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0. Introduction.

in this paper, we aim to describe a few of the basic results concern-
ing locally compact path-metric spaces satisfying the “CAT(1)” property
locally. These spaces generalise the idea of a riemannian manifold having
sectional curvature everywhere at most 1.

Attempts to formulate curvature as a purely metric property go back to
the work of Aleksandrov, Toponogov and Busemann. Thus, one treats one
of the comparison theorems of Riemnannian geometry as axiomatic. Since
curvature is a local property, we will want a formulation that allows us to
pass readily from local to global.

In [Gr], Gromov introduced the term “CAT(x)” for a comparison ax-
iom intended to capture the idea of a space having curvature everywhere
% x. - This is defined in the context of “geodesic spaces” in which every pair
of points a joined by a geodesic—a length-minimising rectifiable path. It
is a metric condition on triangles formed from three geodesics edges, as we
describe at the end of this chapter. In this paper, we shall restrict atten-
tion to complete Jocally compact path-metric spaces. These are necessarily
geodesic spaces {Lemma 2.2).

We may speak of a space being “locally” or “globally” CAT(x). After
scaling the metric, we reduce to three qualitatively distinct cases, namely
x==1,0,1 Hx <0, alocally CAT(x) space will be globally CAT(x) if
and only if it is simply-connected (and hence contractible). See, for example
[P]. To make an analogous statement in the case x = 1, we should replace
simple-connectedness (i.e. path-connectedness of the space of loops) by a
related condition obtained by restricting attention to those loops which are
rectifiable, and of iength strictly less than 27. Thus this new condition
demands instead that the subspace of such loops be path-connected. (We
explore this matter in Chapter 3.)

1t seems that the cases ¥ = —1,0,1, become progressively more dif-
ficult to deal with from a synthetic point of view. Much of the geometry
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of strictly negatively curved spaces (corresponding to x = —1) can even
be formulated combinatorially, as can be seen from Gromov’s hyperbolic-
ity criterion [Gr]. In the case of non-positive curvature, the appropriate
combinatorial formulation has yet to be settled on. In the context of com-
binatorial group theory, the notions of combability and automaticity (and
the numerous variations thereof) are candidates [E]. However a great deal
can be done by synthetic means. Much of the basic theory, as developed in
[BaGS] for example, can be carried out for CAT(0) spaces. We also have
the weaker notion of convexity of the distance function, as formulated by
Busemann [Bus]. See also [P] for an account of this. Unfortunately, posi-
tively curved spaces prove less amenable to synthetic argument, and much
of the development seems confined to the Riemannian category. However
we can get some mileage out of the CAT(1} axiom as we shall describe.
Note that in all these cases, the CAT(x) axiom is intended to place only
an upper bound on curvature. The curvature is thus allowed to be arbi-
trarily, or indeed “infinitely” negative. It is not clear what is a useful way
to formulate lower curvature bounds, or how to say that a metric space is
“non-negatively curved”.

As examples of locally CAT(x) spaces {besides riemannian manifolds)
we can consider geometric simplicial complexes obtained by gluing together
simplices of constant curvature x. In such a complex, the link of each sim-
plex has, itself, the structure of a geometric complex built out of spherical
simplices (the case y = 1). It turns out that the original complex will be
locally CAT(x) if and only if the link of each vertex is globally CAT(1).
(To be formally consistent, we should say that each connected component
of such a link is globally CAT(1).} By induction on dimension, one can see
that this is equivalent to saying that the link of each simplex should contain
no closed geodesic of length strictly less than 2. This latter observation
uses the fact that a compact locally CAT(1) space is globally CAT(1) if and
only if it contains no closed geodesic of length less than 2. For a discussion
of polyhedral complexes, see {Ba] or [Br].

Another context in which the CAT(1) property arises naturally con-
cerns the realisation of 3-dimensional hyperbolic polyhedra. Given a com-
pact convex polyhedron in hyperbolic 3-space, we can construct its dual in
the de-Sitter sphere [HR]. Intrinsically, this dual is a topological 2-sphere
with a singular spherical metric, i.e. it has constant curvature 1 away from
a finite number of cone points. Each of the cone points has cone angle > 2r
The metric is thus locally CAT(1). Hodgson and Rivin [HR] characterise
the metrics that occur in this way as precisely those which contain no closed
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geodesic of length < 2. This is slightly stronger than globally CAT(1) —
a globally CAT(1) space might contain a closed geodesic of length precisely
2r. Tt turns out that (up to isometry) there is a bijective correspondence
between such metrics and compact hyperbolic polyhedra.

A natural quantity associated to a compact locally CAT(1) space is
the “systole” [CD]. This may be defined as the length of the shortest closed
geodesic, provided this is < 2x. Otherwise, we set the systole to equal
2. There are various equivalent ways of defining this quantity as we shall
describe in Chapters 2 and 3. One can also give a definition for non-
compact spaces. In all cases the space will be globally CAT(1) if and only
if the systole equals 27.

In Chapter 3, we introduce he notion of a “shrinkable loop” in a locally
CAT(1) space. Briefly, a rectifiable loop of length less than 27 is said to
be shrinkable if it can be (freely) homotoped to a point (constant loop)
passing only through other rectifiable loops of length less than 2x. It turns
out that if this is possible, we can always choose the homotopy so that
the lengths of the intermediate loops tend monotonically to 0 (Theorem
3.1.5). As mentioned earlier, a locally CAT(1) space is globally CAT(1) if
and only if every loop of length less than 27 is shrinkable. {This follows
from Theorem 3.1.2 and Corollary 3.1.7.) In Section 3.1, we hst various
other results relating to shrinkability. Most of Chapter 3 will be devoted to
proving these results. (Sections 3.5 and 3.7 are digressions from the rest of
the paper.) The man technique used in these results 13 that of “Birkhoff
curve shortening”, which we describe 1n Section 3.3.

In Chapter 4, we mention two area inequalities from 2-dimensional rie-
mannian geometry, to which the notion of shrinkability is relevant. Firstly
it gives a convenient way of describing a dichotomy arising out of the spher-
ical isoperimetric inequality. Secondly, it gives an hypothesis under which
we can prove ah area comparison theorem for triangles.

Most of the material for this paper war prepared at the University of
Melbourne, under an A.R.C. fellowship. It was completed at the University
of Aberdeen under an S.E.R.C. research assistantship.

Definitions.

We give the definitions of the CAT() property, and Busemann’s con-
vexity condition. We shall look at the CAT(1) property more carefully in
Chapter 2.

Locally CAT(1) spaces

Suppose (X, d} is a complete locally-compact path-metric space. By a
geodesic in X, we mean a globally length-minising rectifiable path between
two given points. We assume geodesics to be parameterised proportionately
to arc-length.

Suppose that oy, az, a3 . [0,1] — X are three geodesics forming a
triangle, i.e. &;{(1) = @j4+1(0) where 3+ 1 = 1. Suppose that MuwuH d{a;(0),
ai(1)) < 2w/, /X, where this condition is deemed vacuous if x < 0. We may
construct a comparison triangle in the 2-dimensional model space (S, dy)
of constant curvature x, consisting of three geodesic segments o, ah, of :
[0,1} — 8, with dy(}(0),{(1)) = d{@;i(0), e;(1)) for i = 1,2,3. This
comparison triangle is well defined up to isometry in S,. We say that X is
“(globally) CAT(x)" if for all such triangles (o1, az,aa), for all ¢,u € [0, 1]
and for all i,7 € {1,2,3}, we have d{e (2}, a;(u)) < dy(ai(t), ai(u)). We
say that X is “locally CAT(x)” if every point has a neighbourhood which
is CAT(x).

Note that the CAT(0) property implies the following: If ar, 8 : [0, 1] —
X are geodesics, then the map [(t, u) — d(a(?), A(v))] : [0, 1]2 — [0, 00) is
convex. This property, taken as an axiom, is (equivalent to} Busemann’s
condition for non-positive curvature. It may be alternatively expressed 1n
terms of bisecting edges of triangles [Bus).

1. Spherical Geometry.

In this chapter, we describe a few of the basic facts of spherical geom-
etry relevant to later sections. We shall not write out detailed proofs here.
Much of it can be dismissed as “spherical trigonometry”, though most of
the results can be deduced by synthetic argument without resort to compu-
tation. In particular, Propositions 1.1 and 1.2 can be thought of intuitively
in terms of mechanical linkages.

Let (5?,d;) be the unit sphere with the intrinsic path-metric dy. Thus,
two points z,y € §? are antipodal if and only if di(z,y) = m; otherwise
di(z,y) < . In the latter case, x and y may be jomed by a unique geodesic
segment fr,y] C 52, If z € 9%, and y,z € S?\ {2}, neither antipodal to
z, then we write y2z € [0, 7] for the angle between [z,y] and [z, 2] at =.
We say that a closed set Q@ C S? 1s convez if {x,y] C @ for any pair of
non-antipodal points z,y € (. We say that Q is stricily conver if it 1s
convex and contains no pair of antipodal points In the latter case, @ lies
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inside some open hemisphere of S2. Moreover, if it has non-empty interior,
then it is topologically a disc, bounded by a rectifiable Jordan curve, 5@},
of length < 2.

We shall say that a closed subset @ C 5% is small if it is contained
in some open hemisphere, and large if its interior contains some closed
hemisphere.

Any Jordan curve J € 5? bounds two (closed) topological discs. If J
is rectifiable and of length < 2w, then one of these is large, and the other
small. (This follows from Proposition 1.3 below.}

Here, we are only interested in polygonal curves.

Definition : A (non-degenerate} polygon (or n-gon), P, in 5? is a cyclically
ordered set of (n) points (=1, 2,..., &) of X such that 0 < d{z;, z;41) < 7
for all 1, and such that I'(P) = |Ji._, [zi, zi+1] is a Jordan curve.

We are using the convention that n + 1 = 1. We write

perim(P) = length (P} = Y _ d(x, 2:41)

i=]

for the pertmetfer of P.

Suppose that perim(P) < 2x. Let R(P) be the small disc bounded
by P. We refer to R(P) as a small polygonal region. For each i, we write
L{P,z;) for the interior angle of R(P) at z;. Thus R(P) is convex if and
only if Z(P,z;) < w for all ¢ (so that Z(P,a;) = @_1&iwipy). We also
refer to P being “convex” in this case. Note that all triangles (3-gons) are
convex.

Proposition 1.1 : Suppose P = (z1,...,%,) and P! = (z},...,z},) are
convex n-gons. Suppose di(zi,®i41) = di(z},ziy,) for i € {1,...n — 1},
and that L(P,x;) < L(P',z}) for i € {2,...,n =1}, Then di(21,2,) <
dy (21, 25)- %

The proof, in general, ts somewhat involved (see, for example, [S]}. We
are principally interested in the case of triangles, for which it is elementary.
Thus, if we “open out” an angle of a triangle, we increase the length of the
opposite side. The case of quadrilaterals (n = 4) is also needed in the proof
of Proposition 1.2.

Locally CAT(1) spaces

We shall also need to consider non-convex quadrilaterals, which we
refer to as “darts”.

Definition : A dart, P, is a quadrilateral (z, z, y, w) such that perim(P} <
27 and L{P,y} > 7.

Given such a dart, we write pp for the intrinsic path-metric on R(P). Note
that R{P) is the union of two triangular regions R(z,y,z) and R(z,y, w).
We say that the darts P = (=, z,y,w) and P’ = (&', 2/, ¢/ ; w') are equiva-
lent if dy(x,2) = di(2’, ), di(z,y) = di(,¥'), di(y, w) = da{y', w') and
di(w,z) = di{w’,z'). Thus there is a natural map f : I'(P) — I'(P')
obtained by sending each geodesic segment of I'(P) isometrically onto the
corresponding segment of I'(P'). Note that in a given equivalence class,
there is a 1-parameter family of darts, up to isometry in §2. This can be
thought of intuitively in terms of flexing a mechanical linkage.

Proposition 1.2 : Suppose P = (z,z,y,w) and P' = (¢/,2',¢/,w'} are
equivalent darts. Then, the following are equivalent:

(1) L(P,z) > L(P', ")

(2) L(P,y) < L(P',Y)

(3) L(P,z) < L(P',2') (and/for L(P,w) < L(P,w').)

(4) di(e,y) > di(a', )

(5) di{z,w) > dy(2/, w').

(6) The natural map f : (I'(P),pp) — ([(P'),pp') is distance non-
mncreasing.

(7) area(P) > area(F’). &

The proof is left as an exercise. It uses Proposition 1.1

Of particular interest, is the extreme case where £(P,y) = 7. There is
precisely one such “triangular” dart in each equivalence class.

We have already observed that all triangles are convex. It will often
be convenient to allow for “degenerate” triangles ' = (i, y, #}, where the
only condition is that no pair of points of {x,y, 2} are antipodal. Thus
perim(T) < 27.

We shall need:
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Proposition 1.3 :  For all ¢ > 0, there exists n > 0 such that if T =
(z,y,2) is a (possibly degenerate) triangle, with d(y,x) + d(z,2) < 7 —¢,
then di{a,z) < § —n, where a s the midpoint of [y, z]. o

As a corollary, referred to earlier, suppose that J C S$? is a Jordan
curve lengthJ < 2x. Choose y,z € J so as to divide J into two subarcs,
each of length less than m, and let a be the midpoint of [z, y]. Then, J lies
in the open hemisphere centred on a. Thus, J bounds cne large disc and
one small disc.

2. Basic Properties.

In this chapter, we develop some of the basic properties of a locally
CAT(1) space, X. We shall be principally interested, for the moment, in
the case where X is compact. Much of what we do in this chapter can be
viewed as a combination of the accounts of Ballmann [Ba] and Charney and
Davis [CD].

In [CD], the authors define “systole”, sys(X), of a compact locally
CAT(1) space, X, as the mimmum length of a closed geodesic in X. We
shall find it convenient here to demand that sys(X) < 2m, ie. we set
sys(X) = 2r if there is no closed geodesic of length < 2r. The systole
seems a natural quantity to associate to X, and one can give several differ-
ent characterisations. We shall see that X is globally CAT(1) if and only
if sys(X) = 2m.

Note that, up till now, we have not said explicitly what we mean by a
“closed geodesic”. There are two sensible interpretations. We could take it
to mean a closed local geodesic, i.e. a non-constant map of a circle S into X
which is length minimising when restricted to all sufficiently small subarcs;
or else we could take it to mean a clesed global geodesic which is globally
length minimising, i.e. the (pseudo)metric on S* induced by the metric d is
an mmtrinsic path-metric on S*. Thus a global geodesic is always embedded,
whereas a local geodesic need not be. The interpretation in [CD] is that
of a global geodesic. It turns out that both interpretations give rise to the
same notion of systole. In fact, any closed local geodesic of length equal to
sys(X) is necessarily a global geodesic (see Corollary 2.19).

In Chapter 3, we give another description of the systole in terms of
what we call “shrinkability” of loops. This formulation also makes sense
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when X is not compact.

We begin with some definitions.

Let (X, d) be a complete locally compact path-metric space. The path-
metric property tells us a-priori that, given any ¢ > 0 and x,y € X, there
is a rectifiable path joining @ to y of length at most d(z,y) + ¢, We shall
see that the hypotheses of completeness and local compactness imply that
we can always take this path to be geodesic, i.e. we can set ¢ == 0.

Given z € X and r > 0, we shall write N(x,r) = {y € X | d(z,y) < r}
for the closed metric r-ball about .

Lemma 2.1 ¢ For all # € X and r > 0, the metric ball N(z,r) is
compact

Proof : Fix £ € X and suppose, for contradiction, that not all closed metric
balls about z are compact. Let r = inf{t > 0 | N{=,t) is not compact}.
By local compactness, r > [

First, we claim that N{z,r) is compact. To see this, let (%i)icn be
any sequence of points of N(z,r). Since d is a path-metric, we can find,
for any j € NN[1+ w_oou, points y;; such that Q?,SL < r - mpq and
dyi,mij) S T+ w For all such j, the ball N(a,r — }) is compact. Thus,
by a diagonal sequence argument, we can find a mcwmmﬂzoanm of natural
numbers, i(k)}, such that for all j € ZD?.TW._ 00), the sequence (¥i(x); JeeN
converges as as k tend to co. Now, given &, k" € N, we have d{yiq, %i(kn)) <
d(yiry; ) S?JL.TW«,T ..Awq+ ﬁ.ﬁwd which can be made arbitrarily small. Thus,
the sequence {(yi(x))ren is Cauchy, and so converges in N(z,r). Thus,
N(z,7) is compact as claimed.

Now, by local compactness, we can find ¢ > 0 and some finite set
A G N(z,r) such that N(z,7) C Uyeq N(a, €}, and such that N(a,3e) 1s
compact for all a € A. Now, since d is a path-metric, we have N(x,r+¢) C
Usea N(a,3¢), and we deduce that N(z,t) 15 compact for all £ < r +¢,
contradicting the definition of 7. &

Definition : We define a (global) geodesic joining two points z,y € X
to be a path a : [0,1] —+ X with «(0) = z and a(l) = y, such that
d{c(t), a(u)) = plt —u| for all ¢, u € [0, 1] and for some fixed u (= length &)
In other words, « is a globally length-minimising path parameterised pro-
portionately to arc-length.
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Lemma 2.2 1 Gwen any two points z,y € X, there ts a geodesic joining
z loy.

Proof : Let r = %d(z,y). Since d is a path-metric, we can find, for any
i€ N, a point z; € X satisfying d(z,z;) < r+ 4 and d(y,z) < r + i
Applying Lemma 2.1, we can find a subsequence of {2;) converging to a
point z € X, satisfying d{z, z) = r and d(y, z) = r.

We can now interpolate; by induction, to obtain a map of the diadic
rationals [0, 1] Z[$] such that d{a(2), a(u)) = 2r|t —u| for all t,u € [0,1]N
Z[3], and with a(0) =  and a(1) = y. We may now extend by continuity
to a geodesic a : [0,1] — X. &

Given a geodesic a : [0,1] — X, we write end(a) = (a(0), a(1)) for
the pair of endpoinis of «.

Definition : A friangle in X consists of three points xy,22,23 € X
and three geodesic segments a1,z as such that end{ey) = (#i41, ®ig2)
(taking subscripts mod 3). (Figure 2a.) We write 7' = (a1, @2, @3), or
T = (o), 2, a3; &1, T2, T3) if we wish to specify the endpoints. We write
['(T) for the closed path oy U ag U cva, and write

3
perim(T) = length I'(T) = MU d(zi, ziy1)
i=1
for the pertmeter of T

Definition : Suppose T = (a3, a3, as; z1, T2, £3) is a triangle with perim
(T < 27, By a (spherical) comparison triangle for 7', we mean a triangle
T = (o}, b, af; o, 25, z5) in (5%, d1) such that dy(zf, 2{,,) = d(®:, zit1)
for i € {1,2, 3}

Such a triangle always exists, and is unique up to isometry in S%. It
may happen that 7" is degenerate, i.e. I'(T”) need not be a Jordan curve.

Definition : Suppose perim(T) < 2x. We say that T is “CAT(1)” if
d(ei(t), a; (w)) < di(af(t), o} (u)) for all t,u € [0,1] and 4,7 € {1,2,3}.

(When dealing with triangles we shall sometimes be careless in distin-
guishing a path « from the reverse path [t — a(1 —£)]. In other words
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we shall not always insist that the edges are consistantly oriented around
a triangle.)

The crucial lemma, which gets the whole subject going, says that if
we can cut a triangle into two smaller triangles, by joining a vertex to
the a point on the opposite edge, so that each of these smaller triangles is
CAT(1), then the original triangle must be CAT(1). More formally:

Lemma 2.3 : Suppose T = (v,8,0;2,2z,w) Is a triangle in X with
perim(T) < 2m. Supposet € [0,1]. Let y = ¥(t), and let v; and ¥, be
(Jinear reparameterisations of) v|[0,%] and 7|[t, 1] respectively. Suppose é
1s a geodesic joining x to y, so that we have cut T into two triangles Ty =
(y1,8.0;2,y,2) and T3 = {y,,8.0;z,y,w) with perim(1}) < 2r. (Figure
2b.) If Ty and Ty are both CAT(1), then T is CAT(1).

Proof : We can construct comparison triangles for 7] = (z’,y', 2') and
and T = (2',y,«') for Ty and T, respectively, so that the triangular
regions R{T1) and R(T%) le on opposite sides of the common edge [/, v/].
Let P be the quadrilateral (&, 2',y/,2'). Thus R(P} = R(Ty) U R(T3).
Let p be the intrinsic path-metric on R(P). There is a natural piecewise
isometric map g : (T(P),p) — (T(T), d). Since T and T3 are CAT(L), it
follows easily that this is distance non-increasing. In particular, we see that
(2" w') = p(2', ¥} + p(¥, ©'), and so L(P,y") > w. Thus P is a “dart” in
the sense of Chapter 1.

We can “open out” the angle at y to form an equivalent dart @ =
A&\_..Ntu.c_:._g:v with hﬁanﬁ_:v = 7. :m.mm-:.m wnv Thus AH:._.NQ_.F.\J 18 a
comparison triangle for . Now Lemma 2.2(6) tells us that the natural map
f  (D(@),dy) — (T(P),p) is distance non-increasing, and so therefore
is the composition go f : (I'(@),d1) — (T(T),d). This is the CAT(1)
property for T. &

A degenerate case of a triangle 1s a bigon B consisting of two geodesic
arcs «, # joining the same pair of points x,y. Thus perim(B} = 2d{z,y).
From the definition, B is CAT(1) if and only if & = 3.

Definition : We say that X is “r~-CAT(1)” if every triangle of perimeter
strictly less than 2r is CAT(1).

We say that X is “globally CAT(1)” if it is ~-CAT(1).

Wesay that X is “locally CAT(1)” if every point has a compact neigh-
bourhood which is CAT(1) in the induced path-metric.
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Note that the CAT(1) property implies local convexity. (We say more
about this at the end of this chapter.) In other word, in the definition of
locally CAT(1), we can assume that the neighbourhoods we take are convex.
-Thus, the induced path-metric agrees with the metric d. This observation
leads to an alternative formulation of locally CAT(1):

Lemma 2.4 : Thespace X is locally CAT(1) if and only if for all compact
subsets K C X, there is some € > 0 such that if T is a triangle in X with
all its vertices in K, and with perim(T") < 2¢, then T is CAT(1) ¢

In particular, a compact path-metric space is CAT(1) if and only if it
is e-CAT(1) for some ¢ > 0.

For the rest of this chapter, we shall assume that X is compact and
e-CAT(1).

We write geod(X) for the space of all geodesics in X, with the sup-
norm metric dyup. Thus dyup (@, 3) = max{d(a(t), (t)) | t € [0,1]}. Since

X has finite diameter, geodesics are uniformly . lipshitz, and so:
Lemma 2.5 : The space (geod(X ), dsup) Is compact. ¢

We have defined the endpoint map end : geod(X) — X x X by
end{a) = (a(0), «(1)). Clearly this is continuous, and Lemma 2.2 tells us
that it is surjective. Note that length(a) = d((0), (1)), and so length .
geod(X) — [0,00) is also continuous. Given o € geod(X), we write —a
for [t =+ a(1 —t)] € geod(X). )

If z,y € X with d(z,y) < ¢, then there 1s a unique geodesic joining =
to y, which we write as [z - y].

Lemma 2.6 : Suppose o, 8 € geod(X} withend(a) = (z,z) and end(8) =
{2,y). Suppose dyup(er,3) < € and d(z,2) + d(y,z} + ¢ < 2n. Then T =
(8,0,[z — ylsx,y,%) is CAT(1).

Proof: Wecan find 0 = ¢; < 5 < -+ <1 = 1 such that perimS; < 2¢ and
perimT; < 2¢ for all ¢, where S; and T; are respectively the triangles with

vertices (a(t;), aftis1), B(1;)) and (B(8:), B(itr), a(tiy1)). (Figure 2d.) We
can now apply Lemma 2.3 inductively. ¢
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Corollary 2.7 : Ifa,B € geod(X) with lengtha = length § < m, end o =
end § and dyyp(a,F) < ¢, then a = f.

Proof : By Lemma 2.6, the bigon o U —f is CAT(1). &

Corollary 2.8 : Ifz,y € X withd(x,y} <, then end1(z,y) C geed(X)
ig finite.

Proof : By Lemma 2.5, and Corollary 2.7. In fact, lend™(z, )| is bounded
by the number of (¢/2)-balls we can pack disjointly into (geod(X), d,up).
¢

Given r > (, write
P(r)={(z,y) € X x X | d(z,y) <r}.

Given (z,y) € P(x), write n(z,y) = lend=*(z,3)]. Thus, by Lemma 2.2,
n(z,y) > 1 for all (z,y)

Lemma 2.9 : The map n : P(r) — N Is upper-semicontinuous.

Proof : Suppose (z,,%) is a sequence converging to {(z,y) € P(7), and
that n(z;,y) > m for all i € N. For each i, choose {cs1, ..., 0m} to be
m distinct geodesics with end(ai;) = (z:, ). Since geod(X) is compact,
passing to a subsequence we have ay; — o; € geod(X) for each j Clearly
end{e;) = (x,y). Since, for all i, dyup(ayj, aix) 2 € if j # k, we see that
the a; are all distinct. Thus n(z,y) > m. &

Now let Po(w) = {(z,y) € P(x) | n(x,y)} > 2}. By Lemma 2.9, this
is a closed subset of P(r). If Py # @, set | = min{d(x,y) | (x,y) € P(x)}.
Otherwise, set { = w. {Thus, ! is the “injectivity radius” of X. We shall

gee that it is equal to half the systole.)
Given (z,y) € P({), there is a unique geodesic [z — y] € geod(X) with
endlz — ] = (2,5)

Lemma 2.10 : The map [(z,¥) v [z — y]] : P({) — geod(X) Is
continuous.

12
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Proof : We know that end : end ™ P(1) — P(l) is a continuous bijection.
"We need to know that its inverse is continuous. This follows from the
observations that P(t) is open in P(I) for t <, that P(I) = | J,; P(t), that
P(l) is hausdorff and that end™* P(t) is relatively compact in end™" P(I) for
all t < l. Thus end™"|P(t) is continuous for all ¢ < I.

¢
Proposition 2.11 : X 15 I-CAT(1).

Proof : Suppose T' = (e, 8,7; ¢, ¥, z) has perim(T") < 2I. Thusd(z,y(t)) <
{for all t € [0,1], so we can set 6 = [z — ¥(¢)]. By Lemma 2.10, the map
[t =+ 6:] : [0,1] — geod(X) is continuous. Thus, we can find 0 = £, < t3 <
vor < by = 1 with dyup(8e;, 61, ) < €forallie {0,1,...,k—1}. (Figure 2¢.)
By Lemma 2.6, each triangle T} = (8¢, 61,4, [v(ti) — 7(ti41)]) is CAT(1).
By Lemma 2.3, T is CAT(1). &

We want to relate the “injectivity radius”, I, to the “systole” of X, i.e.
the length of the shortest closed geodesic.

Suppose ¢ is a path-metric on the circle S'. Thus, up to homeomot-
phism of S, ¢ is & multiple of the standard path-metric on 51 as the unit
circlé in R?. Let r = 1length(S?, ¢) = diam(S!, o). We say that the points
t,t' € St are antipodal if o(t,t') =r.

Definition : A closed (global) geodesic (of length 2r) isamap v : ST — X
such that d(y(t),y(w)) = o(t,u) for all {,u € S, for some path-metric &
on 51,

Lemma 2.12 : If v : (8%,0) — (X, d) is distance non-increasing, and
d(v(t),7(t")) = r whenever {,t' € S are antipodal, then v is a global
geodesic.

Proof : Supposet,u € 5. Then d(v(2),v(u)} < o(t,u) and d(v(t'), v(u) <
o(t',u). But ot, 1) +o(t', 1) = o(t,t)) = r = d(y(t), 7(t')) < dlr(t), 7(u))
d(¥(t'),7(u)). Thus d(y(t),7(u)) = o(t, u).

<+

Suppose «, 3 € geod(X) are non-constant geodesics with end(a} =
end(). Let o be a path-metric on S* of length 2r, where r = lengtha =
length 3. We divide S' into two subintervals I,J, each of length r, and
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define a map v : §* — X by letting v|I and ¥|J be linear reparametri-
sations of a and —p respectively. We write ¥ = o U —3. Note that
7 : (81, 0) — (X, d) is distance non-increasing and d(y(t), v(u)) = o(t, u)
ift,Luelorift,ueJ.

Lemma 2.13 : Suppose a, 8 € geod(X) with a # f andenda =endf =
(z,y). Suppose d(z,y) =1, and that | < x. Then v = aU—F 15 a closed
global geodesic.

Proof : Suppose not. Then, by Lemma 2.12, we can find ¢ € (0,1) such
that d(a(t),8(1 —¢)) < l. Let § = [a(t) — A(1 —¢t)]. Thus & cuts the
bigon (a,3) into two triangles T} = (o1, f1,6) and T} = (@2, §2.0) where
ay,ag, 1, B are, respectively, linear reparameterisations of «|[0, ], af[1 -
t, 1], Bl[0,), 8]{1 — ¢, 1]. (Figure 2f.) Now, perim(7;) < 2/, and so by Propo-
sition 2.11, each 7; is CAT(1). Thus, by Lemma 2.3, the bigon (a, 3) is
CAT(1), and so a = 8. ¢

Corollary 2.14 : Ifl < , then there is a closed global geodesic of length
equal to 21.

Proof : By Lemma 2.9, and the definition of I, we can find 2,y € X with
d(z,y) =1 and n(z,y) > 2. Thus, there are at least two distinct geodesics
w, € geod(X) with end @ =end 3 = (z,y). ¢

In summary, we have shown (Propogition 2.11 and Corollary 2.14) that:

Theorem 2.15 : If X i1s compact and locally CAT(1), then there is some
1 € (0, 7] such that X is1-CAT(1}, and either | = w, or else there is a closed
global geodesic of length equal to 21. ¢

Now, if v is a closed global geodesic of length < 27, we may divide
7 into three geodesic paths, v = a; U ag U ag, of equal length, to form a
triangle T = (o1, as, 0a) with perim(7") = lengthy. Clearly the CAT(1)
property fails for T. It follows that the quantity { as described by Theorem
2.15 is uniquely determined.

14
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Definition : We define the systole, sys(X) of X to be equal to 2[ where !
is the quantity described by Theorem 2.15.

Thus, either sys(X) = 2, or else it is the length of the shortest closed
global geodesic. We shall see that we can replace “global” by “local” in the
above statement. We thus go on to describe local geodesics.

Definition : A path o : [0,1] — X is a local geodesic if, for some 1 > 0
and g > 0, we have d(c(t),a(u}) = plt — u[ whenever t,u € [0,1] and
|t~ ul <.

Note that d(a(t), a(u)) < plt — uf for all t,u € [0,1]. Also, a local geodesic
is a global geodesic if and only if length o = d{a(0), a(1)).
As for global geodesics, we shall write end « = ((0), 2(1)).

Lemma 2.16: Suppose o : [0,1] — X Is alocal geodesic with length o <
! = 1sys(X). Then « is a global geodesic.

Proof : Let to = max{t € [0,1] | length{e|[0,¢]) = d(«(0),a(t))} Cer-
tainly to > 0. If o is not a geodesic, then fp < 1. In this case, choose
g, uy € (0,1) so that Ju;—up| < nand ug < ¢ < up. Thus d(a(uo), aluy)) =
p(uy —ug) = length(er|[ug, u1]). Let @1, ag : [0,1} — X be linear reparam-
eterisations of a|[0, ug] and af[uo, u1] respectively. Thus a1, az € geod(X).
(Figure 2g.) Since u = 1 > tg, we have d(a(0), a(u1)) < length (][0, u4]) <
I Let A = [a(0) — a{w)] € geod(X) and let T = (a1, a9,8). Thus,
perim(T) < 2!, and so T satisfies CAT(1). Now length3 < lengthen +
length cvs, from which we can deduce that d(«(0),a(t)) < length{al|[0,1])
for all t € (ug,u1). This contradicts the assumption that o < 1, and so a
must be geodesic. &

Suppose a,d : [0,1] — X are local geodesics with enda = end 5.
Provided o and @ are not both constant, we can define v = a U -3
S! — X as in the case of global geodesics. If ¢ is the induced path-
metric on 5%, then v - (S, 0) — (X, d) is distance non-increasing and
lengthy = length(S*, 0) = length o + length 3.

Lemma 2.17 :  Suppose a,8 : [0,1] — X are local geodesics with
o # B, enda = end 3, and lengther + length 8 < sys(X). Then, either
lengtho = length 8= 7, orelse y = aU—f is a closed global geodesic.
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(Note that it follows that lengthy = length o + length 3 == sys(X).)

Proof : Let r = wemumzﬂa +length 8) < Wmuaﬁ.x, ). If length a == length 3,
then, by Lemma 2.16, @, 8 € geod(X). Since o # S, we must have r =
memﬁk ). Thus, either r = 7, or else, by Lemma 2.13, vy is a closed global
geodesic.

Thus, we suppose that lengthe > length 8. Let £ € [0,1) be such
that length(a|[0,£5]) = r. Let z = o(0) = B(0) and y = afty), and let
ay ¢ {0,1] —= X be a linear reparameterisation of «|[0,tp]. Thus, by
Lemma 2.16, a1 € geod(X), and so d(z,y) = r. Now B U —(allte,1]) is
a path of length r joining z to y, and so may be reparameterised to give
B € geod(X) with end 3, = (z,y). Note that y = aU -8 = ay U =51,
Since « is locally injective near to, we must have oy # p1. Now if r < m,
then by Lemma 2.13, v is a closed global geodesic.

Thus, we are reduced to the case where r = 7 = 1sys(X). We have
a1, B € geod(X), with enda; = end §y = (z,y), and we know that a; U
—, is locally geodesic at y, and hence everywhere except possibly at . For
t € (0,1), consider the path (a|[t, 1])U—(B][1-¢,1}). Thisis a local geodesic
of length 7, and so by Lemma 2.16, we have d(a(t), 3(1—1)) = v. In other
words, we have shown that d(y(u},y(«')) = = for all pairs of antipodal
ponts u, v’ € S'. Thus, by Lemma 2.12, 7 is a global geodesic. &

Corollary 2.18 : If @ and 3 are distinct local geodesics with enda =
end 3, then sys(X) < length a + length 3. &
Also, in the case where 3 is a constant path, we obtain:
Corollary 2.19 : Ifo is a non-constant local geodesic with both endpomts
equal, then sys(X) < length . Moreover, if sys(X) = lengtha, then « Is a
closed global geodesic. &
Of particular interest is the case of a closed local geodesic.
Definition : A map v : 81 — X is a closed local geodesic if for some path-
metric o on S?, and some i > 0, we have d(v(t), v(u)) = a(f, u) whenever
t,u € S with o(t,u) < 7.

Thus ¥ : (S*, ¢) — (X, d) is distance non-increasing.

16
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As a special case of Corollary 2.19, we see that any closed local geodesic
+ must have length at least sys(X). If length v = sys(X), then 7 is a global
geodesic,

“We conclude this chapter by formulating, more carefully, the local con-
vexity property alluded to earlier. We need not assume that X is compact
for this.

Suppose that X is I-CAT(1), and r < {/2. Suppose x € X and y,2 €
N(z,r). Thus d(y,z) < {, and so there is a well-defined triangle T =
([x ~ y), [y — z],[z — z]) with vertices x,y, z. Now perim(T) < [, and so,
applying the CAT(1) property, we see that the geodesic [y — z] maps into
N(z,r). We express this by saying:

Lemma 2.20 : Ifr < /2, then N(x,r) Is convex. &

Thus, the metric d restricted to N(z,r) is a path-metric on N(z,r), and so
N(z,r) is intrinsically a (globally) CAT(1)-space.

3. Spaces of loops.

3.1. Introduction.

Suppose X is a connected, complete, locally compact, and locally
CAT(1). By a loop in X, we mean any continuous map of the circle $* into
X. We write Q(X) for the space of all loops with the sup-norm metric,
dsup. Thus, deyp(e, ) = max{d(a(t),F(t)) | t € S'}. Given y € X),
we write lengthy € [0, 00] for the rectifiable length of 4. Thus, the map
length : (X) - [0, 00] is lower semi-continuous. Given r € [0,c0), we
write

UX,r) = {y € HX) |lengthy < r}.

We say that v is rectifiable if lengthy < oo. (Note that we are not making
any assumptions about the parameterisation of a rectifiable loop.)
Suppose o, .€ Q{X,r). We say that o and 3 are r-homotopic if they
lie in the same path-connected component of £2(X,r). Note that there
is precisely one component containing all the constant loops in X. Of
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particular interest is the case r = 27. If &, 8 € (X, 27), we write ¢ ~
to mean that they are (27)-homotopic. We write & ~ 0, and say that o is
shrinkable if it is (27)-homotopic to a constant loop. ‘We write o # 0 for
not o ~ 0.

The property of shrinkability seems a natural one in this context. We
shall show:

Theorem 3.1.1 : Suppose z,y € X, and that aj, 0,03 : [0,1] — X
be three paths joining z to y. Let 4 = oy U —wig2 € Q(X). Suppose
lengthy; < 27 for all i € {1,2,3}. If v, ~ 0 and 3 ~ 0 then y3 ~ .

Theorem 3.1.2 : Suppose T = (a, 3,7) is a triangle in X, with perim(T)
< 2r; so that T(T) = aUBUY € Q(X, 2r). IfT(T) ~ 0, then T is CAT(1).

Theorem 3.1.3 : Suppose o, 3 are two local geodesics joining the same
pair of points, with length a+length 8 < 2x; so thaty = aU—8 € Q(X, 2m).
Then v 0.

An immediate corallary of Theorem 3.1.3 is:

Proposition 3.1.4 : If y € Q(X,27) is a closed local geodesic, then
7 #0.

The definition of r-homotopy we have given is quite weak. Note that
the map [y — lengthy] : (X) — [0,00] is not upper-semicontinuous.
Thus, for example, an r-homotopy [t — 7¢] : [0, 1] — Q(X, r) of two loops
might takes us through loops 7: of length arbitrarily close to r.

We define the stronger notion of monotone homotopy:

Definition : Suppose a,3 € 2(X). We say that o is monotonically
homotopic to 3, and write & \, A if there is a path [t — 7] : [0,1] — Q(X),
such that [t ~— length ] : {0,1] — [0, 0] 18 continuous, and length v, <
length e for all &.

Thus if o \, 3, then length 8 < length or. If length § < oo, we shall de-
mand that length+; < oo for all £ > 0. Note that it is easy to lengthen any
intermediate loop 7, for example by folding it back on itself, and so there is
no loss is assuming that the map [t =+ length+,] is monotonically decreas-
ing, thus justifying the termnology. Most of the monotone homotopies we
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construct will have this property anyway.
Ciearly, 7 \, 0 implies v ~ 0. In fact we shall show:

Theorem 3.1.5 : Suppose v € Q(X,2n). Then vy ~ 0 if and only if
TNO.

In the case where X is compact, we will have in addition:

Theorem 3.1.6 : Suppose X is compact, and v € Q(X). Then either
1N\, 0, or else v N\, o where « is a closed local geodesic.

Putting this together with Corollary 2.19, we get:

Corollary 3.1.7 : Suppose X is compact. If y € (X} and lengthy <
sys(X), then vy ~ 0.

These results give us an alternative definition of the systole of X, as
the minimum of 27 and the minimum length of a non-shrinkable loop in
Q(X,2n). This will also serve as a definition of systole in the case where
X is only locally compact (provided we replace “minimum” by “infinum”).
In this case (by Theorem 3.1.3), if r = sys{X) > 0, then X is r-CAT(1)
In particular, X is globally CAT(1) if and only if sys(X) = 2#. This is the
same as saying that Q(X, 2x) is path-connected.

There is some degree of arbitrariness in the formulations of r-homotopy
and monotone homotopy we have chosen. For example, it would perhaps
be more natural to keep track of parameterisations by demanding that all
loops and homotopies be lipshitz. It turns out that this approach would
lead to essentially the same notions, as we shall observe in Section 3.5.
Similarly, we could restrict attention to smooth maps in the riemannian
category, or to piecewise linear maps in the confext euclidean polyhedral
complexes,

In order to prove the results stated in this section, we shall reduce
ourselves to considering polygonal loops to which we can apply the “Birkhoff
curve-shortenning process”. If X 1s I-CAT(1), and we start with a polygonal
(i.e. piecewise geodesic) loop, each of whose geodesic segments has length
less than {, then we can attempt to shorten it by cyclically joining the
midpoints of each segment. The Birkhoff process is the iteration of this
procedure. If X is compact, then some subsequence must converge, either
to a point, or to a closed local geodesic. If the length of the the original
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loop is < 27, then we will get convergence to a point if and only if this loop
is shrinkable.

It seems to be an interesting question as to when the Birkhoff pro-
cess converges without having to pass to a subsequence. We give a brief
discussion of this in Section 3.7. It is not relevant to the rest of the paper.

In proving the resulis given here, it will be convenient to deal first
with the case where X is {-CAT(1) for some { > 0 (i.e. “uniformly locally
CAT(1)"). We describe the Birkhoff process in Section 3.3, and give com-
plete proofs in Section 3.4. In Section 3.6, we describe how to deal with the
case where X is not IF-CAT(1). We begin, in Section 3.2, with a discussion
of cartesian products of CAT(1) spaces, which provides a convenient means
of overcoming a technical difficulty in Section 3.3.

3.2. Cartesian products.

Suppose (X1,d1) and {X3,d;) are complete locally compact path-
metric spaces. Then so is (X, d), where X = X x X3 and d{(x1,22), (1,

y2)) = V{di(z1,11)? + dalz2, 12)?).

Proposition 3.2.1 : If (X;,d) and (Xa,da) are r-CAT(1), then so 1s
(X,d)

Proof : Let p; : X1 x X2 — X; be projection to X;. Suppose T = (a,3,7)
is a triangle in X with perim(7) < 2r. Thus T; = (pica,pi o B,pi o 7v)
is a triangle in X;. Let T/ = (a!,B!,7!) be a comparison triangle in 5*
for T;. Let o = [t — (af(t),a5(?))] : {0,1] — 5% x 5% Similarly define
A and ¥, so that T' = (&, 8',¥') is a triangle in S% x S%. Let p be the
product riemannian metric on S% x $*, With respect to this metric, we have
perim(T") = perim(T"} < 2r, and the natural map (I'(T"), d) — (I(T”), p)
is distance non-increasing. Now (52 x S2, p) is a riemannian manifold of
curvature < —1, with no geodesics of length less that 2, and is therefore
7-CAT(1). Thus, 7" satisfies CAT(1), and so therefore does T &

3.3. Polygonal curve shortening.
In this section, we assume that X is locally compact, and I-CAT(1) for
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some { > ().
We are interested in polygonal loops, which we can think of formally as

cyclically ordered n-tuples of points of X. We describe the Birkhoff process
of shortennihg such loops. We are principally interested in the question of
when the Birkhoff process converges.to a point.

We write C(X) = X™ for the set of n-tuples z = (21,%z,...,%q),
which we think of as cyclically ordered so that 2,4; = #;. Throughout
this section, n will be constant, and so wili not feature in our notation. We
define the maps M, L, E : C(X) —{0,00) by

EAW = Bm,un.mnﬁa.._am.fwv _ i=1,..., 3@
Liz) = ) d(wi,%i41)

i=1
\@Amv = M:U&A&p._a_.+pvm.

i=}1
Thus we may think of M(z), L(z) and E(g), as the “mesh”, “length”
and “energy” of z respectively. Note that if M(z) < [, then we may join
consecutive points z; and ;41 by a unique geodesic in X, thus justifying
our interpretation of ¢ as a polygonal loop.
Lemuma 3.3.1 : For all z € C(X), we have
E(z) < L(z)® < nE(g).
¢

We say that z 15 constant if g = (2,%,...,z) for some z € X. Thus, g is
constant if and only if L{z) = 0, or if and only if E(z) = 0.
Given r > 0, let
CX,ry={zeC(X)] I{z) <r}.
Given h > 0, let
Cn(X) = {z € C(X) | M(z) < h}.
Let Ch(X,r) = Cx(X) N C(X,r). Each of these sets is open in C(X).
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We define the Birkhoff process on Ch{X), where h < L.

Suppose z,y € X with d(z,y) < I. Let mid(z,y) be the midpoint of
the unique geodesic [z — y] joining z to y. Given z € Cp(X), we write
I'(z) for the piecewise geodesic loop {Ji.;[#: — #it1], which we think of
as a map S — X parameterised proportionately to arc-length on each
segment (see Section 3.4). We define f(z) € Cy(X) by

f(z) = (mid(zq, zo), mid(za, 23), ..., mid(zn, z1)).
Thus, by Lemma. 2.10, we have:
Lemma 3.3.2 : The map f : Cy(X) — Cn(X) is continuous. &
The following are easily verified.

Lemma 3.3.3 : Ifz € Ch(X), then M(f(z)) < M(z), L(f(2)) < L(z)
and E(f(z)) < E(z). ¢

Lemma 3.3.4 : The following are equivalent:

(1) f(z) =z

(2) E(f(z)) = E(z),

ﬂ.wv &_HH:HI.HV = &A&T.ﬁu.+; for all i,j € .:.Mv..._.:w. and H_A.ﬁ.v 1s either
constant or a closed local geodesic. &

The idea of the Birkhoff process is to iterate the map f, in the hope
that we converge on a point or a closed local geodesic. Clearly, if f were
compact, then at least some subsequence must converge. For the moment,
we are interested in convergence to a point.

Suppose £ € X. By Lemma 3.3.3, the limits L®(z) = lim,_ o L{f"
(z)) and E%®(z) = limy—.oo E(f"(2)) must exist. By the inequality, Lemma
3.3.1, we have that L°°(z) = 0 if and only if E°(z) = 0. We write

CR(X) = {z € Cu(X) | L®(z) = 0}.

Suppose that r < {/2 and £ = (21, 22, ...,2,) € Ci(X,27). By Lemma
2.20, the ball N(zy,r) is compact and convex, and thus intinsically CAT(1)
We see, by induction, that I'(f*(z)) € N(#1,r) for all £ € N. Moreover,
some subsequence f*(z) must converge on some y € Cy(X,7) Clearly,
E(f(y)) = E(y) and L(y) < {. Sinee X contains no closed geodesic of
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length < 27, Lemma 3.3.4 tells us that y must be constant. It follows that
L™ (2) and so z € C{(X). From this we conclude:

Lemma 3.3.5: Suppose 2 € Cy(X). Then, z € C2(X) if and only if for
some m € N we have L(f™(z)) < L O

Note that if z € C§(X), we may apply the above argument with r
arbitrarily small. In other words, we can find balls N{a;, r;) with r; — 0 so
that T(f*(2)) € N(ai,r;) for all sufficiently large k (depending on i). From
this we see that the sequence I'(f"(z)) must converge to a point (without
passing to a subsequence). Thus:

Lemma 3.3.6 : Ifz € C2(X), then f*(z) converges to a constant cycle
in C}(X). &

We have no direct use for Lemma 3.3.6 in this section. We discuss the
matter some more in Section 3.7.
As a corollary of Lemma 3.3.5, we have:

Lemma 3.3.7 : C§(X) is open in Cp(X).

Proof : If x € C?(X), then there is some m such that L(f™(z)) < I/2.
Now f™ is continuous (Lemma 3.3.2), and so for all y € Cy,(X) sufficiently

close to x, we have L(f™(y)) < I. Thus, by Lemma 3.3.5, yeCHX). ¢

A trivial example of the Birkhoff process is obtained by starting with
a regular n-gon in the euclidean plane E2. Thus, identifying E? with the
complex plane, we set 2 = (z1,...,%a) = (r,re?™/", ..., relmi—{ny g0
that r is the circumradius of the polygon. The Birkhoff process shrinks
the polygon homothetically (on even iterations) to its centre. (Figure 3a.)
Thus f*(z) = (¢16™%/7 cos(wk/n), ..., 2ne™ k™ cos(mk[n)).

We see from Lemma 3.3.7, that CP(X,2n) is open m Ci(X,27). We
aim to prove that it is also closed in Ch(X,27). Clearly, it is enough to
show that C2(X,r) is closed in C4(X,r) for all r < 27. This would follow
by a similar argument to Lemma 3.3.7, provided we can achieve some kind
of uniformity in the integer m 1nvolved in the proof. Specifically, we aim

to show:
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Proposition 3.3.8 : Given 0 < rg < r < 2m, there is some m € N such
that if z € C)(X,r), then L{f™(z)) < 7.

Closedness (Theorem 3.3.15) then follows by Lemmas 3.3.2 and 3.3.5
and Proposition 3.3.8.

The idea of the proof of Proposition 3.3.8 is to show that, at each stage,
the energy must decrease by a definite amount, depending {continuously)
only on the length of the curve at that stage:

Lemma 3.3.9 : There is a continuous function A : (0,21) — (0,00)
such that if z € C(X,2n), then E(f(z)) < E(z) — ML(z)).

(Here A depends on n but not on k) We must have A(t) — 0 as
t — 0 and as ¢ — 2r. However, on any closed interval [ro,r] C (0, 27),
the function ! will be bounded below by some constant § > 0. Thus, if
z € C(X,r), then E(z) < L{z)?* < r?, and so for m > r? /8, we have that
L(z) < rp. (Otherwise, applying Lemma 3.3.9 inductively, we find that
E(f™(z)) < v* — mé < 0.) This shows that Proposition 3.3.8 follows from
Lemma 3.3.9

For the proof of Lemma 3.3.9, we need some general lemmas:

Lemma 3.3.10 : For all € > 0, there exists 5 > 0 such that the following
holds.

Suppose (Y, p) is a 7-CAT(1) space. If v : S§' — X Is a rectifiable
loop of length at most 2(r —¢), then there is some a € X such that wSYH ¢
.ZAP .m. - dv.

Proof : Given ¢ > 0, choose 1 as in Lemma 1.3. Choose t,u € S* so as
to divide v into two subarcs of length at most 7 — ¢. Let y = () and
z = y(u). Thus d(y,z) < 7 —¢. Let a be the midpoint of the geodesic
[y — z]. Now, if z € 7(S'), then d(y,2) + d(z,2) £ 7 — ¢, and so the
triangle T = ([& — y),[y — 2],[z — #]) has perim(T) < 2(x —¢). Thus T
is CAT(1), and applying Lemma 1.3, we have d{a,2) < F — 1 $

Lemma 3.3.11 :  Given n,pu > 0 with g < 27, then there 1s some § > 0
such that the following holds.

Suppose (Y, p) 1s 1-CAT(1), and that a,z,y,z € Y satisfy p(a,x) <
2 —, pla,y) < pla,z), pla, z) < pla,z) and p(z,2) = p(,y) = p. Then,
ply,z) S 2p— 8.
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Proof : We construct a quadrilateral @ = (e, ¢/, %, 2') in (5%, d1) so that
(¢/,2',2') and (a’,2', ') are comparison triangles for {a,#,2) and (e, 2, v)
lying on opposite sides of the geodesic [a’ — z’]. Since perim(d’, z', ') < =,
and dy(a’, y') < dea’,2’), we see that a’@’y’ < 7/2. Similarly, a’2'2' < 7/2,
and so £(@,z") < . In fact, given that di(2', ¥} = d1(2',2") = p, we see
that £(Q,z') is bounded away from # by an amount depending on 77 and
#t. Thus there js some § > 0, such that the distance between y and 2’ (in
the induced path-metric on R(Q)) is at most 2u — 6. The result follows by
applying CAT(1} to the triangles (a, z,y) and (a, 2, 2). &

Note that in the above lemmas, n can be assumed to depend continu-
ously on ¢, and é to depend continuously on n and p.

In the proof of Lemima 3.3.9, we need to use a particular topological
cellulation of the disc IJ. Thus, given m,n € N, we define a cellulation
G = ((m, m) of the disc, as shown in Figure 3b, form =3 and n =5 The
label ij refers to the vertex v(¢, §) of G.

The cellulation G(m,n) may be described more formally in terms of
the Birkhoff process applied to a regular n-gon in the euclidean plane. Let
v € C(E?) be the cycle v = (¥(0,1),...,v(0,n)) of vertices of a regular
n-gon. Fori € {1,...,m}, let fi(v) = (v(i,1),...,v(i,n)) € C(E?), where
fo : C(E?*) ~— C(E?) 1s Birkhoff curve shortening on E?, which we have
referred to earlier. We shall write V(i) = {v({,j) | =1,...,m}. We can
identify the disc D with the convex hull of V(0).

For (i,7) € {0,...,m— 1} x {1,...,n}, we write T(4, §) for the trian-
gular convex hull of {v(i, 7}, v(i + 1,7 - 1),v(i +1,/)}. For j€{3,...,n},
we write T'(m, §) for the convex huil of {v(m,1),v(m, j — 1),v(m, j)}. We
see that there is a well-defined cellulation G{(m, n) of the disc D, with ver-
tex set V = {J~; V(#), and with the set of 2-cells equal to {T(3,7)}. For
each triangular 2-cell T', we refer to its set of extreme points, V{T'}, the
principal vertices of T. We write Fi(G) = V for the set of i-cells of G.
Thus Fo(G) = V and Fy(G) = {T,5)}. Let Ki(G) = JF(G) € D be
the 1-skeleton of G.

We now turn to the proof of Lemma 3.3.9. Suppose z € Cp(X, 2r).
There is some m € N such that L{f™(z)) < 21. Let G = G(m,n}. For
i € {0,...,m}, write fi(z) = (z(i,1),...,2(i,n)). We define a map ¢ :
Fo(G) — X by setting g(v(i, 7)) = (4, ).

We want to use the map ¢ to define a path-metric p on the disc D.
Suppose 1' € Fya(() has principal vertices V(T) = {v1,v2,v3}. For each
such 7', we may take a spherical comparison triangle for (gvi,gve, gva).
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The idea then is to glue these spherical triangles together as dictated by
the combinatorics of (3, thus obtaining a singular spherical metric on D.
Unfortunately, we run into the technical problem that some of the com-
parison triangles may be degenerate. For the moment we shall define this
problem away, and worry about how to deal with-the degenerate case later.
Let us assume that:

(*) For all T € F3{G), and i € {1,2,3}, we have that d(gv:, gvi+2) <
d(gvi, gvig1) + d(gviy1, gviya) where V(T) = {vi, va, va}.

In other words, all the triangle inequalities are strict, so we can construct a
non-degenerate comparison triangle 7" for 7' in S%. Let R(T") be the small
triangular region bounded by T' (Section 1). Now all the pieces {R(1") |
T € F3(G}} fit together nicely to give a singular spherical path-metric p on
D. The boundary 3D is a piecewise geodesic loop with vertices VN JD =
V{0) U V(1). At each interior vertex of V\@D, we have a cone singularity.
If v € V N8D, we write £(§D,v) for the interior angle of 80 at v. If
v € V\8D, we write £(D,v) for the cone angle at v.

We may extend g : V = Fy(G) — X to a map of the l-skeleton g :
K1(G) — X, by mapping each edge of Fi{() lineatly to the corresponding
geodesic segment in X . Thus, the boundary, T, of each triangle T' € F3(G)
gets mapped to a triangle of perimeter less than A < !. Thus, applying
CAT(1), we see that g|(8T, p) — (X, d) is distance non-increasing. Since
p is a path-metric on DD, we obtain:

Lemma 3.3.12 : The map g ' (Ki(G),p) — (X, d) is distance non-
Increasing. ¢

We now claim’
Lemma 3.3.13 : (D, p) 1s x-CAT(1).

Proof : First, we show that (D, p) is locally CAT(1). Secondly, we show
that (12, p) contains no simple closed geodesic. The result then follows by
Theorem 2.15.

For the first part, we need to know that each interior cone-angle,
L(D,v), for v € V\AD, is at least 2x. (See the discussion of polyhe-
dral complexes in the introduction). This is in turn equivalent to saying
that each such vertex lies in the interior of a p-geodesic segment. Suppose
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v € V\8D, so that v = v(i,j) for some (i,7) € {2,...,m} x {1,...,n}.
Let vy = v(i ~1,7) and v = v{i — 1,5 + 1). Thus v; and v, are adjacent
to v in K1{G), and gv is the midpoint of gv; and gve. Applying Lemma
3.3.12, we find that p(vy,ve) > d(gvr,guvz) = d(gv1,gv) + d{gv,gv2) >
p(v1,v) + p(v,v2). Thus, v lies in the interior of the p-geodesic segment
joining vy to vy, and so £(D,v) > 2r as required.

For the second part, suppose, for contradiction that ¥ C D is a simple
closed geodesic. Thus, ¥ bounds an open disc Dy € D. From the construc-
tion, it is clear by induction that V' C D\ Dy. It follows that v lies inside
a spherical triangular region corresponding to some T' € F3((G) which is
impossible. &

Note that the first part of the above proof also works to show that
each vertex in V(1) lies in the interior of a p-geodesic segment. We deduce:

Lemma 3.3.14 : Ifv € V(1), then L(6D,v) >« &

From the construction, if v € V(0), then £(8D,v) < .

We recall our objective of showing that E(z) — E{f(z)) is bounded
below by some positive continuous function of L{x)

Set r = 1L(z) and A = E(z) — E(f(z)) 2 0 We can thus, with-
out loss of generality, imagine A to be small. This implies that for each
t € {l,...,n}, d(x;,zj41) 18 close to 2r/n. To be more precise, set & =
d(z;, zj41) = ZNSLV.@B;. +1)). Then E(z) = 3.7, € and E(f(2)) <
Sy (B55) Thus, $71 (6541~ )° < 44 and s0 641 =& < 2VA
for all j. Since Muwuu ¢ = 2r, we deduce that | ~ 2| < nV/A for all J. In
particular, if A < r?/n*, then & > r/n.

Let € = m — r > 0. Let n be the constant of Lemma 3.3.10 (given ¢).
Let p = min(r/2n,n) and let § be the constant of Lemma 3.3.11 (given
n and p). We have that length(dD,p) = L(g) = 2r = 2(x — ¢€), and so,
by Lemma 3.3.10, there is some a € D such that p(a,y) < 7 — g for all
y € 8D. Let b € 8D be a point of 8D furthest from a. Now, dD 18 a
piecewise geodesic loop with vertices VNID = V(0)UV (1). Since (D, p) is
m-CAT(1), we see easily that b must be the a vertex. In fact, using Lemma
3.3.14, we must have b € V(0). In other words, b = v(0,k + 1) for some
ke{l,...,n}

Let vy = v(1,k) and vy = v(1,k+ 1). Thus v,v2 € V(1) are adjacent
vertices to b, Now, p(b,v1) = p(b,v2) = & /2 = r/2n > p. Similarly,

27

Locally CAT(1) spaces

p(b,v2) > p. Let gy and yz be points on the geodesic segments [b, v1] and
[b, v3] respectively, such that p(b, 1) = p(b,y2) = p. Now [bjv ] U [b,ve) C
dD, so p(a,yi) < pla,b) < 7—n. Also u < 27, and so by Lemma 3.3.11, we
have p(y1, y2) < 2p—§. We deduce that p(v1,v2) < p(b,v1) + p(b,vz) -6 =
1

5(€p + Ery1) — 6.

If we set ; = p(v(1,7),v(1,5 + 1)) = d(=(1,7),2(1,j + 1)), we obtain
E(f(z)) = Mwnm ﬁw We know that ¢; < .W.Amg + &j41) for-all j, and that
Gk < 3(&x + €xq1) — 6. Thus A= E(z) - B(f(2)) = 11 & —~ =1 GF 2
3 a1 (€ = &1 )P 86k HErgr) ~ 87 2> 38(Ec +Epp1) 2 16(2r/n) = b6r/n.

We derived this inequality under the assumption that A < r2/n?. In
other words, either A > ér/n or else A > r2/n*. So we have shown that
A > X = min(ér/n,r?/n*). We see from Lemmas 3.3.10 and 3.3.11 that §,
and hence X, can be assumed to vary continuously in r = L(z).

We have thus proven Lemma 3.3.9 under the assumption of strict tri-
angle inequalities (*).

To deal with the general case, the idea i3 to take a cartesian product
with a small regular euclidean polygon. We described earlier the Birkhoff
process applied to such a polygon. In particular, we see that it must satisfy
(*).

Suppose Y is a m-CAT(1) space. Then Lemma 3.2.1 tells us that X xY
is I-CAT(1). If 2 = (25,...,%5) € Cp(X) and y = (y1,..., %) € Cp(Y),
we write (z,y) € Chpn(X x Y) for the cyele ((21,41),...,(2n,¥n)). We
see that f(z,y) = (f(z), f(y)), where f is used to represent Birkhoff curve
shortening on X, Y and X x Y. In particular, if z € C5(X )} and y € CJ(Y),
then (z, y) € Chp (X x Y).

Now take Y = E? to be the euclidean plane, and let y € Cy{E?) be
a regular n-gon of small circumradius ¢ > 0. Then (z,y) € C},, (X x E?)
satisfies condition (*). Thus, we have that

E(z,y) — E(f(2), f(y) 2 ALz, »)-

We now let € — 0, and deduce in the limit that
E(z) — E(f(2)) 2 AML(z)).

This finally concludes the proof of Lemma 3.3.9, and thus also of Propo-
sition 3.3.8.
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Theorem 3.3.15 : Suppose X is locally compact and {-CAT(1) for some
1> 0. Ifh < I, then CY(X,2n) is open and closed in Cx(X,27).

Proof : By definition, CJ(X,27) = CH(X) N Cy(X,2r), so Lemma 3.3.7
tells us that C(X,2n) is open in Ch(X,27).

Suppose, then, that the sequence g; € C§(X,27) converges to some
# € Cu(X,27). Since L : C(X) — [0,00)} is continuous, we can assume
that z; € C)(X,r) for some fixed r < 2x. By Proposition 3.3.8, there
is some m € N such that L{f™(z;)) < I/2 for all i. Since f and L are
continuous, it follows that L(f™(z)) < /2 < !, and so, by Lemma 3.3.5,
@ € C3(X,2n). This shows that C(X,2) is closed in Cx(X,27). o

3.4. Shrinkable loops.

As in the previous section, we suppose that X is locally compact and
I-CAT(1). Under this assumption, we shall prove the results 3.1.1-3.1.5
described in Section 3.1. (We shall describe how to deal with general locally
CAT(1) spaces in Section 3.6.) In the case where X is compact, we deduce
3.1.6 and 3.1.7.

In Section 3.1, we defined Q(X) as the space of loops S — X, and
(X, r) as the subspace of rectifiable loops of length strictly less than r. We
defined the equivalence relation ~ of (27)-homotopy on (X, 27), and the
transitive relation \, of monotone homotopy on €2(X). In these definitions,
we have made only topological hypotheses. In Section 3.5, we show that we
can restrict attention to lipshitz maps and homotopies to the same effect.

Note that the definition of monotone homotopy also makes sense for
paths with fixed endpoints. Thus, if o, 8 : [0,1] — X both join z to y
in X, then we write o \, @ if there is a homotopy [t — 7:] with y0 = a,
v = B and 7.(0) = ¢ and 7,(1) = y for all ¢ and such that [t +- length v:]
is continuous and monotonically decreasing,.

Lemma 3.4.1 : Suppose z,y,z € X with d(z,y) < I, d(y,2) <! and
d(z,z) < . Then [z — y}U [y — 2] \, [2 — 2].

Proof : Let v; = [z — S(t)]U (8][t, 1]). &
Suppose z = (z1,.. . &) € Ch(X), where h < I (Section 3.3). We
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write I'(z) for the piecewise geodesic loop obtained by joining together the
segments [z; — ®i41] for i = 1,...,n. To be more precise, we divide
S into n equal segments I; (with respect to the standard path-metric
on S1), and map I linearly onto the image of {z; — @i41]. In this way
I': Cp(X) — Q(X) is continuous.

We draw the following corollaries to Lemma 3.4.1.

Lemma 3.4.2 : Suppose v € Q{X). Suppose t1,...,1, € S divide St
into n segments Jy, ..., J, such that length(y|J;) <1 for alli € {1,...,n}.
Then v \, T(y(t1), - -+, 7(s))-

Proof : Choose any homeomorphism ¢ : R/nZ — 5t such that ¢(i) = &;.
Given r € N, let z, = (v 0 ¢(35), 7 od(&),...,r0¢ muﬂﬂzvv Thus z,. is a
cycle of 2'm points of X, with M(z,) < | and M(z,) — 0 as r — o0
Applying Lemma 3.4.1, we see that I'(z,,,) \\ I'(z,) for all r. Also, since
#([0, n] N Z{3]) is dense in S!, we see that [(z,) tends to v m Q(X) as
r — oc. We thus split the interval {0,1] into subintervals {57, 2] and
string together these monotone homotopies so as to obtain a monotone
homotopy [t +— ¥} with v3/5r = T'(z,) and 10 = 7. We conclude that

v N\ Tzg) = T(v(t1), - -, 7(tn)) ¢

Let f: Ch(X) — Ca(X) be the Birkhoff curve shortening map. The
following is immediate from Lemma 3.4.1.

Lemma 3.4.3 : Ifz € Cy(X), then T'{z) \, T'(f(2))- ¢
Lemma 3.4.4 : Ifz € Cy(X) with L{z) < 21, then I'(z) \, 0.

Proof : We have d(zp, ;) <! for all i. By Lemma 3.4.1, I'(z1,..., #i41)
D(zi,...,2) for all i € {1,...,n — 1}. Thus, by induction, I'{z) \, 0 &

Lemma 3.4.5 : Ifz € C)(X), then I'(z) "\ C.

Proof : By the definition of CP(X), there is some m € N such that
L(f™(z)) < 2. By Lemmas 3.4.3 and 3.4.4, we have I'(z) \, I'(f/™(2))
0. ¢

We next turn to homotopies. We want to relate r-homotopies in
Q(X,r) to connectedness in Cp(X,r). We are really only interested in
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the case r = 2. Let o be the standard path-metric 5.

Lemma 3.4.6 : Suppose o, B € Q(X, 27r) and o ~ 3. Then, there is some
§~> 0 such that if uy,...,us € S! divide S into segments of o-length < 4,
then (afuy),...,e(u,)) and (B(u1),..., H(un)) are connected by a path in
Cu(X, 27).

Proof : Let [t — %] :{0,1] — Q(X, 27) be the homotopy joining « to .
By compactness, there is some § > 0, such that if u,u’ € ST with o(u, u') <
8, then d(7y:(u), :(u")) < h for all ¢ € [0,1]. Thus if uy, ..., us cut 51 into
segments of length at most §, we have that 2(t) = (n(u1),... vi{un)) €
Cih(X). Also L(z(t)) < length(y;) < 2x. Thus [t — z({)] gives the desired
path 1 Cr(X,27). ¢

Lemma 3.4.7 : Suppose v € Q(X,2x) and v ~ 0. Then there is some
§ > 0 such that if uy,...,u, € S* divide S Into segments of o-length at
most 8, then (v(uy),...,7(us)) € CH{X,27).

Proof : Apply Lemma 3.4.6, with & = and § a constant path. We see
that @ = (7(u1),...,7(ua)) 19 connected to a constant cycle by a path in
Ci(X,2r). Now all constant paths lie in C(X, 27}, and CR(X,27) 15 open
and closed in C,(X,27) (Theorem 3.3.15). Thus 2 € C}{X,27). &

We can now deduce theorem 3.1.5, namely if y € (X, 27) and v ~ 0,
then v N, 0.

Proof of Theorem 3.1.5 : Suppose v € (X,27) and v ~ 0. Let 8
be as given by Lemma 3.4.7. Let uy,...,un € ST divide 5! into segments
J; such that each has o-length at most §, and such that length(y|Ji) < A
for all i. Let £ = (y(w1),...,7(tun)) By Lemma 3.4.7,z € C(X,2x). By
Lemmas 3.4.2 and 3.4.5, we have v\, I'(z) \, 0 o

We can also give a direct proof of Proposition 3.1.4, namely if vy €
Q(X,2r) is a closed local geodesic, then y o 0.

Proof of Proposition 3.1.4 : Suppose 7y € Q(X,27) is a closed local
geodesic and that v ~ 0. Let & be as given by Lemma 3.4.7. We can find
u1,...,un € S dividing S* that the o-lengths of all the the J; are equal and
less than §, and such that length(ylJ;) € h. Let 2 = (y(u1), ..., 7(un))-
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We have g € CY{X,27) and [(z) = v. By Lemma 3.3.4, we see that
F(z) = &, and so z ¢ Cp(X,27). We deduce therefore that v 4 0. &

In the case where X is compact, we can also deduce Theorem 3.1.6,
namely if v € Q(X), then either ¥ \, 0, or else ¥ ™\, & where a is a closed
local geodesic.

Proof of Theorem 3.1.6 : Suppose X is compact, and v € Q(X). Let
uy, ..., Uy divide S into segments J; such that length(y|J;) < A for all
i. Let g = (7(u1),---,7(tn)) € Ca(X). By Lemma 3.4.2, y \, I'(g). If
z € CY(X), then by Lemma 3.4.5, we have I'(z) \ 0, and so v ~ 0.

Thus, we suppose that z € Cx(X)\C(X). Since X, is compact, some
subsequence of (f7(z))ren converges to some y € Ch(X). Thus E{(f(y)} =
E(y), and by Lemma 3.3.4, we have that I'(y) = a is a closed local geodesie.

Now for sufficiently large r, we can homotop I'(f"{z)) to «, passing
only ‘through loops of length length o -+ ¢, where € > 0 1s arbitrarily small.
For example, if f7(z) = z = (21,...,%a), let B = [z — %], and set
z(t) = (B1{#),...,Pn(f)). Then the map [t — L(z(t))} gives the desired
hometopy.

We can suppose that L(z) > L(f?"(z)) (otherwise I'(g) is already a
local geodesic). Now set € = L(z) — L{f**(z)) and choose r € N N [2n,00)
accordingly. Thus, by Lemma 3.4.3, we have I'(g) N\, I'{(f"(z)), and so
I(z) \ [(y) =a. Thus v\ e ¢

Corollary 3.1.7 now follows. If X is compact, and v € Q(X), with
lengthy < sys{X), then either v \, 0 or else v \, & with lengtha <
length~. But the latter case is impossible by Corollary 2.9.

We have still to prove Theorems 3.1.1-3.1.3 for X locally compact and
I-CAT(1) For these, we will need the following lemma.

Lemma 3.4.8 : Suppose z € C3(X,2x). Then there is a compact -
CAT(1) space (Y,p), and pomnts yi,...,va € Y such that p(yi,yis1) =
d(®s, %i41) for all i € {1,...,n}, and (i, y;) > d(ms, ;) for all 4,j €
{1,...,n}

m.u.ocm“Hﬁ_&mowmmEwmgmmwswmmmgbﬁﬂosTnv_armoosm&_..:nio:
Section 3.3 gives us a singular spherical metric p on the disc D, with
points #1,...,¥s € OD satisfying the conclusion of the lemma. (Here

i = v(0,1) €8D.)
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In the general situation, we take a product with a small regular eu-
clidean polygon to obtain a family of metrics {p(¢} | € > 0} on the disc D,
with the properties

d(zi, Tig1) < p() (Wi, vigr) < d(@i,wip1) +¢

and
d(zi,2;) < p()(ws, v5)

for all i,j € {1,...,n}. In this case, the space (Y, p} arises as a geometric
limit of the spaces (D, p(€)) as € — 0. Thus, (Y, p) is a spherical complex.

To make sense of this, note that the (D, p(¢)) are all singular spherical
metrics obtained from the same combinatorial complex G. Thus, each 2-cell
of G 18 a spherical triangle. As ¢ — 0, some of these 2-cells may degenerate
into geodesic segments or points. The remainder converge geometrically to
become the 2-cells of Y. We may describe the 1-skeleton K;(Y') as follows.
If ¢ > 7 > 0, there is a natural map (Ki(G),p(€)) — (K1(G),p(n))
which is linear on each edge. The metrics p(e) thus converge to a limiting
pseudometric p(0) on K1(G), so that (K(Y), p) is the hausdorffification of
(K1(G), p(0)).

Now, each vertex v in the O-skeleton Kp(Y) of Y is obtained by col-
lapsing some subcomplex, G(v) of G to a point. Now G(v) must be simply
connected (since any short simple closed curve in (D, p(¢)) bounds a small
disc). We consider two cases. If G(v) N 8D = 0, then the link of v in Y is
a circle. Moreover, this circle has length at least 2x. (To see this, consider
the boundary of a small uniform neighbourhood of G(v) in (D, p(¢)), which
we can take to be a circle. By Gauf-Bonnet, this circle must have total
turning at least 2w — 6(¢), where 8(¢) — ( as € — 0.) On the other hand, if
G(v)NAD # B, then the link of v in Y is a disjoint union of points and arcs.
Thus, in both cases, the link is 7-CAT(1), and so (Y, p) is locally CAT(1).

It remains to see that (Y,p) is 7-CAT(1). By Corollary 3.1.7, it is
enough to show that if v € Q(Y,2x), then ¥ ~ 0 in Y. However, this
follows easily, since we can approximate v by a loop, ¥ 1n (D, p(e)) of
p(e)-length less than 2w, Now 7' ~ 0 in (D, p(¢)), and we may use the
(27)-homotopy of ¥’ to 0 to construct one for ¥ &

Next we prove Theorem 3.1.2 when X is I-CAT(1). Suppose that T is
a triangle in X with perim(7) < 27 and with I'(T) ~ 0. Then we claim
that T 1s CAT(1).
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Proof of Theorem 3.1.2 : Suppose that T = (a,8,7;%,¢,2). We
choose points z3, . . ., £am, cyclically ordered on I'(T') = « U S U4, such that
d{xj, zi41) < h < .. mo_. all i, and such that z,, = 2, z2m = = and 23, = ¥.
Thus ¢ € Cx(X,27) and :aw =T(T). Now baESw 3.4.7 tells us that, pro-
vided we have subdivided I'(T") finely enough, we have z € C}(X, 2x). Thus
Lemma 3.4.8 gives us a m-CAT(1) space (Y,p), and points y1,...,¥m €
Y with d(x;,zip1) = p(yi,vi41) and d{az;,z;) < ply,y;) for all 4,5 €

{1,...,3m}. Now since the points zj, ..., 2, lie along the geodesic o in X,
we have p(yo, ¥m) = (20, 2m) = iy &H.lra,v =S olyi—1, %), w:m
so the points ¥, ..., ym lie along a geodesic & in Y. Similacly, ym, ..., y2m

lie along a geodesic m and Yom, .. ., ¥3m lie along a geodesic 7. Let T' be
the triangle (&, v in Y. Now perim(T) = vma_aaﬂv < 27, 80 we may
construct a comparison triangle 7" = (o', #,7) for T in (S2,dy). This is
also a comparison triangle for T, We have a sequence of points 2y, .. ., Zam
around ['(T") with d1 (2, 2i41) = d(2i, 2441) for all i, Since YV is w-CAT(1),
we have dy (2, 2;) < p(w, y;) for all 4, j, and so dy(2;, 2;) < d(z, #;). Since
the set {xy,...,23m } can be chosen to include any two given points of I'(T"),
we conclude that T is CAT(1). ¢

Now suppose that a, 8 : [0, 1] — X are local geodesics with the same
endpoints z and ¥, and with length o + length 8 < 27, Thus y = alU g &
(X,2m). We claim that if ¥ ~ 0, then & = #. This is Theorem 3.1.3, in
the case where X is [-CAT(1).

Proof of Theorem 3.1.3 : Given a natural number m sufficiently
large, we can take points zi,...,%ym along @, and Tm,...,%2m along 8
so that d(z,zi41) = p for all i € {1,...,2m}, and d(zi-1,®i41) = 2p
for all i € {1,...,2m}\{m,2m}, were u < h i3 some constant. Thus
z = (21,...,22m) € Cp(X,27) and I'(z) = 7. By Lemma 3.4.7, we can
suppose that g € C)(X,2x). Let Y,p,11,...,¥m be as given by Lemma
3.48. Thus _c@_:.c.tv p for all 4, and p(yi—1,%i4+1) = 2p provided
1 # m,2m. Thus, the vo::..m Yo,-- -, Ym lie along a local geodesic @ in Y,
and ¥m, .-, ¥2m _5 along a local mmommm_o 3. Now length & + length 8 =
length o + length @ < 27, and Y is 7-CAT(1). Thus by Corollary 2.18, we
have & = 3. Thus y; = yam- for all {, and so ; = 2am~i. Thusa =g &

In Section 3.3, we defined the Birkhofl process for polygonal loops. We
can also define a Birkhoff process for piecewise geodesic paths connecting
two fixed points z,y € X. Suppose £ = (zp,...,Zs) is a sequence of points
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of X with z¢ = , zn = ¥, and M(z) = max{d(z, zig1)|i=0,... 01} <
h < 1. Let fo(z) = (z,2),),...,%),,2,) where 2} = mid(zi_y,%;) for
i€ {l,...,n}. Let

fio ..eoﬁmv = (=, Haaﬁa__? Hmvvamﬁam_ H_.mv, .- J—,am:a“.lt H“_Ymc.

Note that M(fi o fo(z)) < M{z) < h. Thus we may iterate fio fo. Since all
metric balls in X are compact {Lemma 2.1), we see that some subsequence
(fi © fo)"i(z) must converge on some y = (¥0, .-+, ¥n), With M(y) < h. It’s
not hard to see (c.f. Lemma 3.3.4) that f; o fo{y) = y, and that the points
Yo, ..., Yn are equally spaced along a Jocal mooa‘mmwo « joining = to y.

Now suppose that « : [0,1] — X is any path joining points z and y in
X. We can choose 0 = up < ug < ++» < tp = 1 80 that length(y|fui-1, w])
<hforalli=1,...,n. Letz = (v(wa), .- .,7(un)) and let y and a be as
in the previous paragraph As in the proof of Theorem 3.1.6, we see that

¥\, @. We have shown:

Lemma 3.4.9 : Suppose v :[0,1] — X joinsx toy in X Then there Is
a local geodesic a joining  to y such that vy N . &

We may use this to deduce Theorem 3.1.1. Suppose o, 2, g are paths
joining z to y, and let v = a1 U —viq2 € Q(X). Suppose 11,72,7s €
Q(X,2n) and that 7, ~ 0 and v2 ~ 0. Then we claim that y3 ~ 0.

Proof of Theorem 3.1.1 : Let a;, v be as above. By Lemma 3.4.9,
there are local geodesics o}, ah, o} joining z to y such that «; N af. Let
vl = al, U=aj, Then %\ +} for each i. If 71 ~ 0 and 72 ~ 0, then
¥, ~ 0 and 74 ~ 0. By Theorem 3.1.3, we see that o} = o and af = o}
Thus o, = o} and so 74 = o} U—a} ~ 0. It follows that v ~ 0. &

This concludes the proofs of the main results 3.1.1-3.1.7 of Section 3.1,
in the case where X is I-CAT(1) for some [ > 0. In Section 3.6, we describe
how to deal with the general case.

3.5. Lipshitz maps.

In this section, we observe that the results of the last section go through
if we restrict attention to Lipshitz maps and homotopies.
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Let & be the standard path-metric on the circle S' = R/Z, so that
the total o-length of S* 15 1. We may define a p-lipshitz loop as a map
v : S' — X such that d(y(2),7(%)) < po(t,u) for all t,u € St We
write Q7(X) for the space of all loops which are p-lipshitz for some p > 0
We write {21,(X,r) for the subspace of loops which are p-lipshitz for some
p<r. Thus Qr(X) CQX) and QL(X,7) & Qr(X)NQX,r).

Given o, 8 € (X)), a hpshitz homotopy from « to 3 is a path [t~
v ¢ [0,1] — Qp(X) with yo = @, 11 = B, and dpup(71,7u) < Alt — ul
for some A > 0. The latter condition is equivalent to saying that the map
[(¢,4) — y(u)] : [0,1) x S — X is lipshitz. We may now define the
relations N\ on $2L(X) and ~p on Qz(X,2r) by restricting to lipshitz
homotopies. We make the following observations.

If v € (X, r), then we can find a degree-1 homeomorphism ¢ : ST —
St such that v 6 ¢ € QL(X,r).

If ¢ € Cy(X,r), we parameterise I'(z) proportionately to arc-length
so that I'(z) € Qr{X,r). If we normalise so that some fixed point of §?
gets mapped to 1 by T'(z), then the map I': Cru(X,r) — Qu(X,r) is
continuous.

If £ € Ca(X,r), then T'(z) \r T(f(z)). Iz € C(X,2w), then
'{z) N\ 0.

Suppose v € Qp(X) is p-lipshitz, and uy,..., un € St divide S! into
segments of o-length at most k/u. Then z = (y(u1),.. 5 71(ug)) € Ch(X)
and v \o; T(z). If v € Qr(X) and v~ 0, then v \z 0.

Suppose a, 8 € Qr(X,27) and o ~ B. We can find point z,y €
Cr(X,2n) such that @ ™\, T'(z) and 8\ ['(y) and z and y are connected by
a path in Cy(X,27) (Lemmas 3.4.2 and 3.4.6). Let [t — (z1(2),...,2a(2))] :
[0,1] — Ci(X,27) be a such a path. Given 0=ty <t1 < - <t =
1, we may approximate [I ~— z;(t)] by the piecewise geodesic path v; =
Uslzi(t-1) = zi(t;)]. Let z(t) = (n(),.., (). If we choose the
subdivision fg, ...,tm fine enough, then we have M(2(t)) < h + 7, and
L(z(8)) < 2w for all t, where < {— h. Thus z(t) € Chq(X,27) for all ¢,
an the map [t — I'(z(t))] : [0,1] — Qr{X,27) gives a lipshitz homotopy
from T'(z) to T'(y). We conclude that a ~1

By a similar argument, we can deduce that ifa, € Qr(X)and a ™\, 3,
then o N 3.

All of the above statements follow more or less directly from the con-
structions of Section 3.4 We conclude that working in the category of
lipshitz maps, as opposed to continuous maps, amounts to the same thmg.
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3.6. The general case.

In this section, we describe how the proofs of properties 3.1.1-3.1.5
given in Section 3.4, generalise to the case where X is locally compact and
locally CAT(1). Using Lemma 2.4, it is enough to observe that everything
of interest goes on inside some compact subset of X.

Lemma 3.6.1 : Suppose p is a 7-CAT(1) metric on the disc D, so that
3D is rectifiable and length dD < 2n. Then D = N{8D,x/2).

Proof : By Lemma 3.3.10, there is some point a € D such that p(a,z) <
x/2 for all z € 0. We can suppose that a ¢ 41

We can identify D topologically as a cone over 812, i.e. as a quotient
of D x [0, 1] where we shrink the circle 8D x {0} to a point. We define a
map f : D — D by f(z,1) = a,(t) where a; = [a — 2] : [0,1] — X. By
Lemma. 2.10, f is continuous. Moreover f|8D is the identity on 8D. Thus,
by Brouwer degree, f is surjective. In other words, if y € D, there is some
x € 8D with y € o([0,1]), and so p(z,y) < 7/2. ¢

Using the construetion of Section 3.3, this effectively tells us that if
the Birkhoff process starting with a polygonal loop of length less than 27
converges to a point, then it will do so entirely within a metric (x/2)-
neighbourhood of the original polygon.

More formally, suppose K C X is compact, and h > 0. Write

Ov(X,2m K)={z e Cp(X,r}| &€ K forallz=1,...,n}.

Fix any ¢p > 0. By Lemma 2.1, the set K’ > 0 = N(K, § +¢o) 18 compact.
Lemma 2.4 gives us some ¢ > 0 such that any triangle with vertices in
K' and perimeter less than 2¢ apart may be joined by a unique geodesic
in X. We can suppose that ¢ < ¢. Now suppose that & < ¢, and z €
Ch(X,2m, K). The Birkhofl process applied to z is well defined provided
F™(z) remains in Cy(X, 27, K'). Let

CY(X,2m, K) = {z € Ca(X, 27, K) Vm(f™ (&) € Ch(X, 27, K')),
and L(f™(2)) — 0}.

From Lemma 3.6.1, and the construction described in Section 3.3, we see
that if z € CJ(X, 27, K), then the image of each loop I'(f™(z)) lies inside
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a (/2)-neighbourhood of I'(z), and thus inside Ko = N(K, % + §). Now
K, is compact and lies in the interior of K’. Thus the argument of Section
3.3 works to show that:

Lemma 3.6.2 : CJ(X,2n, K) is open and closed in Cy(X,2m, K). ¢

The properties 3.1.1-3.1.5 now all follow easily. For example, to prove
Theorem 3.1.5 (if ¥ € Q(X, 2w) and ¥ ~ 0 then v \, 0), we argue as follows.

Let K be the image in X of the homotopy [0,1] — Q(X,27) from
4 to a constant loop. Let € > 0 be as described above, and A < €. Now
as with Lemmas 3.4.2 and 3.4.6, we can find uy,...,us € S such that
¥\ [{z) and g = (v(u1), ..., 7(ua)) is connected by a path to a constant
cycle in K. Clearly any such constant cycle lies in C(X, 27, K), and so by
Lemma 3.6.2, £ € C(X,2mr, K). Thus, as in Lemma 3.4.5, I'(z} \, 0, and
sov N\ 0.

The remaining results follow by similar arguments. We just need to
observe that we can decide a-priori the compact subset of X in which we
are interested.

As observed in Section 3.1, these results allow us to define the systole
of a locally CAT(1) space as

sys(X) = inf({2x} U {lengthy | v € Q(X, 2x),7 +# 0}).

Thus, if { = £sys(X) > 0, then X is [-CAT(1).

3.7. Convergence of the Birkhoff process.

We have made use of the trivial fact that some subsequence of the
Birkhoff curve-shortening process defined on a compact space must con-
verge. This suffices for our applications, though it seems natural to ask
when the process itself converges. We shall describe an example of a smooth
riemannian 3-manifold where convergence fails for certain polygonal loops.
By scaling the metric (if necessary) we can assume that the curvature 1s
everywhere at most 1, and so this gives an example for a locally-CAT(1)
space. The convergence of the Birkhoff process seems to be an open ques-
tion for riemannian 2-manifolds. (See [Ga] for some discussion of the curve
shortening flow in this context.) I don’t know what, if anything, is known
for real-analytic rtemannian manifolds.
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On a riemannian manifold, the Birkhofl process is closely related to
curve shortening flow for smooth curves. Such a flow y(¢,u) is defined by

the equation Wm = .w:m. Wm where u € St, t is the time parameter, and
T= Wm. W._m is the unit tangent to the curve {u — ¥(f,u)]. This seems

more natural in this context, though one has to worry about the possibility
of running into singularities.

We begin with some positive results. We have already observed (Lem-
ma 3.3.6) that if the length of a polygonal loop tends to 0 under the Birkhoff
process, then the process must converge to a point. By a similar argument,
we shall show that the Birkhoff process converges on any compact non-
positively curved manifold, indeed on any space for which the distance
funetion is convex locally.

Suppose X is a compact path-metric space. Suppose that, for some
I> 0, the map [(f,u) — d(a(t), B(u))] is convex whenever «, 3 : [0, ]—X
are geodesics with diam(e([0, 1)U 8([0,1])) < {. (For such a space, we may
define sys(X) to be the length of the shortest geodesic, and we can always
take I = isys(X).) Note that all compact CAT(0) spaces fall into this
category.

We fix some n € N, and define C(X) as for CAT(1) spaces. If & <1,
then we may define Birkhoff curve shortening, f : Cp(X) — Ci(X). Given
2,y € Ch(X), let dyup(z, y) = max{d(z:, 9) | i = 1...n}. We see that if

Runlﬁm.nlu,ﬁv < f then &.Evﬁ.:mv. \Amvv < &Aﬁya&v

Proposition 3.7.1 : Suppose X has a locally convex distance function,
and that b < | (= Lsys(X)). Iz € Ch(X), then f2(z) converges as

1 — 00,

Proof : Certainly some subsequence F?¥i(z) must converge to some y €
Cu(X) with f2*(y) = y. Given any r < I, we have that dyup (y, fi(z)) <
r for some i. Thus, from the discussion above, dsup (Y, fnlkitid(g)) < r for
all j > 0. We see that f2*(g) must converge to y. &

Counterexample.

We describe a smooth riemannian metric on the 3-torus 7% = § 1 x
§! % §1 for which the Birkhoff process in general fails to converge. 1f z,y, 2
are the coordinates on the respective $* = R/Z factors, then we take the
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infinitessimal riemannian metric ds to have the form
1

— dz*
= %AH.- “c.v

ds® = da® +dy* +

where 8 : §! x §1 — (0,00) is a smooth function.
Specifically, define 8 : [—%, 1] x R — (0, 00) by

b(z,y) = e M* Amu cos 2% A —~ %vv

if z > 0. We set 8(z,y) = 8(—=,y) for x < 0, and 8(0,y) = 0 for all
y. We identify each pair of points { I,W‘S,@_Sw for y € R, smooth
out ¢ in 2 neighbourhood of {+%} x R and factor out by the translation
[(z,9) — (, 5+ 1)] to give the map 6§ : S x §* — (0,c0). If we now take
a polygonal loop with vertices equally spaced about a “fibre”, {(2,3)} x § !
for some small £ > 0, and iterate the Birkhoff process, we end up wandering
around infinitely often in the y-direction. (We shall just formally prove that
such a process cannot converge.)

To give the idea, suppose ¢ : R? — (0,00) is a smooth function.
Define a riemannian metric on R? x S' by ds? = dz? + dy* + ﬂ%ﬂqu%.
(We assume for the moment that ¢ is defined on the whole of R2, so that
we don’t have to worry about falling off the edge of our domain.} The
Birkhoff process can be thought of as a discrete approximation to the curve
shortening flow on fibres {u} x S! for u € R2. Note that such a fibre has
length H_ﬂ, and constant curvature m.m_d_m_.ma ¢(u)] in a direction which
projects to grad ¢(u) in R2. Thus, at time ¢, the fibre {u} x St flows to
a fibre {y()} x S!, where the curve v satisfies v(0) = u, and (1) =
segyerad ¢(y(). In other words, curvature flow on fibres reduces to
steepest ascent of log ¢ on R?. It is easy to see from this that the curvature
flow of fibres on the 3-torus described above does not in géneral converge.
The Birkhoff process can be thought of as a discrete analogue of the curve
shortening flow, and so this approximates to steepest ascent, though the
proof in this case will involve us in some messy analysis.

Suppose [t — (8(f), 2(1))] is a geodesic in R? x 81, so that Jis a curve
in R2. We may compute the geodesic equation to give

4 (S0 spor) =0
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F A%v =3 mmsvu%a ?aw:uv .

Let’s suppose that at time ¢ = 0, we begin tangentially to the fibre {3(0)} x
N 2
S, ie. 3(0) = 0 and %(0) = $(4(0)). Then, % (t) = LEAL and so

and

7 (%) O+ e 6w =o.

We thus arrive at the dynamics of a particle moving under a potential

$?/2¢4(5(0))%. Note that

+ 560 T

and so ¢(4(t)) < #(B8(0)) for all £ > 0.
Let us assume that 3 < ¢* < 1, and that there is a bound on the

second derivatives of ¢, so that the norm of the sectional curvature of
R? x S! is bounded. This means that there is some n € N such that any
two points of R2 x S, a distance at most 2/n apart, are joined by a unique
geodesic. In particular, suppose that & = ((x,0),(u,2),..., (u, 25L)) is
a cycle of n equally spaced points of the fibre {u} x S!. Since ¢ > w,
any such fibre has length at most 2, and so Birkhoff curve-shortening, f,
applied to z is well-defined. In fact, from the S! symmetry, we see that
£(2) = ((9(u), $), (9w, & + 1), .., (o(w), 221 + })) for some g(u) € R2.
The point g(u) is uniquely determined by the fact that it is joined to u
by a path 8 : [0,1] — R? with 8(0) = g¢(u), 8(to) = u, satisfying the
differential equation given above, and with ho d(B(1))2dt = $(B(0))/2n
This last equation derives from the formula for dz/dt, and the fact that
#(t9) — 2(0) = 1/2n_ From this, it follows that to < 1/n.

Suppose that for some r > 0, we have maxy(g(u),r) |grad #%| < r. Then
we claim that ||u — g(u)[| < r, where ||.|] is the euclidean norm. For if not,
set ¢ = inf B~HR\N(g(v), 7)) < to < 1/n. By the Mean Value Theorem,
we arrive at the contradiction r = ||#(0) — G(¢")|| < length{][0,t']) <

u—u

T3(707; MaX a0,y grad ¢%| < g4z < r. This proves the claim.

We now restrict attention to the case where ¢2 =1 — 6, where § > 0
is defined on (0,4] x R by 6(z,y) = e~ % (2—cos2n (y— 7¥)). (It is
irrelevant, for the moment, how @ is defined elsewhere.; We make the

dg . |* | $(8)* _
[ Lo + S8 -1,
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following observations about 8. Clearly, e~ /7 < f(z,y) < 3e=1/7 < .w. In
fact, the graph of @ consists of an infinite sequence of “ridges” {pm} and
“troughs” {7} defined as follows. Given m € N, define 7, prm : {0, 31—
(0,3] x R by m(z) = (2,77 — n) and pm(z) = (z,% —n—4). Thus
0(rm(2)) = e~ 4% and f(pn(z)) = 3e~"=. We also have |grad 6(z,y)| <
H(z)}, where H(z) = wm.mlm\a‘

Now take u to be some small positive constant {g = % will do). Note

that the functions H((1 + p)z}/z and H{(1 + w)x)? /e~ 1= both tend to 0
as ¢ — 0. Thus, we can find some ¢ > 0 such that if 0 < # < ¢, then
H((1 + pw)z) < pz, and H((1+p)x)? < pb(x,y) forall y € R.

Suppose ¥ = (z',y') and g(u) = (z,y) with £ < ¢ and z' < €. Set
r = H((1+p)z). ifv = (2",y") € N(g(u),r), then 2" < z+r <2+ H((1+
p)z) < 2 + pz = (L4 p)z. Thus lgrad §(v)| < H(z") < H((1+ p)z) = r.
In other words, maxy(g(u),r) Igrad 8] < r, and so |ju — g(u)|| < v = H((1 +
p)z). Now, let [u, g(u)] be the euclidean geodesic joining u to g(w). If
v € [u, g(u)], then by the Mean Value Theorem, we have [#(v) - 8{g(u))| <
__e - Qﬁ:v__am.un?_u?: _mn.m,a_m_ < mﬁﬁ + tvﬁvu < tmﬁa_@_w = Qﬁnﬁﬁvv. Thus
(1= mb{g(u)) < (v) < (14 p)b(g(u))-

Suppose that §(z,y) = 0(—z,y) for all y. By symmetry, we see that if
the x-coordinate of © € R? is positive, then so is that of g(u). Suppose in
addition that ¢ 1s bounded away from 0 on (R\[—¢,¢]) x R. We know that
8(g(n)) < 0(u) for all u, so if we start sufficiently close to the y-axis and
iterate g, then (we can suppose that) the z-coordinates of the iterates tend
to 0. (They cannot accumulate in (0, €] x R since § has no local minimum
there.)

Suppose then that we have a sequence of iterates u; = (2, ) = ¢'(uo)
with z; < € for all i. We have z; — 0, and [|u;—y — u;]| — 0. Also, for all
v € [t;—1, %] we have (1 — p)8(w;) < 8(v) < (1 + p)f(w;). We claim that
such a sequence cannot converge.

To see this, note that any limit would have to lie on the y-axis, and so
the piecewise geodesic path |Jio [ti-1, ui] would have to cross, in sequence,
infinitely many troughs and ridges of §. More formally, given any 1 € (0,¢),
we can find m = m(n), ¢ = i(n) and j = j(n), with i < j, such that
2i_1, %, 25-1,2; € (0,n), and such that rn(a) € [w,_1,%], and pm(b) €
?‘TrahwE.moanHnﬁimbawnogvb:weZOS,MAHI e~ Ve =

(0o () < 8(u3) < 6(ue) < (1 @)B(im(a)) = (1+ e/, and so
L1 K =log (J58) > 0. Thus [Irn(a) = (Ol 2 5~ F —§ >
K(E+1H-5> mmﬂlw Now, ||[ti —Tm(a)|| and {ju; - prm (8) || are bounded,
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and so ||uigy) — Wi(p)|| — 00 as n — 0. This contradicts the assumption
that the sequence (u;) converges.

We have shown that the Birkhoff process in general fails to converge
for such a metric in R2? x S'. The same argument can be carried out for
the 3-torus, with # replacing 6, as we described at the beginning.

4. Area inequalities.

In this chapter we are principally interested in riemannian metrics on
the disc. We relate some of the previous discussion to inequalities involving
area. In section 4.1, we discuss the spherical isoperimetric inequality, and in
Section 4.2, we describe an area comparison theorem for triangular regions.

In dealing with area, we shall confine our attention to smooth rieman-
nian metrics, though there are, no doubt, ways one could attempt to gener-
alise this. A discussion of area for more general path-metrics on surfaces is
given in the book [AZ]. Many other geometric inequalities for riemannian
manifolds are described in [BurZ]

4.1. The spherical isoperimetric inequality.

In this section, we are interested primarily in “riemannian dises”. By
this we mean a path-metric p on the topological disc D, such that plint D
is (derived from) a smooth riemannian metric, and such that (8D, p) 1s a
rectifiable curve.

We shall continue to use the term “geodesic” in the path-metric sense,
namely a length-minimising path, parameterised proportionately to arc-
length. Such a geodesic, 7 : [0,1] — D will be a riemannian geodesic, ex-
cept, perhaps where it meets the boundary 8D. If the boundary is smooth,
then v will have zero or outward pointing riemannian curvature at points
of y~1(8D). In general, we may speak of v being “concave” where it meets
&D. (It may be approximated by smooth curves in int ) of arbitrarily small
inward curvature.)

If the riemannian curvature of p in int D is everywhere at most 1, then
(D, p) is locally CAT(1). When length(0D) < 2, we have constraints on
the possible area of such a disc, which may be expressed in the form of
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Theorem 4.1.4. This is a variation on the standard spherical 1soperimetric
inequality.
We begin with some general observations about locally CAT(1) discs.

Lemma 4.1.1: Suppose p 15 a locally CAT(1) path-metric on the disc D,
such that 8D is rectifiable and length(8D) < 2x. Then (D, p) is m-CAT(1)
if and only if 8D ~ (.

Proof : If (D, p) is #-CAT(1), then 8D ~ 0 by Corollary 3.1.7.

Suppose that 8D ~ 0. There are various ways to see that (D, p) must
be n-CAT(1). For example, suppose to the contrary that (D, p) is not
7-CAT(1). Then it must contain an embedded closed geodesic y. Given
h < 3sys(X) < wrwsmg v, by Lemma 3.4.7, we can find £ = {z;,...,2,} €
CY(X,2x), with z; € 8D for all j. However, we see easily that y acts as a
barrier to the curves I'(f*(z)} as i — oo, contradicting the fact that they
must converge to a point. &

Lemma 4.1.2 : If (D,p) 1s =-CAT(1), then there is some a € D such
that d{a,z) < /2 for all z € D.

Proof : As with Lemma 3.6.1. &

Note in particular that diam(D, p) < m, and so any pair of point are joined
by a unique geodesic.

Lemma 4.1.3 : Suppose (D, p) is a riemannian disc of curvature < 1, and
with length(0D) < 2. Then (D, p) is 7-CAT(1) if and only if area(D, p) <
2w

Proof : If (D, p) is not 7-CAT(1), then it contains an embedded closed
geodesic (in the path-metric sense) of length < 2x. This bounds a closed
disc Dy C D. Now 8I) is concave (in the riemannian sense), and so the
GauB-Bonnet formula tells us that area(Do, p) > 2. Thus area(D, p) > 27
as required,

Now suppose that (D, p) is 7-CAT(1). By Lemma 4.1.3, there is some
a € D such that d{a,z) < =/2 for all z € 8D. We can assume that
a € int D. If 8D is smooth, then it is the image of a smooth embedding
v: 8 — D. Fix ity € 5!, and for t € S, let A(t) be the area of the
“sector” bounded by the geodesics [a — 7(to)] and [a — ¥(t)]. (More
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precisely, A(?) is the area of the union of the images of [ — y(u)] for all
u in the positively oriented interval of S* joining o to t.) Applying the
Rauch comparison theorem, we find that A(2) is differentiable in ¢, and
that dA{t)/dt < |dy(t)/dt|. Integrating over S! we find that area(D,p) <
length(@D) < 2w, The general case follows by approximating 8.2 by smooth
curves. &

‘We may refine the above result by quoting the following isoperimetric
inequality.

Suppose (D, p) 1s a riemannian disc of curvature < 1, and with area(D)
< 4w. Then

length(dD) > L(area(D))
where L{A) = /A(47 — A). Note that the extremal case is that of a
spherical cap in (52,d;) of area A, bounded by a round circle (of length
equal to L(A)).

This inequality, in a variety of forms, has a long history, and one could
attach to it a long list of names. For an exposition of this, and many related
inequalities, we refer to Osserman’s articles [01,02].

We may express the above mequality in terms of the “dual” problem
of spanning a circle of a given length by a disc of curvature < 1. Thus,
if length(@D) = L < 2x, then either area{D) < A_(L) or else area(D) >
A+(L), where AL(L) = 2m & An? — L%, Thus A_(L) and A (L) are,
respectively, the areas of the small and large spherical caps in the unit 2-
sphere, bounded by a round circle of length L. Clearly A_(L) < 27 <
A4(L), and so by Lemmas 4.1.1 and 4.1.3, we see that this dichotomy can
be expressad in terms of the shrinkability of the boundary:

Theorem 4.1.4 : Suppose that (D, p) 18 a riemannian disc of curva-
ture < 1, and that L = length(8D) < 2x. If 8D ~ 0, then area(D) <
A_(L), whereas if 3D « 0, then area(D) > A;(L), where Ax(L) =
2w £ Ar? — L%

4.2. Area comparison for triangles.

In this section we show (Proposition 4.2.7) that the area of a rieman-
ntan disc of curvature < 1 bounded by a shrinkable triangle is less than
or equal to the area of the small region in the unit 2-sphere bounded by a
comparison triangle.

45

Locally CA'I'(1) spaces

We begin with some observations from spherical geometry. Given two
non-antipodal points x,y € $%, we write m(z,y) for the midpoint of the
geodesic joining = and y.

Lemma 4.2.1 : There is some universal constant & > 0 such that if
(z,y,2) 1s a spherical triangle, then

1
di(m(z,y), m(z,2)) < mﬁ:@. z) + kperim(z, y, 2)*.

Proof : One can obtain an explicit value for using the spherical cosine
formula.

Alternatively, note that the exponential map to S? based at some point
z € 52 is analytic. Thus, if a, 8 : [0,1] — 5% are geodesics of length < =
parameterised proportionately to arc-length with a(0) = 2(0) = =, then
d(a(t), B(t)), as a function of ¢, can be written in the form at(l 4 u@@vvu
where the constant e and analytic function g are confined to a compact set.

¢

Given a non-degenerate spherical triangle 7y = (x, g, z3) in 52, we
may subdivide the small region R(Tp) bounded by I'(Tp) into four smaller
regions R(T}), i = 1,2,3,4, by joining the midpoints of the edges. More
formally, set % = m(zit1, ®it2), and set T; = (24, Yega, Yip2) for i = 1,2, 3,
and Ty = (y1,¥2,¥3)- (Figure 4a.) Clearly, perim(T;) < perim(Ty) for all
i€ {1,2,3,4}. In fact,

Lemma 4.2.2: Givene > 0, there issome g < 1, such that if perim(Tp) <
2(m — ¢), then perim(T;) < pperim(Ty) for i € {1,2,3,4}.

Proof : Since dy(2;,2;) < 2d1(w,y;) for ¢, § € {1,2, 3}, we have perim(7;)
< perim(7Ty) for i € {1,2,3}. Thus, it suffices to verify that perim(7y) <
pperim(Ty). This is certainly true for small triangles (with p close to
1), so we can suppose, without loss of generality, that di(x1,#2) and
di{x1,z3) are greater than some fixed constant. If perim(Ty) were al-
most equal to perim(Ty), then we would have d;(yq, ys) almost equal to
di(ya, €1) + di(21, y3), so that the angle at z; would be abitrarily close to
. If we now assuine, in addition, that perim(Tp) is bounded away from 2,
then it follows that di(z2, x3) is also bounded away from 0. So, by a similar
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argument we see that the angles at 22 and z3 are also close to w. We arrive
at the conclusion that perim(7p) 1s arbitrarily close to 27, contrary to our
hypothesis. ¢

Note that the construction of the triangles 71, T%, T3, T4y makes sense,
and Lemma 4.2.2 remains valid, even if Tp is degenerate.

By a “locally CAT(1) triangular region”, we shall mean a locally
CAT(1) path-metric p on the disc D, such that 8D consists of three geodesic
segments oy, @s, @3. In other words, D = R(T) and 8D = I(T), where T'is
the triangle (a1, az, a3). Suppose perim(T) < 2, then by Theorem 3.1.2,
and Lemma 4.1.1, the following three conditions are equivalent:

(1) The space {R(T), p) is x-CAT(1),
(2) The triangle T' is CAT(1),
(3) I'(T) ~ 0.

Suppose that (R(T}),p) is such a m-CAT(1) triangular region. As
observed after Lemma 4.1.2, any pair of points of R(Tp) are joined by
a unique geodesic. Thus, as in the case of a spherical triangle, we may
join together the midpoints of the edges of Ty to obtain four well-defined
ﬂﬂmm‘ﬁmrwm mﬂ. ' m..m” \.H._u, HM..

If T(T;) happens to be an embedded curve, then it bounds a closed
disc R(T:). Since R(T}) is obtained from R(Tp) by cutting along geodesics,
we see that the metric p restricted to R(1}) is already a path-metric, and is
locally CAT(1). In fact, (R(T}), p) is m-CAT(1), since any embedded closed
geadesic in R(T;) would be an obstruction to shrinking I'(Tp) (as in the
proof of Lemma 4.1.1). Thus R(1}) is itself a =-CAT(1) triangular region.

In general, there are several ways in which I'(Tp) may be degenerate,
though in all cases, we obtain a m-CAT(1) “region” R(T}) “bounded by”
I(T;). Thus, R(T;) might consist of an arc, three arcs connected together
at a common endpoint, or a (genune) triangular region with arcs attached
to one or more of the vertices. This is a somewhat tedious complication,
which we shall not worry about too much.

We may iterate this procedure to obtain, at the nth stage, a subdivision
of R(Ty) into 4" triangular regions. (Note that triangular regions may also
degenerate into points, on iteration.)

More formally, we write T1(Ts) = {T1,T>, 75, T4}, and define induc-
tively Tn(To) = U{Ti(T) | T € Tp-1(To)}. By Lemma 4.2.2, we see that
max{perim(T) | T € T,,(To)} tends to 0 geometrically in n. Also,
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Lemma 4.2.3 :  The quantity Y. iy perim(T)? is bounded (by some
function of perim(1p) < 27).

Proof : By Lemma 4.2.2 and the CAT(1) inequality, we see that if T' €
To(Ty), then perim(T") < 2mp”. Let Ty(T) = {T1, T3, 75, Ts}. By Lemma
4.2.1 and the CAT(1) inequality, we have that for each i,

perim(T;) < W?EEG._V + 3kperim(T)?,

and so

4
Mﬁmumaﬁﬁ.uu < Wﬁmiﬁﬁdu? + 12kperim(T") + 364%perim(T)?)

< perim(TY* (1 + Kp™)

i=1

where K = 24km + 144k*x?. By induction, it follows that

M perim(T)? < (1 + Kp") MU perim(7T)*

TE€Tasa(To) TeTo(To)
<[l +k&4)
i=1
Thus T,(T}) is bounded by [Jio, (1 4+ Kpu') < co. &

Given a triangle T', with perim(T) < 2w, we write T” for the comparison
triangle in S?. The area, area(R(T”)), of the small region bounded by T"
is well-defined.

Lemma 4.2.4 : Suppose (R(T),p) is a w-CAT(1) triangular region. Let
Ty(T) = {T1,Ts, T3, Ty}, and let T/, T} be comparison triangles in S2. Then

> area(R(TY)) < area(R(T")).

=l
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Proof : We can assume that the comparison triangles have the form 7] =
(2], Yip1:¥ipo) for i =1,2,3 and T} = (¥1, 5, ¥3), and that the interiors of
R(T}) are disjoint. Thus R’ = (J;_, R(T}) is a spherical hexagonal region.
Let o be the induced path-metric on R'. Since R = R(T) is 7-CAT(1), the
natural map (0R', o) — (R, p) is distance non-increasing. In particular,
o(fp1, &lyg) = oz, ¥} + o(y], #},4), so the interior angle of R’ at y; is
at least 7, for all i. (Figure 4b.) Applying Proposition 1.2(7) three times,
we see that 3°7_, area( R(TY)) = area(R') < area(R(T")) as required. ¢

By induction, we obtain:

Corollary 4.2.5 : If R(T}) is a w-CAT(1) triangular region, then

M area(R(T")) < area(R(T}))-
TeTn(To)

&

By a riemannian triangular region, we mean a path-metric p on the
disc, such that plint D is riemannian, and such that 312 consists of three
geodesics arranged in a triangle. To avoid technical complications, we shall
assume that (D, p) is a riemannian manifold with smooth boundary and
corners at the vertices of the triangle. This implies some lower bound on
the curvature.

In general the edges of the triangle will be concave in the riemmannian
sense. However, we shall tacitly assume in what follows that they are all
riemannian geodesics. In this way, the triangles obtained in the above
subdivision will all be non-degenerate. The general case can be dealt with
modifying the metric in a neighbourhood of the boundary so that it has this
property, or by describing the manner in which triangles may degenerate.

Lemma 4.2.6 : Suppose R(T) Is a riemannian triangular region with
curvature between —«x? and 1, and with pertm(T) < 2w, and I(T) ~ 0.
Then

|area( R(T")) — area(R(T"))| < perim(T")*n,{perim(T))

where 11, — 0 monotonically ast — 0,
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Proof : Let A = perim(7') = perim(T"). We scale the metric p by
a factor 1/A so that (R(T),p/)) has curvature between —A2x? and A%
Since there are no conjugate points, the inverse exponential map log =
exp~! : R(T) — R? = (E?,dp), based at some vertex of R(T) is well-
defined and injective. As A — 0, this map becomes arbitrarily close to
area-preserving, and the images log( R(T")) become arbitrarily close (in the
Hausdorff topology) to a euclidean comparison triangle, R(7™) for T". Thus
larea( R(T"), p/A) ~area(R(1™), dy)| is arbitrarily small, depending on A. It’s
not hard to see that this convergence is uniform (independent of the shape of
R(T")), so that this quantity is bounded by some function, 27,.()), of x and
A. We therefore also have Jarea( R(1"), d1/}) — area( R(T"), do)| < 2n.(}),
and so |area(R(T), p) — area{ R(T7), d1)] < A2n,(A) as required. ¢

Proposition 4.2.7 : Suppose R(A) is a riemannian triangular region
of curvature < 1, with perim(T) < 2w, and with T'(A) ~ 0. Let A’ be a
spherical comparison triangle for A, Then

area( R(A)) < area( R(A")).

Proof : We are assuming that there is some lower bound, —«2, on cur-
vature. Given ¢ > 0, there is some 6§ > 0 such that ,(6) < ¢. There is
some natural number n such that perim(T) < 6 for all T € T,(A). Thus,
by Lemma 4.2.6, if T € 7,,(A),

|area( R(T)) — area{ B(T"))| < eperim(T)>.
Now area(f(A)) = Forer, (a) area(R(T)), and so
area(R(A)) — Y area(R(T")){<e Y. perim(T)* < Ck,
TeTa(A) TeTa(A)

where C is constant (Lemma 4.2.3). By Corollary 4.2.5, we have

3" area(R(T")) < area(R(A")).
TeTn(8)
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Thus
area{ R(A)) < area( R(A')) + Ce.

The result follows by letting ¢ — 0. ¢

The conclusion is independent of the lower curvature bound, —«Z, so
it’s not hard to see that this condition can be dropped.

The same argument can be used to show that if R(A) is a triangular
region of curvature < 0 (< —1), then area(R(A)) < area(R(A")) where
A" is a euclidean (hyperbolic} comparison triangle. Here, the bound on
perim(A), and the hypothesis that ['(A) ~ 0 are redundant.

By analogy with Theorem 4.1.4, it seems reasonable to conjecture that
if R(A) is a riemannian triangular region of curvature < 1, with perim(4) <
27 and with T(A) # 0, then we have area( R(A)) > 47 — area(R(A")).
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