P

β) to Υ(Km, P
β) is an

isomorphism. Thus, the canonical decompositions of P β with respect to K0 and Km are
identical. In particular, the cuts {I(Km, P

β
i )}

p
i=1 are disjoint, and again, we have equality:

µm(P β) = µm(Q1) + · · ·+ µm(Qp). Thus µm(P β) > µm(Pα). Taking β > α, we derive a
contradiction to the assumption that µ is non-increasing.

This proves Theorem 10.1.
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We finish this section with one corollary of this result.
Suppose that V is a Γ-set. By a (directed) slice of V , we mean a subset, A ⊆ V with

the property that only finitely many Γ-images of any pair in V can meet both A and A∗.
Note that the set of slices forms a boolean subalgebra of P(V ). By an undirected slice, we
mean a pair, {A,A∗}, where A is a slice.

Suppose that V is countable. Let (Ψn)n be an enumeration of the Γ-orbits of the
set of pairs, Ψ. The notion of a slice as defined above thus agrees with that defined
earlier. Let B be the boolean algebra of slices of V . Suppose A,B ∈ B are disjoint. Let
σn(A,B) be the number of pairs in Ψn with one element in A and one element in B. Let
σ(A,B) = (σn(A,B))n ∈ NN. Thus, µ(A) = σ(A,A∗). We are thus in the situation
described in Section 7. Applying Lemma 7.1, we deduce:

Corollary 10.3 : Suppose Γ is a countable group, and V is a connected cofinite Γ-set.
Let B be the boolean algebra of slices of V (as defined above). Then, any Γ-invariant
subalgebra of B has a Γ-invariant nested set of generators.

Proof : The construction of Section 7 was canonical, and hence Γ-invariant. ♦

11. A finiteness result for boolean algebras related to simplicial trees.

In this section, using a result of [DiD], we give a proof of the following:

Lemma 11.1 : Suppose that Γ is a countable group, and that T is a cofinite simplicial
Γ-tree with finite edge stabilisers. Suppose that A is any Γ-invariant boolean subalgebra
of the boolean algebra, B(T ). Then A is finitely generated as a Γ-boolean algebra.

Here, B(T ) is the boolean algebra of T -slices, as defined in Section 5. To say that A
is finitely generated as a Γ-boolean algebra means that it has a generating set which is a
finite union of Γ-orbits.

Now, V = V (T ) has finite pair stabilisers, and so Corollary 10.3 gives us a Γ-invariant
nested set, E , of generators of A. If we know already that A is finitely generated, then
we can assume that E is cofinite. It follows that if e ∈ E(T ), the set {A ∈ E | e ∈ I(A)}
is finite. We see that if x, y ∈ V , then {A ∈ E | x ∈ A, y /∈ A} is finite. In particular, if
A,B ∈ E , then {C ∈ E | A ⊆ C ⊆ B} is finite. In other words, E satisfies the finite interval

condition. We can thus identify E with the directed edge set, ~E(S), of a simplicial tree, S.
Note that Γ acts on S with finite edge stabilisers.

If x ∈ V (T ), then {A ∈ E | x ∈ A} is a flow on E , and hence determines a flow on
S. Moreover, from the observation of the previous paragraph, there can be no infinite
decreasing sequence in the flow (i.e. any strictly decreasing sequence, A1 ⊃ A2 ⊃ A3 ⊃ · · ·
with Ai ∈ E must terminate). The flow thus arises from a unique vertex of S. This
therefore defines a Γ-equivariant map φ : V (T ) −→ V (S).

Suppose y ∈ V (S). Let E(y) ⊆ E be the set of elements of E which correspond to
directed edges with tail at y. Let E∗(y) = {A∗ | A ∈ E(y)}. If x ∈

⋂
E∗(y) ⊆ V (T ), then
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each edge corresponding to an element of E∗(y) must point towards φ(x) ∈ V (S). It follows
that φ(x) = y. From this observation, we see that if y /∈ φ(V (T )), then

⋂
E∗(y) = ∅, so

that
⋃

E(y) = V (S). If it also happens that E(y) is finite, then
⋃
E(y) is the sum (i.e.

symmetric difference) of the elements of E(y). We deduce:

Lemma 11.2 : If y ∈ V (S) \ φ(V (T )) has finite degree in S, then
∑n

i=1Ai = 1 in B(T ),
where A1 . . .An are the elements of E which correspond to those edges with tails at y. ♦

To deduce Lemma 11.1, one can use an accessibility result of Dicks and Dunwoody.
Following [DiD], we say that an edge of a Γ-tree is compressible if its endpoints lie in
distinct Γ-orbits and if its stabiliser is equal to an incident vertex stabiliser. (Such an edge
can be “compressed” in the corresponding graph of groups to give a smaller graph.) A
Γ-tree is incompressible if it has no compressible edges.

The following is shown in [DiD] (III 7.5 page 92):

Proposition 11.3 : Let Γ be a group. Suppose that S, T are cofinite simplicial Γ-trees
with finite edge stabilisers, and that S is incompressible. If there is a Γ-equivariant map
from V (T ) to V (S), then |V (S)/Γ| ≤ |V (T )/Γ|+ |E(T )/Γ|. ♦

(In [DiD] is assumed also that T is incompressible. However, it is clear that one can
always collapse T to give another tree, T ′, with this property, and with V (T ′) isomorphic
as a Γ-set to a Γ-invariant subset of V (T ). This process can only decrease |V (T )/Γ| and
|E(T )/Γ|.)

Alternatively, we can use (the argument of) the “elliptic” case of the accessibility
result of Bestvina and Feighn [BesF]. This gives a slightly different result:

Proposition 11.4 : Suppose that Γ is a group and that S, T are cofinite simplicial
Γ-trees without edge inversions. Suppose that S is incompressible, and that every edge
stabiliser of S fixes a vertex of T . If there is a Γ-equivariant map from V (T ) to V (S), then
|V (S)/Γ| ≤ max{1, 5|E(T )/Γ|}.

In particular, this applies to the case of finite edge-stabilisers. We shall sketch a proof
below, which is condensed out of the relevant part of [BesF]. Our direct use of Grushko’s
Theorem bypasses the use of folding sequences. We begin with some preliminary remarks.

Let t be a graph of groups, and let Γ = π1(t) be its fundamental group. Thus Γ acts
on the corresponding Bass-Serre tree, T , with quotient the underlying graph |t| = T/Γ.
Given v ∈ V (t) or e ∈ E(t), we write Γ(v) = Γt(v) or Γ(e) = Γt(e) for the corresponding
vertex or edge groups. A subgroup of Γ is elliptic if it is conjugate into a vertex group. Let
t0 be the graph of groups with the same underlying graph, and with all vertex and edge
groups trivial. Thus, π1(t0) = π1(|t|) is free of rank β(t) = |E(t)| − |V (t)| + 1. Moreover,
there is a natural epimorphism from Γ to π1(t0) whose kernel contains 〈〈

⋃
v∈V (t) Γ(v)〉〉,

where 〈〈.〉〉 denotes normal closure. In particular, if Γ is the normal closure of some vertex
group, Γ(v), then |t| is a tree. We see easily that if every other vertex group is Γ-conjugate
into Γ(v), then Γ = Γ(v). Indeed, if every vertex group is conjugate into a subgroup,
G ≤ Γ(v), then Γ = G = Γ(v).
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Proof of Proposition 11.4 : After subdividing the edges of T , we obtain a Γ-tree, T ′,
with V (T ) ⊆ V (T ′), and an equivariant morphism φ : T ′ −→ S (which sends each edge of
T ′ to an edge or vertex of S). This descends to a graph-of-groups morphism φ : t′ −→ s
(where |t′| = T ′/Γ and |s| = S/Γ) which induces the identity map on Γ = π1(t

′) = π1(s).
We make a series of observations.

Claim 1 : If v ∈ V (s) \ φ(V (t)) and G ⊆ Γ(v) is T -elliptic, then G is Γ(v)-conjugate
into an incident edge group. This is easily seen by considering the arc connecting a lift of
v to V (S) (fixed by Γ(v)) to the φ-image of a fixed point of G in V (T ).

In fact, the same argument shows that if v, w ∈ V (s) \ φ(V (t)) are the endpoints of
an edge e ∈ E(s), then any T -elliptic subgroup, G, of 〈Γ(v) ∪ Γ(w)〉 is conjugate into an
incident edge group adjacent to (but different from) e. In particular, from the T -ellipticity
hypothesis of the proposition, this applies to G = Γ(e) = Γ(v) ∩ Γ(w).

We say that a vertex, v ∈ V (s) is dead if v /∈ φ(V (t)) and if Γ(v) is the normal closure
of the incident edge groups. Otherwise it is live. We thus decompose V (s) = VD(s)⊔VL(s)
into dead and live vertices.

Claim 2 : |VL(s)\φ(V (t))| ≤ β(t)−β(s). To see this, let s̄ be the graph of groups with
underlying graph |s| obtained by collapsing each edge group in E(s) and each vertex group
in φ(V (t)) to the trivial group, and by collapsing each remaining vertex group, Γs̄(v), to
the quotient of Γs(v) by the normal closure of its incident edge groups. Thus if v ∈ V (s̄),
then Γs̄(v) is non-trivial if and only if v ∈ VL(s) \ φ(V (t)). It follows that π1(s̄) has at
least |VL(s) \ φ(V (t))|+ β(s) non-trivial free factors. Now there is a natural epimorphism
from π1(t0) to π1(s̄). The former group is free of rank β(t), and so Claim 2 follows by
Grushko’s Theorem.

Clearly, |φ(V (t))| ≤ |V (t)| and so |VL(s)| ≤ |E(t)| − β(s) + 1.

Claim 3 : Suppose v ∈ VD(s) and G is an incident edge group. Suppose that every
other incident edge group is Γ(v)-conjugate into G. Then Γ(v) = G. To see this, consider
the action of Γ(v) on a minimal Γ(v)-invariant subtree of T . Let r be the corresponding
graph of groups. Now by the T -ellipticity hypothesis, G is conjugate into a vertex group,
Γr(w), where w ∈ V (r). Moreover, if H is any other vertex group of r, then again H is
T -elliptic, and hence, by Claim 1, is Γ(v)-conjugate into an incident edge group to v in s.
Thus H is Γ(v)-conjugate into G. But now Γ(v) = 〈〈G〉〉 = 〈〈Γ(w)〉〉, and so it follows by
the discussion before the proof that Γ(v) = G. The claim follows.

As an immediate corollary, we see (by the incompressibility of s) that any such vertex
must have degree at least 3 in s. In particular, all terminal vertices of s are live.

Claim 4 : We cannot have two adjacent dead vertices of degree 2 in s. For suppose
to the contrary that e ∈ E(s) has endpoints v, w ∈ VD(s), both of degree 2. From the
remark after Claim 1, we see that, without loss of generality, Γ(e) is conjugate into Γ(f),
where f ∈ E(s) is the other edge incident on v. But now, from Claim 3, we derive the
contradiction that v has degree at least 3.

We now have enough information to bound |V (s)| in terms of the complexity of |t|.
First note that since every terminal vertex of s is live (Claim 3), the number of such vertices
is bounded by Claim 2. Moreover (Claim 2), we have β(s) ≤ β(t). This places a bound
on the number of vertices of s of degree at least 3. Finally, Claim 4 together with the
bound on live vertices places a bound on the number of vertices of degree 2. More careful
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bookkeeping shows that if |s| is not a point, then |V (s)| ≤ 5|E(t)| − |V (t)|. Proposition
11.4 now follows. ♦

Now since, β(s) ≤ β(t), we also get a bound on on |E(s)| = |E(S)/Γ|. In fact, to
obtain such a bound, we can weaken the hypotheses slightly:

Corollary 11.5 : Let Γ be a group and that S, T be cofinite Γ-trees with finite edge
stablisers. Suppose that φ : V (T ) −→ V (S) is a Γ-equivariant map, and that each com-
pressible edge of S is incident on some element of φ(V (T )). Then there is a bound on
|E(S)/Γ| in terms of |E(T )/Γ|.

Proof : To see this, note that we can obtain a Γ-tree, S′, by collapsing down a union of
trees, F , in S/Γ, consisting of a union of compressible edges. Moreover, we can assume
that if x ∈ φ(V (T )), then the image of x in S/Γ is incident to at most one edge of F that
is terminal S/Γ. (Since collapsing such an edge will be sufficient to render all the other
edges incident on x incompressible.) Now, Proposition 11.3 or 11.4 gives a bound on the
complexity of S′/Γ. This, in turn, gives a bound on the number of edges of F , and hence
a bound on the complexity of S/Γ as claimed. ♦

We can now set about the proof of Lemma 11.1. Suppose that Γ, T and A are as
in the hypotheses. By Corollary 10.3, there is a Γ-invariant nested set, E , of generators
of A. Now, if A is not finitely generated as a Γ-boolean algebra, then we can find an
infinite sequence, (An)n∈N, of elements of E such that An does not lie in the Γ-boolean
algebra generated by {Ai | i < n}. Let Γ(An) be the stabiliser of An. After passing to a
subsequence, we can assume that |Γ(An)| is non-decreasing in n. Let En be the union of
the Γ-orbits of {Ai, A

∗
i | i ≤ n}. Given A ∈ En, we write m(A) = i to mean that A or A∗

lies in the Γ-orbit of Ai.

Now fix some n. As discussed after the statement of Lemma 11.1, we can identify
En with the directed edge set of a simplicial tree, Sn, and there is an equivariant map,
φ : V (T ) −→ V (Sn). Note that |E(Sn)/Γ| = n. We claim that Sn satisfies the weakened
hypotheses of Corollary 11.5. In fact, we show that any vertex whose stabiliser fixes an
incident edge must lie in φ(V (T )).

Suppose, to the contrary, that y ∈ V (Sn) \ φ(V (T )) is incident on an edge ~e ∈ ~E(Sn)
with tail at y and with Γ(e) = Γ(y). Note that Γ(y) is finite, so that y has finite degree.
Let A ∈ En be the element corresponding to ~e, so that Γ(A) = Γ(y). Let En(y) be the
set of elements of En which correspond to edges with tails at y. We can assume that ~e is
chosen so that m(A) is maximal among those elements of En(y) with stabilisers equal to

Γ(y). Write En(y) = {A,B1, . . . , Bk}. By Lemma 11.2, we have that A = 1 +
∑k

j=1Bj

in the boolean algebra B(T ). In particular, A lies in the boolean algebra generated by
{B1, . . . , Bk}.

Now, for each j, Γ(Bj) ≤ Γ(A). Either Γ(Bj) = Γ(A) so that, by the maximality of
m(A), we have m(Bj) < m(A), or else |Γ(Bj)| < |Γ(A)| so that, by the construction of
the sequence (Ai)i, we again have m(Bj) < m(A). We therefore deduce that A lies in the
Γ-boolean algebra generated by {Ai | i < m(A)}, contrary to the construction of (Ai)i.
This proves the claim.
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Now applying Corollary 11.5, we get a bound on the complexity n = |E(Sn)/Γ|. But
we could have chosen n arbitrarily large, thereby giving a contradiction.

This proves Lemma 11.1.

12. An application to 1-connected Γ-sets.

In this section, we apply Lemma 11.1 to show:

Lemma 12.1 : Suppose Σ is a countable Z2-acyclic simplicial 2-complex which is locally
finite away from the vertex set V (Σ). Suppose a group Γ acts on Σ with finite quotient and
such that Γ(x)∩Γ(y) is finite for all distinct x, y ∈ Γ. Let S(V (Σ)) be the boolean algebra
of slices of V (Σ). Then, any Γ-invariant subalgebra, A, of S(V ) is finitely generated as a
Γ-boolean algebra.

In particular, this applies to any countable fine Z2-homologically 1-connected Γ-set,
V , with finite pair stabilisers. As described in Section 3, such a set can be equivariantly
embedded in a simplicial complex, Σ, which is locally finite away from V . Of course,
V might be a proper subset of V (Σ). In this case, we apply the result as stated to the
subalgebra A′ = {W ⊆ V (Σ) | W ∩ V ∈ A} of S(V (Σ)). We deduce that A′ is finitely
generated. Since A ⊆ S(V ) is a quotient of A′, we deduce that A is finitely generated.

We can reduce Lemma 12.1 to Lemma 11.1 using the machinery of patterns and tracks
as in [Du2]. (The overall stategy fo the proof is thus similar to that of the accessibility
result of [BesF].) Let Σ, Γ, V , A be as in the hypotheses, and let K be the 1-skeleton of Σ.
Recall that a pattern, t, on Σ is a compact subset of Σ \V (Σ) which meets each 1-simplex
either in the empty set or a single point, and which meets each 2-simplex, σ, either in
the empty set or in a single arc connecting two distinct faces of σ. It represents a subset,
A ⊆ V (Σ) if it meets precisely those edges of Σ which connect A to A∗. Every Σ-slice is
represented by a pattern. A track is a connected pattern. Two disjoint tracks, s, t, are
parallel if there is a closed subset of Σ \ V (Σ) homeomorphic to s× [0, 1] ∼= t× [0, 1] with
boundary s ⊔ t. If T is a Γ-equivariant set of disjoint pairwise non-parallel tracks, then
there is a bound on |T /Γ|, (see [Du2]).

By Corollary 10.3 there is a Γ-invariant nested set of generators, E , for A. By a
standard construction (cf. [Du2]), we can find a set of patterns (t(A))A∈E such that t(A)
represents A, t(A) = t(A∗), t(A) ∩ t(B) = ∅ if B 6= A,A∗ and t(gA) = gt(A) for all
g ∈ Γ. By the observation of the previous paragraph, we can find a cofinite Γ-invariant
set, T , of tracks such that if A ∈ E , then each connected component of the pattern t(A) is
parallel to some element of T . Now T determines a simplicial tree, T , whose edges are in
bijective correspondence with T , and whose vertices are in bijective correspondence with
the connected components of Σ \

⋃
T . (It is here that we use the fact that Σ is Z2-acyclic,

so that every track separates Σ.) There is a canonical map φ : V (Σ) −→ V (T ), where two
vertices of Σ get mapped to the same vertex of T if and only if they are not separated by
any element of A. Note that Γ acts with finite edge stabilisers on T .

Suppose that A ∈ E . Let IA ⊆ E(T ) be the set of edges of T that correspond to
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the connected components of t(A). Now IA in turn determines an element, B(A) ∈ B(T ),
with the property that I(B(A)) = IA and such that φ(A) ⊆ B(A). It follows that A =
φ−1(B(A)). Let F = {B(A) | A ∈ E}. Thus, F is a nested subset of B(T ). By Lemma
11.1, some cofinite Γ-invariant subset of F is sufficient to generate the boolean algebra
generated by F . The corresponding elements of E now generate A. (This follows because
A = φ−1(B(A)) for all A ∈ E , so that any relation between the elements of F also holds
between the corresponding elements of E .) We see that A has a cofinite generating set, as
required. This proves Lemma 12.1.

13. Convergence actions on Cantor sets in the finitely presented case.

In this section, we shall give proofs of the main results stated in Section 1.

Suppose the group Γ acts as a convergence group on the Cantor set, M . We write
Π ⊆M for the set of parabolic points, and B(M) for the boolean algebra of clopen sets of
M . We suppose that there is a cofinite Γ-invariant collection, G, of parabolic subgroups
of Γ such that Γ is almost finitely presented relative to G. By Lemma 8.2, G is fine as a
Γ-set. Thus, Γ acts on a Z2-acyclic simplicial 2-complex, Σ, with finite quotient and finite
edge stabilisers and such that some Γ-invariant subset, V ⊆ V (Σ) is isomorphic to G as a
Γ-set. Moreover, we can assume that Γ acts freely on V (Σ) \V . We distinguish two cases.

Firstly, suppose that Π 6= ∅. We can find a Γ-equivariant map, φ : V (Σ) −→ Π ⊆M .
Now, if A ∈ B and x, y ∈M , then applying Lemma 8.1, we see that {g ∈ Γ | gx ∈ A, gy /∈
A} is finite. It follows that φ−1A is a slice of V (Σ). Let A = {φ−1A | A ∈ B(M)}.
Since φ−1(V (Σ)) is dense in M , we see that the map [A 7→ φ−1A] from B(M) to A is an
isomorphism of Γ-boolean algebras. It follows that Ξ(A) is Γ-equivariantly homeomorphic
to Ξ(B(M)) ∼=M .

Now, by Corollary 10.3 and Lemma 12.1, A has a cofinite Γ-invariant nested set
of generators, E . Moreover, as in Section 12, we see that E is discrete, and can thus be
identified as the directed edge set of a cofinite simplicial tree, T , with finite edge stabilisers.
We can identify Ξ(A) as a closed subset of Ξ(T ). Moreover, there is a canonical map from
V (T ) to Ξ(T ), and each point of Ξ(T )\Ξ(A) is the image of a vertex of finite degree under
this map. Each such point is isolated. Since Ξ(A) ∼=M is a Cantor set, we see in fact that
Ξ(T ) \ Ξ(A) consists precisely of these vertices. Thus, we can identify Ξ(A) with ∆0T , as
defined in Section 5.

Now, Γ is hyperbolic relative to the infinite vertex stabilisers and its boundary is
precisely ∆0T . We have thus shown that the boundary is Γ-equivarianly homeomorphic
to M . This proves Theorem 1.4 in the case where Π 6= ∅.

The case where Π = ∅ is precisely Theorem 1.1, which we treat separately. This, in
turn can be split into two cases. If every point of M is a conical limit point, then by the
result of [Bo1], Γ is hyperbolic with boundary M . It follows that Γ is virtually free, and
that its boundary can be identified with the space of ends of Γ.

If not, then let Π′ be the Γ-orbit of a non conical limit point. Let Σ be a cofinite
Γ-complex with H1(Σ,Z2) = 0. We map V (Σ) Γ-equivariantly to Π′. The argument now
proceeds exactly as above to give us a cofinite Γ-tree, T , with finite edge stabilisers whose
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boundary, ∆0T is Γ-equivariantly homeomorphic toM . In this case, every vertex of T has
finite stabiliser (otherwise it would be parabolic in ∆0T , and hence in M). It follows that
∆0T = ∆T is the same as the space of ends of T . (In retrospect, we deduce that every
point of M is a conical limit point, and so this case cannot in fact arise.)

This concludes the proofs of Theorems 1.4 and 1.1. We immediately deduce Theorem
1.3. Theorem 1.2 follows from Theorem 1.4 and the discussion at the end of Section 9.

14. Convergence actions arising from protrees.

Suppose Θ is a Γ-protree such that the stabiliser of each element is finite. We say
that Θ is locally discrete if each cofinite subprotree is discrete. Note that Γ acts on Ξ(Θ)
by homeomorphism.

Proposition 14.1 : If Θ is locally discrete, then Γ acts on Ξ(Θ) as a convergence group.

Proof : This is easily verified from the criterion described in Section 8. ♦

If Θ is countable, then we can write it as an increasing union, Θ =
⋃∞

n=1 Θn, of cofinite
discrete Γ-protrees, Θn. We can identify Θn as the directed edge set of a simplicial Γ-tree,
Tn. We see that Ξ(Θ) is an equivariant inverse limit of the spaces Ξ(Θn) ∼= ∆Tn, and that
Ξ0(Θ) is an equivariant inverse limit of the spaces ∆0Tn. (This gives another proof of the
fact that Γ acts as a convergence group on Ξ(Θ).) We see that the action of Γ on Ξ(Θ) is
an inverse limit of geometrically finite actions.

Note that an inaccessible group admits a locally discrete action on a non-discrete
protree. Dunwoody’s example of a finitely generated inaccessible group [Du3] thus gives
an example of a non geometrically finite action of such a group on a Cantor set.

We show that examples of this type are typical of convergence actions of (relatively)
finitely generated groups on Cantor sets:

Theorem 14.2 : Suppose that Γ acts as a minimal convergence group on a Cantor set,
M , and that G is a finite collection of parabolic subgroups. Suppose that Γ is finitely
generated relative to G. Then, Γ admits a locally discrete action on a countable protree,
Θ, such that M is equivariantly homeomorphic to Ξ(Θ).

In particular, the action of Γ on M is an inverse limit of geometrically finite actions.

The proof of Theorem 14.2 proceeds exactly as with that of Theorem 1.4 (and 1.1)
as described in Section 13, except that, in this case, we have to make do with a (fine)
connected cofinite Γ-graph, K, instead of the 2-complex, Σ. As before, M is equivariantly
homeomorphic to Ξ(A) where A is a Γ-subalgebra of the boolean algebra of K-slices.
Proposition 10.3 gives us an invariant nested generating set, E of A, which has the structure
of a protree, Θ, as described in Section 6. We can canonically identify Ξ(Θ) as a closed
subset of Ξ(A) ∼= M , whose complement consists of isolated points and is thus empty in
this case. We have equivariantly identified Ξ(Θ) with M as required.
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15. Other applications.

In this section, we sketch two further applications of Theorem 10.1. One concerns
constructions of group splittings, and the other relates to the Almost Stability Theorem
of [DiD].

Suppose that Γ is a one-ended finitely generated group, and that G ≤ Γ is any
subgroup. Let X be a Cayley graph of Γ (or any cofinite locally finite Γ-graph). As
in [Bo5] (cf. [DuS]) we say that G has codimension-one in Γ if there is a connected G-
invariant subset, Y ⊆ X , such that Y/G is compact, and such that X \ Y has at least two
distinct components neither of which is contained in a uniform neighbourhood of Y . (This
is independent of the choice of X .) The following result also follows directly from a result
of Niblo [N]:

Proposition 15.1 : Suppose that Γ is finitely generated and thatG ≤ Γ is a codimension-
one subgroup such that Γ is the commensurator of G. Then, Γ splits non-trivially as a
graph of groups with G conjugate into one of the vertex groups.

The “commensurator” condition means that G ∩ gGg−1 has finite index in G for all
g ∈ Γ. If we assume that no vertex group is equal to an incident edge group, then it follows
that all the vertex and edge groups will be commensurate with G.

To prove Proposition 15.1, let K be a coset graph of G in Γ. In other words, K is a
connected cofinite Γ-graph, with V (K) isomorphic as a Γ-set to the set of left translates
of G, with Γ acting by left multiplication. Let x ∈ V (K) be a vertex stabilised by G.
Let Y ⊆ X be as in the hypotheses. Thus, we can write X \ Y = P ⊔ Q where neither
P nor Q is contained in any uniform neighbourhood of Y . Now all but finitely many
Γ-images of Y are disjoint from Y , and hence contained in either P or Q. Each Γ-image
of Y corresponds to a vertex of K. This therefore assigns all but finitely many elements
of V (K) to one of two disjoint infinite subsets, A,B ⊆ V (K), corresponding to P and Q
respectively. Assigning the remaining vertices arbitrarily, we can suppose that B = A∗.

If y ∈ A and z ∈ A∗, then any path connecting the corresponding images of Y in X
must intersect Y . Since Y/G is finite, it follows that only finitely many Γ-images of any
pair {y, z} ⊆ V (K) can meet both A and A∗. In other words, A is a slice. We have shown
that the algebra of slices, B(K), of K is non-trivial, Theorem 10.1 now applies to give
us a nested set of generators for B(K). Since the set of Γ-images of Y is locally finite in
X , it follows that this generating set is locally discrete. We thus get an action of Γ on a
simplicial tree, T . Moreover, there is an equivariant map from V (K) to V (T ). This proves
Proposition 15.1.

This result is, in some sense, “orthogonal” to the constructions of [Bo5]. Note that
we cannot expect the splittings we obtain in this case to be canonical.

Another application of Theorem 10.1 (as observed by Dunwoody) is to give an alter-
native proof of a version of the Almost Stability Theorem of [DiD]. This can be interpreted
as giving a criterion for a Γ-set to be enbedded in the vertex set of a simplicial Γ-tree with
finite edge stabilisers. Let Γ be a group, and X be a cofinite Γ-set. Let P(X) be the power
set of X , thought of as a Γ-boolean algebra, and let I be the ideal of finite subsets.
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Proposition 15.2 : Suppose that Γ is a finitely generated group, and that X is a Γ-set
with finite point stabilisers. Suppose that V ⊆ P(X) is a Γ-invariant subset of P(X) with
the property that if A,B ∈ V then A+B ∈ I. Then V can be equivariantly embedded in
the vertex set of a simplicial Γ-tree.

Suppose we already know that V embeds in a simplicial Γ-tree, T . We can take X to
be the directed edge set of T . To each x in V , we associate the set of directed edges which
point towards x. This gives a subset of P(X) satisfying the hypotheses of Proposition
13.2. Of course, the situation described by the hypotheses may be more general that this.

Proposition 15.2 can be proven as follows. Given any x ∈ X , let A(x) ∈ P(V ) be the
subset of V consisting of those elements of V that contain x. One verifies that A(x) is a
slice of V . Let A be the subalgebra of slices of V generated by {A(x) | x ∈ V }. (A typical
element of A has the form B or B∗, where B is either finite or is equal to A(x) for some
x ∈ X .) We now apply Theorem 10.2. It is easily verified that the resulting generating set
is locally discrete.
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