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0. Introduction.

The tameness and ending lamination conjectures together tell us that a hyperbolic
3-manifold with finitely generated fundamental group is determined by its topology and
a finite number of “end invariants”. In this paper we describe how some of this theory
generalises to a much broader class of metrics. To simplify the discussion, we focus on
the particular case where the 3-manifold is homotopy equivalent to a compact surface.
We will state the main result (Theorem 0.7) in the “doubly degenerate” case. This case
illustrates the main features of the argument, though further generalisations are possible,
as we will briefly discuss. The ending lamination conjecture is closely related to the large
scale geometry of Teichmiiller space, and one of the main motivations for this study is its
potential applications in that direction, for example to the Weil-Petersson metric.

To be more precise, let ¥ be a compact orientable surface. Let M be an orientable
complete riemannian 3-manifold, with a preferred homotopy equivalence M — ¥. We
give some hypotheses under which such a manifold will serve as a “model” of a (constant
curvature) hyperbolic 3-manifold. The main requirements can be paraphrased by saying
that M has locally bounded geometry and a thick-thin decomposition with “standard”
thin part, and that the universal cover is Gromov hyperbolic. The last assumption turns
out to be equivalent to asserting that the thick part is hyperbolic relative to the thin part.
There are many variations on the hypotheses that would work as well, as we will elaborate
in Section 2. We begin with a more precise formulation.

Given x € M, we define the essential systole of M at x, denoted sys(M,z), to be
the length of the shortest homotopically non-trivial loop in M passing through x. A free
homotopy class of closed curves in M is parabolic if it has arbitrarily short representatives
in M. It peripheral if its image in 3 can be homotoped into 0%. We denote by D" the
unit euclidean n-ball.

We make the following assumptions on M:

(M1) There is some ¢y > 0 such that all sectional curvatures of M lie between —c¢( and c¢g.

(M2) There is some 19 > 0 such that if x € M with sys(M, z) < ny then M has all sectional
curvatures at x equal to —1.

(M3) M is ho-hyperbolic for some hg > 0.
(M4)(a) (V€)(3¢) such that any &-lipschitz map f : dD? — M extends to a &'-lipschitz

map f: D? — M.
(b) (V&)(F¢') such that any &-lipschitz map f : dD? — M extends to a ¢’-lipschitz map

f:D? — M.
(M5) A closed curve in M is parabolic in M if and only if it is peripheral in 3.
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We refer to a 3-manifold satisfying (M1)—(Mb5) as a coarse hyperbolic 3-manifold. By
its parameters, we mean the various constants (or functions) featuring in the hypotheses
(including the topological type of ). We elaborate on these hypotheses in Section 1.

Note that (M1)—(M4) are all automatic for a genuine (constant curvature) hyperbolic
3-manifold. In this case, the only parameter is the topological type of X.

Of these hypotheses, clearly (M2) is the most artificial. One justification is that this
condition is an immediate consequence of the way in which one might expect to construct
model manifolds in practice. We shall elaborate on this later. We first describe how it
gives rise to a thick-thin decomposition of M.

Given n > 0, we write:

O(M,n) = {z € M | sys(M, x) > n}

T(M,n) ={z e M |sys(M,z) < n}.

These are closed subsets, which we refer to as the “thick” and “thin” parts respectively.

Proposition 0.1 :  There is some 17 < 19 depending on the parameters of M, such
that each component of Y(M,n;) is a standard Margulis region. Its fundamental group
injects into w1 (M ). Moreover, no essential curve can be freely homotoped into distinct
components of Y (M, ny). &

By a standard Margulis region we mean a subset isometric to a Margulis region in
a genuine (constant curvature) hyperbolic manifold. This is either a Margulis tube or
Margulis cusp. In this case, since there is no Z @ Z subgroup, all cusps will be Z-cusps.

A consequence of Proposition 0.1 and hypothesis (M3) is that there is exactly one
Margulis cusp for each boundary curve of X.

Given n < ny, let 7 = 7 (M,n) be the set of Margulis tubes, and let P = P(M,n) be
the set of Margulis tubes, Let W(M,n) = M \ int|JP(n) be the non-cuspidal part of M.
Note that each component of OW (M, n) is homotopic to a component of 9X. In fact, there
is a relative homotopy equivalence (¥ (M, n), 0¥ (M,n)) — (3, 0%).

In what follows, we fix some positive n < 7, and abbreviate ¥ = W(M,n). This
depends only on the parameters of M.

Since we are assuming that ¥ and M are orientable, it follows that ¥ has two ends,
arbitrarily designated “positive” and “negative” and denoted e; and e_.

Definition : The end e of W is simply degenerate if there is some [ > 0 and a sequence of
essential closed curves, (0;);, realised in W, with §; — e, such that for each i, length(d;) < [,
and ¢; is simple.

Here 0; — e means the §; eventually leaves every compact set some fixed closed
neighbourhood of e. By “simple” we mean homotopic to a simple closed curve in ¥. A
number of equivalent formulations of simple degeneracy will be discussed in Section 1 and
proven in Section 4.



Coarse hyperbolic models

Definition : We say that e is topologically finite if it has a neighbourhood homeomorphic
to ¥ x [0, 00).

(If one wants to circumvent the Poincaré conjecture in the following discussion one
can simply add the hypothesis that M be irreducible.)
We show:

Theorem 0.2 : If e is simply degenerate, then it is topologically finite.

To proceed, we need to recall that notion of the “curve graph”, that is, the 1-skeleton
of the curve complex defined in [HJ.

Let X (X) be the set of homotopy classes of essential non-peripheral simple closed
curves in ¥. The curve graph G = G(X) has vertex set V(G) = X(X), with two curves in
X (X) adjacent in G(X) if they have minimal possible geometric intersection number (that
is, 2 for a four-holed sphere, 1 for a one-holed torus, and 0 for all more complex surfaces).
It turns out that G is hyperbolic in the sense of Gromov [MaM1]. Its boundary, 0G can be
identified with the set of arational laminations on ¥ [K], though we won’t formally need
to know that here.

Given v € X(X), let Ips(y) € [0,00) be the infimum of lengths of realisations of v in
M. Given v € X(X), write X (M, ) ={y € X(2) | lm(y) <1}

Theorem 0.3 : There is some ly > 0, depending only on the parameters, such that
X (M, ly) is non-empty and uniformly quasiconvex in G(X). Moreover, for all | > 0, there
is somet > 0 depending only on | and the parameters such that X (M,l) C N(X(M,ly),r).

Here “uniformly” means depending only on the parameters of M. The notation N (., )
denotes metric t-neighbourhood (here in G(X)).

Theorem 0.4 : Suppose that e is a simply degenerate end of W(M). Then there is some
a € 0G with the following property. Suppose (9;); is a sequence of curves realised in W (M)
with §; — e and with length(9;) < [ for some | > 0. Suppose that each §; is simple in X.
Then the corresponding elements of X (X) tend to a in G U 0G.

We can make a number of remarks on this theorem.

First, the existence of such a sequence, (6;);, is precisely the definition of a simply
degenerate end, and so the element a € 0G is unique. We denote it a(e), and refer to it as
the end invariant of e.

In fact, we will see that any such sequence (9;); remains a bounded distance from a
geodesic ray in G. Also, we can always find such a sequence so that length(9;) < [y for all
i, where [y depends only on the parameters of M (cf. Theorem 0.3).

To simplify our discussion, we will focus on the doubly degenerate case. This will avoid
various qualifications in the statement and proofs, though the arguments are applicable
more generally (see the discussion in Sections 3 and 4).
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Definition : We say that M is doubly degenerate if both e_ and e are simply degenerate.

By Theorem 0.2, it follows that ¥ is topologically finite, hence (by Waldhausen’s
h-cobordism theorem) homeomorphic to 3 x R.

Theorem 0.5 :  Suppose that M is doubly degenerate. Then:

(1) ale) # a(ey)
(2) X(M,lp) is a uniformly bounded distance in G(3) from some (hence any) bi-infinite
geodesic from a(e_) to a(ey).

(It is known from [MaM2]| that such a bi-infinite geodesic always exists.)

Recall that 7 is the set of n;-Margulis tubes in W. The thin part of ¥ consists of the
disjoint union of elements of 7', no two of which are homotopic in ¥ (see Proposition 0.1).

The following result generalises that of Otal for hyperbolic 3-manifolds [Ot].

Theorem 0.6 : If M is doubly degenerate, then 7 is unlinked in W.

One way to formulate this is to say that there is an indexing set, I C Z, a collection,
(A;)ier, of essential annuli in 3, a collection, (J;);cr, of disjoint closed intervals in R, and
a homeomorphism from ¥ x R to M sending J;c;(A; x J;) onto |J7 . For elaboration, see
[Bow5]. Theorem 0.6 supposes that 1 has been chosen sufficiently small in relation to the
parameters.

In particular, each tube T' € 7 is homotopic to a unique 6 € X (X).

We can finally state the main result of this paper — a version of the ending lamination
conjecture for coarse hyperbolic 3-manifolds:

Theorem 0.7 :  Suppose that M and M’ are doubly degenerate coarse hyperbolic
3-manifold with the same base surface, ¥, and with ends ey and €' respectively. If

ale_) = a(ey.), then there is a uniform equivariant quasi-isometry from M to M.

Implicit in this statement are the preferred homotopy equivalences from M and M’
to X. The quasi-isometry is equivariant with respect to the action of m1(3) by covering
translations. The term “uniform” means depending only on the parameters of M and M’.

In fact, the quasi-isometry can be assumed to respect the universal covers of the non-
cuspidal parts, W(M) and W(M'). It also respects the positive and negative ends of the
non-cuspidal parts, in a sense that will be made precise later (see Section 6).

It seems likely that one can, in fact, construct a uniform bilipschitz map from M to
M’ also sending ¥(M) to W(M'), (cf. [BrocCM]), though shall not explore that here.

In the case where both M and M’ are hyperbolic 3-manifolds, this gives the ending
lamination conjecture for type preserving orientable surface groups — the existence of an
equivariant quasi-isometry in this case gives rise to an isometry from M to M’.

One can also view Theorem 0.7 as telling us that hypotheses (M1)—(M5) defining a
coarse hyperbolic 3-manifold are sufficient for it to serve as a “model” for a genuine hy-
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perbolic 3-manifold, as used in the proof of the ending lamination conjecture [Mi,BrocCM]
(see also [Bow5],[S]).

In fact, the proof of Theorem 0.7 follows the argument of the above. Given distinct
a_,ay € 0G, one constructs a combinatorial model space, P = P(a_,a. ), depending only
on a_ and ay. If M is a doubly degenerate coarse hyperbolic 3-manifold with a(es) = ay,
then we construct a uniformly lipschitz map P — M such that the lift to the universal
covers, P — M, is a uniform quasi-isometry. Thus, if M’ is another such, we also get an
equivariant quasi-isometry M — M.

The construction of P is very similar to that in [Mi], though we shall follow the account
given later in [Bowb]. We show how the arguments of [Bow5| go through with the weaker
hypotheses. The key to this is a version of the a-priori bounds theorem (cf. [Mi]) applicable
in this generality, see [BowT|.

We note that in the case where M is closed and the systole of M is bounded below
(so that we can take (M) = W(M) = M), Theorem 0.7 is effectively already known from
[Mo] and independently from [Bow4|. The formulations are a little different, and there are
some technical points to be addressed to make the correspondence precise. Essentially, a
bi-infinite path, 7, in the thick part of Teichmiiller space gives rise to a riemannan metric
on X x R, well defined up to bilipschitz homeomorphism. It is shown that the universal
cover of this 3-manifold is Gromov hyperbolic if and only if 7 remains a bounded distance
from a Teichmiiller geodesic. From this one can deduce that if we have two such manifolds
with the same end invariants, then their covers are equivariantly quasi-isometric. It would
require a bit of extra work to verify that any coarse hyperbolic 3-manifold with empty thin
part, as we have defined it, arises in this way (that is, up to equivariant quasi-isometry of
covers), and we will not address that issue here.

We also note that a class of coarse hyperbolic 3-manifolds has also been explored in
[Ba]. There it is assumed that the 3-manifold covers a compact 3-manifold with hyper-
bolic fundamental group, though it seems likely that much of this can be applied coarse
hyperbolic 3-manifolds, as we have defined them, under the assumption of a lower bound
on systole.

1. Comments on the hypotheses.

We shall discuss the significance of the various assumptions in turn, and describe
possible variations thereof.

1.1. Bounded geometry.

The only significance of hypothesis (M1) is that it gives us locally bounded geometry.
The conclusion we want to draw from it can be phrased as follows. We say that a subset
Q C M is r-separated if d(z,y) > r for all distinct =,y € Q.

Lemma 1.1.1 : (Vr,s)(3n) such that if Q C M is r-separated and has diameter at most
s, then |Q| < n.
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This is a standard packing argument. In fact, only a bound on Ricci curvature is
required in (M1).

1.2. The thick-thin decomposition.

Hypothesis (M2) gives rise to a thick-thin decomposition with standard thin parts.
Much of this applies to any group action on a Gromov k-hyperbolic space, H (see [Grom,GhH]).J]
We begin with a general observation about quasiconvex sets in H. Recall that if Y
is any geodesic metric space and () C Y is a closed subset, then @ is r-quasiconver in Y
if every geodesic in Y with endpoints in @ lies entirely in N(Q,r). It is convez if it is

0-quasiconvex.

Lemma 1.2.1 : Given k there is some h’ with the following property. Suppose that H
is k-hyperbolic, and () C H is closed and connected. Suppose that for some r > 0, Q) is
r-quasiconvex in N(Q,r + h') with respect to the induced path metric on N(Q,r + h').
Then @ is r-quasiconvex in H.

Proof : Suppose z € ). Let P C @ be the set of y € @ such that any geodesic in H from
x to y lies in N(Q,r). We claim that P = Q. Certainly z € P, so P # (). Suppose y,z € Q
with dg(y, z) < h, say. We can choose h' > h so that any pair of H-geodesics, [z,y] and
[z, 2], from = to y and z respectively are less than Hausdorff distance h’ apart. If y € P,
then [z,y] C N(Q,r) and so [z, z] C N(Q,r+h’). Now [z, z] is intrinsically geodesic also in
N(Q,r + h') and so in fact, [z, 2] C N(Q,r) (this neighbourhood being the same whether
measured in N(Q,r + h') or in H itself). Thus, z € P. By connectedness of @, it now
follows that P = Q). Since x € Q was arbitrary, it follows that @ is r-quasiconvex in H.

In particular, if @) is convex in N(Q, h') then it is convex in H. The main application
will be when N(Q, 1) is isometric to a convex subset of hyperbolic space H?3.

Let n3 be the usual Margulis constant of H3?. (Thus, for example, if M were any
hyperbolic 3-manifold, then the thin part Y (M, n3) is a disjoint union of standard Margulis
tubes and cusps.)

Suppose that M = H/T' is a riemannian manifold satisfying (M2), with constant 7.
Set 14 = min(ny/3,n3), and suppose that n < n,.

Lemma 1.2.2 :  FEach component of Y(M,n) is intrinsically isometric to a standard
Margulis region.

Proof : Let T be a component of Y(M,n). Since n < 19/2, any shortest loop in M
through x lies in an open subset of M of constant curvature —1. From this, it’s easily
seen that 0T is piecewise smooth. In particular, T' is locally simply connected, and so
we can construct its universal cover T. Thus T = T/G where G = 7;(T). Note that the
inclusion of T" into M induces a homomorphism of GG into I'. We also have a local isometry
q: T — M, which is a covering map to its range — a component of the preimage of T in
M.
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Now T is locally hyperbolic, so we get a developing map p : T — H3. This gives rise
to a holonomy action of G on H3. We claim that this is elementary, i.e. either parabolic
(fixing a point of 9H?, or loxodromic (fixing setwise a bi-infinite geodesic in H3).

To see this, choose any 2 € T, and let G = {g € G | ds(x,gr) < n}. We first note
that GG, is non-trivial, for if v is a shortest essential curve in M passing through x, then
v C Y(M,n). Thus, v C T and it has length at most n and so it determines a non-trivial
element of G,. Also, each element of G, displaces the point p(z) € H? a distance at most
n < n3. Thus, the Margulis Lemma tells us that (G,) < G is elementary. Let «, be the
fixed point or axis of (G,). Since the above holds for all = € T, we see by continuity, that
o, = « must, in fact, be independent of x. Since it is determined canonically, it must be
preserved by all of G. Thus, GG is elementary, as claimed.

Let 3 = p~'(a) € T. Thus § is a (possibly empty) union of geodesics. There is a
vector field on H? pointing towards «, and singular at o. This pulls back to a vector
field on T singular at 3. This vector field has an orthogonal foliation by constant distance
surfaces or horospheres. Note that the sets G, are locally constant as we move x in a leaf,
and non-decreasing as we flow x in the direction of the field. We see that the flow lines in T’
either continue forever or else eventually run into 3. In the latter case, it then follows that
[ is in fact, a single bi-infinite geodesic. We also see that, in either case, the orthogonal
leaves to the foliation are complete and foliate T (outside ). It is now easy to see that p
is in fact injective, and so the action of G on H? is properly discontinuous. We can thus
identify T with p(T) € H? and T with p(T)/G. The latter is a standard Margulis region
as claimed. &

Let T be a component of Y(M,n) and let G = 71 (T) and ¢ : G — T" be as in the
proof of Lemma 1.2.2. In general, ¢ need not be injective. However, it will be if we add a
few more assumptions on M. Suppose, for example, that I' is torsion-free. Since ¢p(G) C T
is non-trivial, ¢ will be injective if ¢(G) = Z. The only case it remains to worry about is
if T is a Z & Z-cusp, and ¢(G) = Z. Now T retracts onto the torus 97. Thus, M \ int T
has toroidal boundary which is not m-injective. It follows that if 7o (M) is trivial, then
M \ int T is a solid torus and so I' = Z. We conclude:

Lemma 1.2.3 : If T is torsion free and not cyclic, and mo(M) is trivial, then each
component of Y(M,n) is mi-injective. &

We can thus identify T with a component of the preimage of T in M.

Now suppose that H = M is h-hyperbolic, and let A’ be the constant of Lemma
1.2.1. Using Lemma 1.2.2, we see that there is some 75 < 1y such that N(Y(M,ns),h') C
Y(M,ns). We get:

Lemma 1.2.4 : Ifn <ns and T is a component of Y(M,n), then T is a convex subset
of M.

Proof : By Lemmas 1.2.2 and 1.2.3, N(T, h') is isometric to a convex subset of H3, and
T C N(T,h) is convex. Thus, by Lemma 1.2.1, T" is convex in H. &
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Now any infinite cyclic subgroup of I' is either loxodromic (moves a bi-infinite geodesic
in H a uniformly bounded distance) or parabolic (fixes a point in 0H). From the structure
of T, we see that if T is a Margulis tube, then G is loxodromic, and if T is a Margulis
cusp, then G is parabolic.

Suppose that G < G/ < T, with G’ = Z. From the general structure of loxodromic
and parabolic groups, we see that if g € G, then T and ¢T are some bounded Hausdorff
distance, h” say, apart. We can now find some 77 < 75 such that N(Y(M,n1),h"”) C
Y(M,ns). Thus, if n <, it follows that we must, in fact, have T = ¢gT. In other words,
g € G, and it follows that G’ = G. Thus:

Lemma 1.2.5 : Ifn <, and T is a component of Y(M,n), then m(T) is a maximal
infinite cyclic subgroup of T'. O

We can also assume that h” is such that any two infinite bi-infinite geodesics in H are
Hausdorff distance at most h” apart. From this it follows that:

Lemma 1.2.6 : Ifn <, then any two homotopic components of Y(M,n) are equal.
¢

In the case where I" is a surface group, we can summarise what we have shown as
follows:

Proposition 1.2.7 : Suppose M satisfies (M2) and (M3) and is homotopy equivalent
to a compact surface, 3. Then there is some 1, depending only on the parameters, such
that if n < n, then any component of Y(M,n) isometric to a standard Margulis region,
and is homotopic to a primitive curve in Y. There is at most one region corresponding
to any given curve. FEach component of the lift to M is convex in M, and its stabiliser is
loxodromic or parabolic in M, depending on whether it is a tube or Z-cusp. &

Note that we are not claiming, at this point, that the curve is simple in 3.
1.3. Hyperbolicity.

We have already brought the hyperbolicity of M into play in Section 1.2. In Section 2,
we will discuss how this can be equivalently formulated in terms of the relative hyperbolicity
of the thick part.

We shall note here how hyperbolicity gives rise to a formulation of the thick-thin
decomposition that is applicable without reference to riemannian geometry. This will
allow us to apply the general results of [Bow?7].

Given z € M and r > 0, let I'(z) = {g € T | d(z, gz) < r}.

Lemma 1.3.1 : Suppose that M satisfies (M1), (M2) and (M3). Then for all r > 0,
there is some v € N such that if x € M, then either |I',(z)| < v or else (I';(x)) is infinite
cyclic. Here v depends only on the parameters and r.
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Proof : Let n; be the constant introduced in Section 1.2. Choose ng < 17 such that
N(Y(M,ne)) € Y(M,n:). Using (M1), we see that if v is sufficiently large in relation
to r, then if |T',.(z)| > v then there must be some non-trivial g € T" with d(z, gz) < 7.
Thus, z € Y(M,ng), and so N(x,r) C Y(M,n;). It follows that (I',.(x)) is non-trivial and
stabilises a component of T(M,n;). It now follows from Section 1.2, that this is infinite
cyclic. &

The conclusion of Lemma 1.3.1 can be viewed as a coarse version of the Margulis
lemma. It is a hypothesis of the “a-priori bounds” theorem in [Bow7]| which we will be
applying later.

1.4. Isoperimetric inequalities.

A number of remarks can be made regarding the “isoperimetric inequalities” given by
(M4).

Although they are global assumptions, given hyperbolicity, they can be reduced to
bounded ones. More specifically, there is some &, = £y(k), depending only on the hyper-
bolicity constant k, such that if (M4) holds for all £ < &y, then it holds for all £ > 0. (This
is a fairly straightforward excercise, for example, subdividing the curve or 2-sphere into
small ones by spheres towards some fixed basepoint.) Moreover, if we assume (M1), then
the statement is also automatic on a small scale. Thus, given (M1) and (M3) together, we
can replace (M4) by:

(M4') There is some &y, sufficiently large in relation to the hyperbolicity constant of (M3),
and some & > o, such that:

(a) any &-lipschitz map f : 9D? — M extends to a &-lipschitz map f : D> — M.
(b) any &-lipschitz map f : 9D? — M extends to a &)-lipschitz map f : D*> — M.

We also note that if we also assume (M2), then it is possible to phrase the isoperimetric
inequalities in a manner intrinsic to the thick part, ©, of M. For this we need to assume
that © is constructed so that all Margulis tubes are sufficiently deep in relation to the
hyperbolicity constant. In this case, it is not hard to see that discs and balls can be
pushed off Margulis tubes while only increasing the lipschitz constant by to controlled
amount. To see that inqualities in © give inequalities in M, there is a complication in part
(a) in that a curve homotopically trivial in M need not in general be homotopically trivial
in ©. However, if the curve is short in relation to the depth of the tubes, then this can in
fact be shown to be the case. This will be discussed further in Section 2 (see Lemma 2.2).

One final observation is that one can replace isoperimetric inequalities with isodiamet-
ric inequalities. In other words, curves or spheres of bounded diameter bound respectively
discs and balls of bounded diameter. A similar discussion with regard to hyperbolicity and
restricting to the thick part applies in this case. The main results as stated in Section 0
still hold. The only difference is that the map from the combinatorial model P to M need
only be continuous. The lift P — M is still a uniform quasi-isometry. While this is in
some ways more natural, we shall stick with the lipschitz version here since it makes the
exposition simpler, and ties in with the account in [Bow5|.
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1.5. Type preserving maps.

The “strictly type preserving” assumption (M5) allows us to elaborate on Proposition
1.2.7. Suppose n < m. Let T = T(M,n) and P = P(M,n) be the sets of Margulis
tubes and cusps respectively. From Proposition 1.2.7, we see that the homotopy class of a
Margulis region has abribrarily short representatives in M if and only if it is a cusp. Thus
(M5) tells us that the elements of P are in bijective correspondence with peripheral curves
of X.

Let ¥ = U(M,n) = M \ int|JP. Thus M deformation retracts onto ¥, and each
component of OV is a euclidean cylinder. It follows that there is a homotopy equivalence
of ¥ to X sending OV to d%. Now any self homotopy equivalence of ¥ sending 0% to itself
must be a relative homotopy equivalence of (X, 0%). It follows that there must in fact be
a relative homotopy equivalence of (U, 0W) to (3, 0%).

Now let Uy C U be a relative Scott core of (¥,0W) (see [Mc]). This is homotopy
equivalent to (3, 0%) and hence homeomorphic to (3 x [0,1],9% x [0, 1]). It now follows
that U has exactly two ends, each of which retracts onto a relative boundary component
of Wy in W, and respecting the manifold boundaries.

We shall designate the ends arbitrarily as e_ and e;. Each has a neighbourhood E
with relative boundary Oy F+ homeomorphic to 3. The pair (E1, Fx N OV¥) deformation
retracts onto (g Fy, 0y EyL NOY) = (X, 90Y).

1.6. Degenerate ends.

Suppose we have fixed a preferred homotopy equivalence from M to X. Given a free
homotopy class, 7, of non-trivial non-peripheral closed curves in ¥, we write v* for a
realisation of v in M as a curve of minimal length. Such a realisation is well defined up
to uniformly bounded distance in M. Indeed, its lift to M is well defined up to uniformly
bounded hausdorft distance. In the case where v happens to be homotopy equivalent to
a Margulis tube, then v* has to be the core of this tube. In all other cases, the above is
a general observation using the fact that M is hyperbolic, to show that the lift of v* is a
uniform quasigeodesic.

We defined an end e of ¥ to be “simply degenerate” if there is a sequence of simple
closed curves of bounded length in M going out e. In fact, we shall we see that we can
always assume such curves to have minimal length. In other words, that there is a sequence,
(i), in X (X) such that v — e, and length(y;) is bounded. Indeed, we can also take this
bound to depend only on the parameters of M.

In fact, we can drop the length requirement altogether in the above:

Proposition 1.6.1 : Let e be an end of ¥. Suppose there exist a sequence (7y;); in X (X)
and points z; € ] such that x; — e. Then e is simply degenerate.

We shall prove the above statements in Section 3.
In contrast, we could make the following definition:
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Definition : We say that the end, e, is geometrically finite if it has a neighbourhood U
with U N~* = () for all closed curves in X.

This is equivalent to the usual definition in constant or pinched negative curvature.
If we negate this, we arrive at the formulation of a degenerate end given by Proposition
1.6.1, except that the curves are no longer simple. It is natural ask:

Question : Is each end of M either geometrically finite or simply degenerate?

Note that negation of the above definition is equivalent to the hypothesis of Proposi-
tion 1.6.1 where the requirement that the the curves v; are simple is dropped. The issue
is therefore replacing the set of curves with simple ones, as acheived in [Bon] in constant
curvature —1. As observed in [C], this generalises to pinched negative curvature. Also,
recently Barnard [Ba] has shown that this holds for certain Gromov hyperbolic spaces in
the case where there is a lower bound on injectivity radius.

Also, assuming (M1)-(MS5) it seems reasonable to ask:

Question : Is a geometrically finite end topologically finite?

We will show in Section 3 that a simply degenerate end is topologically finite.

2. Relative hyperbolicity.

The aim of this section is to explain how the main geometric hypotheses can be sepa-
rated into two largely independent parts. The first asserts that the thin part is “standard”,
and the second that the thick part has bounded geometry, is relatively hyperbolic and sat-
isfies certain isoperimetric bounds. In practice, models are constructed by finding first
some thick part, and then gluing in model Margulis regions to complete the picture. If
this is done sensibly, then the key point is that the thick part is relatively hyperbolic.

The notion of relative hyperbolicity was defined by Gromov [Grom]. A number of
accounts have been given since, in different contexts. See for example [Fa,Bow3| and the
references therein.

In the following discussion, we will use the fact that hyperbolicity is essentially a local

property.

Proposition 2.1 :

(1) (Vk)(3k")(Vr) any metric r-ball in a k-hyperbolic spaces is intrinsically k'-hyperbolic.
(2) (Vk)(3r, k") such that if H is simply connected space and each metric r-ball is intrin-
sically k-hyperbolic, then H is k'-hyperbolic.

This general result was known to Gromov [Grom]. Part (1) is elementary. Part (2),
in this form, is a consequence of the statement in [Bowl], for example. In fact, r and &’
can be taken to be fixed multiples of k.

11
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Since we will be using a variation later, we recall the idea of the proof.

We use a version of the linear isoperimetric inequality. Suppose v is a closed curve in
H. We choose some set, A, of n equally spaced points around =y, where n = [% length v]+1.
A spanning disc, (A, f), consists of a cellulation, A, of the disc, D, and amap f : Al — G,
where Al is the 1-skeleton of A, with f|0D = v, and f(Va(A)) = A, where Vy(A) is the
set of 0-cells lying in OD. Its mesh is the maximal length of f(Oc) as ¢ varies over the set of
2-cells of A. We fix some p > 0, sufficiently large in relation to the hyperbolicity constant,
and choose f to be “minimal” among all spanning discs of mesh at most pu, that is so that
f(A') had minimal length. (Such must exist by simple connectivity.) If u is chosen large
enough, one verifies from the local hyperbolicity assumption that any 2-cell, ¢, with at
most 13 edges satisfies length f(9c) < p/2. (“Interior” means means that ¢ N 9D = (.)
One deduces that any two interior 2-cells with at most 13 edges must be disjoint. A simple
combinatorial argument now shows that the total number of 2-cells is linearly bounded
in terms of n, and hence length(v). It follows that H is globally k’-hyperbolic, where &k’
depends only on k. There are some technical qualifications to the above construction in
order for it to work smoothly, though these play no essential role.

These statements give rise to a coarse version of hyperbolic Dehn surgery as we now
discuss. (For related results in the context of hyperbolic groups, see [Os,GrovM].)

We recall the following construction of Gromov. Suppose that P is a any riemannian
manifold, and write g(r)dr for the infinitesimal distance. We define a riemannian metric on
F x [0, 00), given infinisesimally as ds, by ds* = g(r)?dr? + e~ 2!dt?, where t is arc length
in [0,00). We denote the resulting manifold by B(P). This is complete and uniformly
hyperbolic. We write By(P) = P X [t,00) C B(P). This is convex on B(P). If P is
euclidean, then B(P) is (constant curvature) hyperbolic.

If R is a riemannian manifold with boundary OR. We write C(R) for the manifolds
obtained by gluing a cusp, B(P), to each component, P, of OR. (We can smooth out in a
small neighbourhood of P.)

Definition : We say that R is relatively k-hyperbolic if C(R) is k-hyperbolic.

Note that, by Lemma 1.2.1, there is some ¢ > 0, depending only on k such that B;(P)
is convex in R for each component P of OR. Also B(P) is itself uniformly quasiconvex.

A related construction, when each P is a euclidean torus, is that of hyperbolic Dehn
filling.

Let A be a euclidean torus. Given a preferred class of meridean, m, on A, there
is a unique standard Margulis tube, T'(A) = T(A, m) with 0T (A) = A, such that m is
homotopically trivial. If § is the core geodesic we write s = s(A) = dp(97T, ) for the
depth of T'. Thus, the length of the euclidean realisation of the meridian in 0T is exactly
27 sinh s (that is, the length of a hyperbolic circle of radius s). If we change m, so that s
increases, T' looks more and more like B(A), in the sense of geometric convergence. More
precisely, given any ¢ > 0 and p > 1, there is some s > 0 such that if s(A) > s, then
there is a p-bilipshitz homeomorphism from the t-neighbourhood of 97" in T'(A) to that in
B(A). Note that B(A) is a Margulis Z @ Z-cusp.

Suppose that R is a complete riemannian manifold such that each component of
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OR is a euclidean torus equipped with a preferred meridean. We construct a manifold
F(R) by gluing in a standard Margulis tube to each boundary component (smoothing in
a neighbourhood of the boundary, if we want). Let s(R) be the infimum of the depths
of these tubes. We write C(R) and F(R) for the universal covers of C(R) and F(R)

respectively.

Lemma 2.2 : (Vk,1)(3s) with the following property. Suppose that R is a riemannian
manifold such that each component of OR is a euclidean torus with a preferred meridian,
and suppose that s(R) > s. Suppose that C(R) is k-hyperbolic and that + is a curve in R
of length at most | that is homotopically trivial in F'(R). Then ~ is homotoplically trivial
in R.

Proof : We use a variation on the argument in [Bowl| outlined above. We omit some
of the technical details from our account here. One can fill these in, referring back to the
original.

Let R C F(R) be the preimage of R under the covering map F(R) — R. We thus
have regular coverings R — R — R. For the moment, we consider any curve, v, in R
that is homotopically trivial in F(R). This lifts to a closed curve, 4, in R. There is a
“spanning disc”, (A, f) for 4, in R. That is, a map f: Al — R from the 1-skeleton of a
cellulation, A, of the disc, D, with f|0D = 4. We insist that f(Vs(A)) is a fixed set of [
equally spaced points around ~, where n = [% length(+)] + 1. Moreover, if ¢ is a 2-cell of
A then either length f(c¢) < p and ¢ is homotopically trivial in R, or else f(c) C dR.
Here, 1 > 0 is a constant fixed sufficiently large in relation to k. We refer to a 2-cell of the
second type as meridional. The existence of such a spanning disc is a simple consequence
of the fact that 4 is homotopically trivial in f(R).

Among all such spanning discs we choose one, (A, f), that is “minimal” in the following
sense. First, we minimise the number of meridional 2-cells. Among these, we minimise
the total length of f(A'). Finally, among these, we minimise the total number of 2-cells.
(The last is really just a technical requirement, as used in [Bowl].) Provided s(R) is large
enough in relation to k, such a minimal spanning disc satisfies the same combinatorial
condition referred to above, namely any two interior 2-cells, each with at most 13 edges
must be disjoint.

To see this, first note that if ¢ is meridional 2-cell, then f(dc) is homotopically non-
trivial in the component, P, of R containing f (0c). (Otherwise, we can push it off P, and
then subdivide into 2-cells of length at most p, thereby reducing the number of meridional
discs.) Recall that P is a euclidean cylinder whose width can be made arbitrarily large by
choosing s(R) large enough. In particular, we can assume that any essential curve in P
has length at least pu, for some fixed p > 14. All the adjacent 2-cells are non-meridional
and so have length at most . Thus ¢ has at least p > 14 edges.

One now shows that any non-meridional 2-cell with at most 13 edges has length less
than p/2 (where we have chosen p large enough in relation to k). The geometric argument
is the same as that in [Bowl], except that instead of knowing that R is locally hyperbolic,
we use the fact that Oc is homotopically trivial in R, and so lifts to R C C~’(R) and then
apply hyperbolicity of C(R).
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It now follows that any two interior 2-cells of A with at most 13 edges are disjoint.
(Otherwise we could reduce the length of f(A!) by eliminating a common edge.) We
conclude (by Lemma 8.4.1 of [Bowl]) that the number of 2-cells of A is linearly bounded
above in terms of n (hence length(y)).

In particular, if length(v) < [, this places a bound, ¢, on the number of 2-cells de-
pending only on r and k. But we are free in the above argument to choose s sufficiently
large so that any meridional 2-cell has at least p edges, where we can take p > ¢. It will
then follow that there are, in fact, no meridional 2-cells at all. Thus 4 is homotopically
trivial in R. (We need some additional information, namely that we can assume that the
1-skeleton of a minimal spanning disc is 3-edge connected, as discussed in [Bowl].) &

Proposition 2.3 : Suppose that R is a riemannian manifold such that each component
of OR is a euclidean torus with a preferred meridian.

(1) (Vk)(3s, k) such that if C(R) is k-hyperbolic and s(R) > s, then F(R) is k’-hyperbolic.

(2) (Vk,1)(3s, k') such that if F(R) is k-hyperbolic, s(R) > s, and each curve in R of
length at most [ that is homotopically trivial in F(R) is also homotopically trivial in R,
then C(R) is k'-hyperbolic.

Proof : (Sketch)

(1) One can elaborate on the argument of Lemma 2.2 to obtain a linear isoperimetric
inequality directly. Alternatively, we can apply Propostion 2.1 as follows.

Let R be the preimage of R in F (R). We write R; and R, respectively for the ¢-
neighbourhoods of R in C~’(R) and R in F(R). If s(R) > t, there is a natural covering
map R, — Ry extending R — R, defined by sending geodesics in R; perpendicular to
R to geodesics in R, perpendicular to R. Moreover, by taking s(R) sufficiently large in
relation to ¢, this can be assumed arbitrarily close to an isometry (that is A-bilipschitz for
A arbitrarily close to 1).

By Proposition 2.1(1), there is some k”, depending only k, so that for all » > 0, every
metric r-ball in C(R) is k”-hyperbolic. We fix r > 0 sufficiently large in relation to k, as
determined below. Let N is a metric rball in F(R). If NN R = 0, then N is isometric to
an 7-ball in H?, hence uniformly hyperbolic. Suppose that N N R # (), so that N C Ro,.
We can suppose that Ra, — Ro, is a covering map. Now applying Lemma 2.2, we can
take s(R) large enough so that the mimimal displacements of the covering translations of
R — R are as large as we want in relation to r. In particular, we can assume that the
minimal displacement of the covering translations of RQT — RQT is at least 3r, say. Let
N’ be a component of the preimage of N in RQT. This is close to an r-ball in RQT, and also
the map N’ — N is close to an isometry. We can thus assume that N is k”’-hyperbolic,
where k" depends only on k", and hence ultimately only on k. In other words every r-ball
in F(R) is k”’-hyperbolic. Thus, by Proposition 2.1(2), if we chose r sufficiently large in
relation to k, it follows that F(R) is k’-hyperbolic, where k¥’ depends only on k.

(2) As above, except that we no longer have the equivalent of Lemma 2.2, so we have taken
this as a hypothesis. O
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As noted earlier, the main point of this section is to note that we can effectively
separate out the assumptions on M to hypotheses on the thick and thin parts. We assume
that ©(M) has bounded geometry and systole bounded below. We assume that its universal
cover, é(M ) is intrinsically relatively hyperbolic, and satisfies isoperimetric inequalities
of type (M4) or (M4’). We assume that each component of the thin part, Y(M), is a
standard Margulis region and that each Margulis tube is sufficiently deep in relation to
the Margulis constant (so that we can apply Propostion 2.3).

3. Tameness.

In this section, we elaborate on the notion of a simply degenerate end, and show that
such an end is topologically finite.

Let M be a coarse hyperbolic manifold. Recall that W(M,n) and O(M,n) are the
n-non-cuspidal and n-thick parts of M, respectively. We will eventually settle on the
parameters of M, though intermediate arguments may take us through a sequence of
thick and non-cuspidal parts, getting larger and larger. In fact, it will be convenient
to allow for different constants to define different Margulis regions, provided these are
kept within certain bounds. More precisely, we will have ©(M) C ¥(M) C M, with
O(M,n") C O(M) C O(M,n) and ¥V(M,n') C ¥(M) C ¥(M,n), where n” < n depend
only on the parameters of M. Certainly we will want that all Margulis regions are standard,
and that all their lifts to M are convex. This can be arranged by the results of Section
1. More conditions will be imposed later. Note that the gaps between different Margulis
regions with different constants are very simple geometrically, and so it is easy to control
the various constructions during these adjustments.

We recall the notion of a reduced metric as used in [Bow5]. (This is implicit in the work
of [Bon], though not formulated in this way.) This is a riemannian pseudometric, equal
to d on ©(M) and 0 on each Margulis tube. In other words, given any path = in W(M),
write p —length(m) = length(mNO(M)). Given z,y € W(M), set p(z,y) to be the minimal
p-length of any path connecting z to y in W(M). (This is attained.) Since Margulis tubes
are compact, p is proper. That is, any closed p-bounded subset of W(M) is compact. In
particular, if (x;); is any sequence going out an end of W(M), then p(xg, ;) — 0.

There is a preferred relative homotopy class maps (X, 9%) — (U (M), 0¥ (M)). Given
a non-trivial non-peripheral closed curve in v in ¥, we can realise it as a curve, v*, of
minimal length in M. We observed in Section 1 that v* is well defined up to bounded
distance in M. (Indeed so it its lift to M .) These bounds hold with respect to the original
metric, d.

Lemma 3.1 : Suppose 71,72 are freely homotopic curves in W(M) each of length at
most p > 0. Then p-diam(v; U 72) is bounded above in terms of r and the parameters of
M.

Proof : It is enough to show that p-diam(y; U (y* N ¥(M))) is bounded, where v* a
shortest curve in the homotopy class. Consider the lifts 41 and ¥* to M. If the stable
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length is bounded below (in relation to the Margulis constant) then 4; and 5* are a
bounded Hausdorff distance apart. If the stable length is small, then 4* will be the axis of
a Margulis region, and 7; will be a bounded distance away from this region. Either way,
p-diam(y; U (v* NW(M)) is bounded above. &

The following requires some more involved machinery, as developed in [Bow6].

Lemma 3.2 : Ify e X(X), then v* C U(M), and p-diam(y*) < rg. Moreover, there is a
relative homotopy equivalence, f : (3,0%) — (V(M), 0¥ (M)) with p-diam(y* U f(X2)) <
ro. Here ro depends only on the parameters of M.

The above involve enlarging the original non-cuspidal part, W(M), but only by an
amount controlled in terms of the parameters.

Proof : The proof uses the result from [Bow6] that v* remains close to a track realised
in M. Here we give a simplified description, only relating facts relevant to the proof.

We can think of a track as an embedded graph 7 C ¥ with X C 7, and with each
component of X\ 7 a topological disc whose closure meets at most one component of 93.
The total number of edges of 7 is bounded above in terms of type(X). A realisation of
T consists of a map f : 7 — M which extends to a map f : ¥ — M in the preferred
homotopy class. (Thus, f(0%) is homotopic to OW(M), though we don’t assume for the
moment that f(3) C W(M).)

The track, 7, comes together with a (possible empty) set, S, of disjoint circuits em-
bedded in 7. Each component of 0¥ lies in ¥, and we write Sy C S for these components.
Each § € S comes with a regular annular neighbourhood A(6) C X, such that 7N A(J)
consists of 0 together with an interval in each adjacent edge. These annuli are disjoint,
and we write A(S) = Uscs A(9).

Given v € X (¥), the main result of [Bow6] gives us a track 7 C ¥, a set, S, of circuits
in 7, and a system, (A(d))ses of annuli, and a realisation f : 7 — M, extending to
f ¥ — M, with the following properties.

(1) f(A(S)) NO(M) = (. This means that for each 6 € S, f(A(J)) lies inside a corre-
sponding Margulis region.

(2) The total length of f(0\ A(S)) is bounded.

(3) The total length of f(OA(S)) is bounded.

(4) There is a representative 4" of v in 7\ 0% C X such that f(7") is a bounded distance

from v*. (Indeed their lifts to M are Hausdorff close.) Note that, necessarily, 7" NA(5) = 0
for all 0 € Sy.

Here all the bounds depend only on the parameters of M.

These properties are stated somewhat differently in [Bow6|, though they are simple
consequences of the main result there.

A simple consequence of the above is that f(é \ A(S)) cannot penetrate too deeply
into any Margulis region. The same therefore goes for f(7”), and hence for v*. Thus,
after shrinking the Margulis tubes a controlled amount, we can assume that v* C W(M).
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Suppose that 6 € Sy, and let §’ be the other boundary curve of A(§). Since f(§) does
not penetrate too far into the corresponding Z-cusp, C, and has bounded length, it must
lie a bounded distance from a closed euclidean geodesic ¢”. This may involve modifying
f on adjacent edges of 7, but only a bounded amount. Moreover, any other edge of 7 can
only penetrate a bounded distance into C', so we can project outward, increasing its length
a bounded amount. Thus, we can assume that f(7) C ¥(M). We can now homotope
f(X) so that f(X) C ¥(M), and f: (£,08) — (¥(M),0¥(M)) is a relative homotopy
equivalence in the preferred class.

We know that the total length of f(7 N ©(M)) is bounded. It follows easily that
p-diam(~*) is bounded.

It remains to modify f to bound p-diam(f(X)). We shall keep f fixed on 7 U A(S).

Let D be a component of ¥\ (§U A(S)). Thus, D is a disc, and 0D C 1UJA(S). But
the length of f(7 U 0A(S)), and hence of f(0D) is bounded. Using (M4) we can extend
fl0D to a map f: D — M with diam(f(D)) bounded. Since it penetrates each Z-cusp
a bounded amount, we can project it back into V(M) increasing the diameter at most a
bounded amount. In other words, we can assume that f(D) C U(M).

Performing this construction for each such component, we obtain a map f : ¥ —
V(M) with f(0X) C 9¥(M), and with diam f(R) bounded for each component, R, of
Y\ A(S).

Now f(A(d)) lies in a Margulis tube for each 6 € S\ Sy. It then follows that p-
diam f(X) is bounded. Since we have not changed f(7) (other than the earlier modification
involving Z-cusps) we see that p-diam(y* U f(3)) is bounded as required. &

Another consequence of this construction is as follows.

Lemma 3.3 : There are constants, rg, ly, depending only on the parameters of M such
that if v € X (X), then there is some 3 € X (M, ly) such that p-diam(v* U 5*) is bounded.

Proof : Suppose first that S = Sy. In this case, the d-diameter of f(7) is bounded.
Moreover, since each component of ¥ \ 7 is a disc meeting only one component of 9%,
we can find a closed path § in 7\ 0¥, meeting any edge at most twice, and which is
homotopic to an essential non-peripheral curve in 3. In other words, § € X (X). Now,
since length(f(()) is bounded, it follows by Lemma 3.1, that p-diam(y* U 5*) is bounded
as required.

If § # Sy, we can take 3 to be any element of S\ Sy. &

Remark : In fact, the construction of quasiprojection described in [Bow?7] gives us such a
[ obtained by shortcutting « in a particular way. In this way, one can arrange, in addition,
that dg(s)(8,7) is bounded in terms of the parameters. This allows us to strengthen certain
statements made later, but is not essential to the main results stated in this paper.

Lemma 3.4 : Suppose that e is an end of (M) and there is a sequence of curves,
vi € X(X) and z; € v} with x; — e, there is another sequence, (; in X (M,ly) with
B — e, where |y depends only on the parameters of M. &

17



Coarse hyperbolic models

Proof : These statements follow directly from Lemmas 3.2 and 3.3 respectively, and the
fact that the pseudometric p is proper. %

In particular, it follows that e is simply degenerate as we have defined it, justifying a
statement made in Section 1.

Proof of Theorem 0.2 : Let e be a simply degenerate end of W(M). We want to
show that e is topologically finite. By standard topology (cf. [T,Bon]), it is enough to find
a sequence, f; of relative homotopy equivalences, f; : (X,0%) — (V(M),0¥(M)), with

fi(¥) — e
For this, we take any sequence of v; € X (X) with 7} — e as given by the definition of
“simply degenerate”. Lemma 3.2 gives us a relative homotopy equivalence, f; : (3,0%) —
(U(M),0¥(M)) with p-diam(y* U f;(0)) bounded. It follows that f;(¥) — e as required.
¢

To go further, we need another consequence of the construction in Lemma 3.2.

Lemma 3.5 : Suppose (3,7 € X(X) are adjacent in G(X), then p-diam(8* U~y*) < rg,
where ro depends only on the parameters of M.

Proof : In fact, the result of [Bow6] applies to any multicurve in ¥ in particular to SU~.
Then * U~* is close to f(7). Thus p-diam(s* U~* U f(7)) is bounded. &

It immediately follows that for any 3,7 € X(X), p-diam(8* U~*) < rodgs)(8,7)-
This in turn implies:

Lemma 3.6 : Suppose that e is an end of M and that (~;); is a sequence in X (3) with
’)’1* — €, then dg(Z)(70771) — 0. <>

Recall that G(X) is Gromov hyperbolic with boundary, 0G(X).
Given a simply degenerate end, e, of M, we write A;(e) for the set of a € M such that
there is and some sequence ~; € X (M,1) with 7/ — e in M and v; — a in G(X) U 9G(X).

Lemma 3.7 : A4 (e) # 0.

Proof : This follows from Lemmas 3.4 and 3.6, together with the general fact that an
unbounded sequence in any Gromov hyperbolic space has a subsequence that converges to
a boundary point. $

We will see in Section 4, that A;(e) for all independent of [ for all sufficiently large [ in
relation to the parameters. Indeed, one could take any sequence 7; with v — e, without
constraint on the length, though this requires more work.

We will also eventually see, in Section 6, that A;(e) consists of a single point, giving
rise to the notion of “end invariant”.

As noted in Section 1, the statement that an end, e, of W(M) is not geometrically
finite means that there is a sequence (v;); of non-trivial non-peripheral closed curves in
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¥, and points z; € 7" with z; — e. Here, the v; are not assumed simple, and it is no
longer necessarily the case that v C W(M), nor that the p-diameters of v N V(M) are
bounded. One can ask whether it is possible to replace the 7; by a sequence of simple
closed curves, which would then imply that e is simply degenerate. This is achieved in
[Bon] in the constant curvature case, and it is noted in [C] that the argument also works for
pinched negative curvature. The case where M is only assumed hyperbolic is discussed in
[Ba], though under the assumption that the systole is bounded below. In fact, the author
assumes that M covers a compact 3-manifold with hyperbolic fundamental group, though
it seems likely that some form of bounded geometry of M is all that is required of this last
assumption.

4. End invariants.

In this section, we continue the discussion of invariants of simply degenerate ends.
We need to bring the “a-priori bounds” results of [Bow7| into play. These generalise the
statements of [Mi]. We have already verified that the relevant hypotheses hold. Namely,
the locally bounded geometry condition used there is given by Lemma 1.1.1, and the
thick-thin decomposition by Lemma 1.3.1.

One immediate consequence is the following, stated as Theorem 0.3 in the introduc-
tion.

Theorem 4.1 : There is some ly > 0 such that X (M,ly) is non-empty and uniformly
quasiconvex in G(X). Moreover, given any | > 0, there is some r > 0 depending only on [
and the parameters, such that X (M,l) C M (X (M,ly),r). &

Throughout this section, “uniform” means depending only on the parameters of M.

We may as well take [y in the above to be the same constant as that featuring in Section
3. One immediate consequence of Theorem 4.1 is that if e is a simply degenerate end of
U (M), then A;(e) = Ay, (e) for all I > ly. We shall therefore abbreviate A(e) = A;,(e).

To go further, we need the notion of a “tight geodesic” in G(X). This was introduced
in [MaM2]. Here we refer to the slightly more general definition used in [Bow7| for the
purposes of quoting results.

Theorem 4.2 :  Suppose that yoy; - - - V», is a tight geodesic in G(3) with vy, v, € X (M, 1).
Then ; € X(M,U’) for all i € {0,...,n}, where " depends on | and the parameters of the
action. &

Theorem 4.3 : There is some 1o depending only or the parameters of the action
such that 7o,...,7, is a tight geodesic in G(X) and r +ry < i < p —r — ro, where
r = max{d(yo, X (M,1)),d(vp, X (M,1))}, then v; € X(M,1"), where I" depends only on I
and the parameters of M. O

Let e be a simply degenerate end of W(M).
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Lemma 4.4 : Suppose a € A(e) and | > 0. Suppose that (v;); is a sequence of curves in
X (M,1) with v; — a. Then v} — e.

Proof : Let €/ be the other end of W(M) (which we need not assume to be simpy degen-
erate). Let E, E’ be neighbourhoods of e, e’ respectively with p(E, E') > ro, where rg is
the constant of Lemma 3.3. Let K be the closure of (M) \ (EUE’). Thus, K is compact.
Note that if o, € X (X), with o* C E’ and 8* C E, and (¢;); is any path in G(¥) from «
to 3, then e N K # () for some 1.

Suppose, for contradiction that v} 4 e. Now ~; is unbounded in G(X). Since the 7}
have bounded length, they must escape any compact subset of M. Passing to a subseqgence,
we can therefore assume that v — ¢’

By assumption, there is a sequence (d;); in X (M, lyp) with §; — a in G(3) and with
07 — e in W(M). For any given j, let (3;;); be a tight geodesic from 7; to §;. By Theorem
4.2, there is some [ > 0 such that §;; € X(M,l) for all 4, j. Moreover, by the earlier
observation, for any j, there is some i; such that a; N K # (), where a; = 3;,;. Now the
a; have bounded length, and remain in a compact region of M, and so lie in finitely many
homotopy classes. In other words, {«;|j € N} is finite.

In summary, we have v; — a, 6; — a, and for each j, we have a geodesic from y; to J;
which meets a fixed finite subset of G(X). This is easily seen to contradict the hyperbolicity

of G(X). &

Lemma 4.5 : For any a € A(e) there is a tight geodesic ray, (7;)i2, in G(X) converging
to a with ; € X(M,ly) for all i, where ly depends only on the parameters of M.

Proof : From the definition of A(e), there is sequence (§;); in X (M,ly) with 6; — a
and §F — e. For each i, let (ﬁij);-il be a tight geodesic from &g to &;. Thus, n; — oo,
and by Proposition 4.2, §;; € X(M,l") for some uniform I’ > 0. Given any j, we have
dg(s) (00, Bi;) = i (for all sufficiently large i so that (3;; is defined) and so, by Lemma 3.3,
p(05, ;"J) is bounded in terms of 7. Thus, the curves §;; all lie in a compact region of
M. Since their lengths are bounded, they lie in finitely many homotopy classes. That is,
{Bi;|7 > 0} is finite. Passing to a diagonal subsequence, we can find a sequence (;); so
that for all ¢, 8;; = ; for all sufficiently large j. Now (v;); is a tight geodesic converging

to a with ; € X(M,") for all i. To simplify notation, we can reset Iy = [’ O

Lemma 4.6 : Suppose (v;); is any tight geodesic converging on some a € A(e). Then
for all sufficiently large i, we have ; € X (M, ly) for some uniform .

Proof : Let (8;); be the geodesic given by Lemma 4.5, so that §; € X(M,ly). For for
all sufficiently large i, (7;); lies uniformly close to (3;); (after shifting indices), and so it
follows using Theorem 4.3 that v, € X (M,[") for some uniform I’. Reset lo =1’ O

The following result will turn out to be vacuous once we know that A(e) is a singleton.
However it is needed (or more precisely the variation Lemma 4.12) to prove this fact.
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Lemma 4.7 : Suppose a,b € A(e) with a # b. Let (;); be any bi-infinite geodesic from
a tob. Then ~; € X(M,ly) for all i, where ly > 0 is uniform.

Proof : By Lemma 4.6, we have lj;(7;) and [57(~—;) uniformly bounded for all sufficiently
large i. Now apply Theorem 4.2. &

We note that there is always a tight geodesic between any pair of distinct boundary
points of G(X) (see [MaM2] or [Bow2]).
Suppose now that M is doubly degenerate with ends e_ and e .

Lemma 4.8 : A(e_)NA(es) =0.

Proof : Suppose a € A(e_) N A(es). Let (v;); be any tight geodesic ray tending to a. By
Lemma 4.4, we have v — e_ and 7] — e, giving a contradiction. &

The following follows exactly as in Lemma 4.7.

Lemma 4.9 : Suppose a € A(e_) and b € A(ey) and that (;); is a bi-infinite geodesic
from a to b. Then v; € X(M,ly) for all i. O

For applications in Section 6, we will also need to consider “hierarchies”. All we need
to know for this paper is that to any a, 5 € X (X) we can associate a canonical finite subset,
H(a, B) € X(X). Here we shall refer to the description in [Bow7]| which is simplified from
[MaM2]. (From the definition, it turns out that H(c, ) contains every tight geodesic from
a to 3, and is contained in a bounded neighbourhood of such a geodesic.)

Hierarchies satisfy a number of finiteness properties. In particular, we have:

Lemma 4.10 : Suppose «;, 3; are sequences in G tending to points of 0G(X), and that
B C X(X) is bounded. Then there is a finite subset C' C B such that for all sufficiently
large i, we have H(«;, 5;) N B C C. &

Thus, if a; — a € 9G(X) and 5; — b € 0G(X), then we can pass to a diagonal
subsequence so that H(a;, ;) is eventually constant on any bounded subset of G(X). This
gives rise to a “hierarchy” between a and b. More formally, we can define this canonically
as follows. We set H(a, b) to be the set of v € X (X) such that given and neigbourhoods U
and V of a and b respectively in G(X)U0G(X), there exist « € UNX(X) and § € VNX(X)
such that v € H(a, 3). Thus, H(a,b) is a locally finite subset of G(X). If a # b, this is
non-empty. (It is a bounded Hausdorff distance from any bi-infinite geodesic from a to b.)
In practice, we could constrain o and S to lie in a tight geodesic from a to b, which may
simplify some of the arguments, but is not essential.

We quote the following from [Bow?7]:
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Theorem 4.11 : Given | > 0 there is some I’ > 0, and depending only on | and the
parameters of M such that if o, 3 € X (M,1) then H(a, B) € X (M,1').

We draw the following conclusions which follow by arguments similar to those of
Lemmas 4.7 and 4.9.

Lemma 4.12 : Suppose a,b € A(e) with a #b. Then H(a,b) C X (M, ly). &

Lemma 4.13 : Suppose that M is doubly degenerate, and a € A(e_) and b € A(ey).
Then H(a,b) € X (M, Iy). o

We remark that we can, in fact, eliminate the length bound altogether from the
definition of A(e). Indeed, if (7;); is any sequence in X (¥) with 7/ — e and 7, — a €
0G(X), then a € A(e). This follows from the remark after Lemma 3.3 — after moving each
of the v; a bounded distance in G(X), we can assume that the l/(7;) are all (unformly)
bounded. This does not change the limit point of the sequence in dG(X). We shall not be
explicitly using this fact in this paper, though it ties in out notion of “end invariant” with
that used in various places elsewhere.

5. Systems of quasiconvex sets.

To prove the main results of this paper, we will follow through the arguments of
[Bowb]. Most of this is simple reinterpretation, as we discuss in Section 6. The only
point requiring any significant modification is the construction of the lipschitz map from
the combinatorial model to the coarse hyperbolic 3-manifold. In [Bowb5], this entailed a
discussion of systems of convex sets in H2, here replaced by uniform quasiconvex sets in
H =M.

First we recall the notion of a truncated simplicial complex. Let IT be a 3-dimensional
simplicial complex. We write IT° for the set of i-simplices. Let |II| be the realisation using
regular euclidean simplices all of whose side lengths are 3. The truncated realisation, R(II),
is the closed subset of |II| obtained by removing a regular simplex of side length 1 about
each vertex of each simplex and then taking the closure in |II|. Given x € II°, let D(x) be
the boundary of the component of |II|\ R(II) containing x. Thus, D(z) is a 2-dimensional
simplicial complex. In applications, IT will be locally finite away from II°, and so R(II)
will be proper.

Let H be a proper k-hyperbolic space. All “quasiconvex” subsets will be assumed to
be quasiconvex for some fixed constant. To simplify notation, we may as well take this
to be the same as the hyperbolicity constant. Given two such subets, P,Q) C H, we set
par(P, Q) = diam(N (P, k') NN (Q, k")), where k' is fixed sufficiently large in relation to the
hyperbolicity constant such that for all » > k', diam(N(P,r) N N(Q,r)) is bounded above
in terms of . In other words, par(P, Q) serves as a convenient measure of the extent to
which P and ) remain “parallel” in H.
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Suppose that II is a 3-dimensional simplicial complex, and that to each = € II° we
have associated a quasiconvex set Q(z) C H. We assume:

(A1) If z,y € TI° are distinct, then Q(z) N Q(y) C dQ(z) N dQ(y) and par(Q(z), Q(y)) is
bounded above.

(B1) If zy € 1%, then d(Q(x), Q(y)) is bounded above.

(Here (A1’) is a slight weakening of the corresponding statement in [Bowb5].)
Given xy € IT!, let B(xy) be a shortest geodesic for Q(z) to Q(y) (just a point if they
intersect).

Lemma 5.1 :  Assuming (A1’) and (B1), if 2yz € II? then diam(8(zy) U B(yz) U B(zx))
is bounded.

Proof : The argument given in [Bow)| is easily quasified. 92

In [Bowb)] various constructions that were canonical can only be assumed equivariant
here. For this reason, we introduce group actions at this point.

Let T be a group acting simplicially on II and by isometries on H. Given z € II°, we
write ['(x) = {g € I' | g = x}. We assume:

(D1) (Vz € II°)(Yg € T)(Q(gz) = 9Q())-

(D2) The setwise stabiliser of each element of II* and of II? is trivial.

(Note that (D2) implies that I" acts freely and isometrically of R(II).)

We will need to assume that the sets QQ(z) are have reasonably nice intrinsic geome-
try. In practice they arise from loxodomic axes or from Margulis regions. The following,
somewhat artificial assumption, will serve for our purposes.

(D3) If # € TI°, then Q(x) is either a uniform quasigeodesic in H, or else convex in H
and intrinsically isometric to a convex subset of H?, whose boundary is the topological
boundary of H.

At this point, we need to assume the lipschitz isoperimetric inequalities of (M4) as
laid out in the introduction. (These are need to construct our lipschitz maps, though some
form of isodiametric inequality would serve if we only wanted quasi-isometric maps.)

Lemma 5.2 : Under the assumptions (Al’), (B1), (D1)-(D3), there is an equivariant
unformly lipschitz map, ¢ : R(II) — H. such that ¢(D(z)) C Q(x) for all z € 11°, and
such that if a € Q(x) N ¢(R(I1)) then d(a,0Q) is uniformly bounded above.

Proof : The proof follows as in [Bow5]. We replace the coning construction by applications
of the isoperimetric inequality (M4). This is no longer canonical. However our assumptions
(D1) and (D2) mean that they can be carried out equivariantly. &

The next task is to push ¢(R(II)) off the interior of the sets Q(x). We only need to
worry about those of the second type. For this, we introduce another collection, (A(x)),ermo
of nonempty quasiconvex sets, with A(gz) = gA(x) for all z € II° and g € T'. We assume
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that for each = € II°, there is some t(z) > 0 such that Q(x) = N(A(z),t(z)). If Q(x) is
of the first type (a quasigeodesic), then ¢(z) = 0 and Q(z) = A(x). Note that for g € T,
t(gx) = t(x). We choose suitable constants ¢y < t; as in [Bow5] and take a I'-invariant
partition of I1° = II§ LU TI{ such that ¢(z) < to for all z € I1° and t(x) > t; for all x € IIJ).

Lemma 5.3 : With the above hypothesis we can find a I'-equivariantly uniformly lipschitz
map ¢ : R(Il) — H such that:

(1) If z € 19, then ¢(D(x)) C A(z),
(2) If z € 1Y, then ¢(D(z)) C 0Q(x), and
(3) If z € T, then Q(z) N ¢(R(II)) C HQ(x).

Proof : We modify the map given by Lemma 5.2, as in [Bow5|. (If Q(x) is of the first
type, then no modification is necessary.) &

For our application we will not be given (B1) directly, so we need to consider other
hypotheses that imply it. At this point we diverge somewhat from the account given in
[Bow5]| since we no longer have available the involutions used there.

We suppose that the boundary of each of the Q(z) lie in the thick part. More precisely:
(D4) (Vr)(3v) (Vo € II°)(Va € 9Q(x)) we have |{g € T'| d(a,ga) < r}| < v.

Lemma 5.4 : We assume (Al’), (D1)-(D4). Let xy € II'. Suppose that g € I'(z) has
infinite order, and set z = gy. Then par(f(xy), 3(zz)) is bounded above in terms of the
hyperbolicity constant and the parameters of (D4).

Less formally, this means that either G(xy) has bounded length or f(xy) and [(xz)
diverge after a bounded distance.

Proof : Let a be at the intersection of Q(z) and [B(zy), so a € 9Q(z). Suppose [(xy)
and f[(zz) = gf(xry) remain parallel over a large distance, s. If v € N and if s is large
enough in relation to v times the hyperbolicity constant, then d(a, g‘a) is bounded by some
uniform constant r, for each ¢ € {0,...,v}. By taking v large enough in relation to r, we
get a contradiction to property (D4). &

Next, we suppose we have a I'-equivariant subset I13 C II? satisfying:

(D5) If xyz € 13, then there are infinite order elements g(z,vy, z) € I'(z), g(y, z,z) € T'(y)
and g(2,7,y) € I'(z) with g(2,y,2)9(y, 2, 2)g(z,2,y) = 1 in I".

Lemma 5.5 : We assume (Al’), (D1)~(D5). If zyz € 13, then the lengths of 3(zy),
B(yz) and ((zx) are all bounded above in terms of the parameters.
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Proof : It is enough to bound f(zy). Let g = g(x,y,2) € I'(z) and h = g(y, z,z) = ['(y),
so that gh = g(z,7,y) "t € I'(z). Let w = g~ 'z = hz. Since I'(z) N T'(2) is trivial, w # z.

Using (D3) we can find uniformly quasigeodesic paths, a(x), a(y), a(z), a(w) in H,
respectively contained in Q(z), Q(y), Q(z), Q(w), so that

a(z) U B(zz) Ua(z) U B(zy) Ualy) U Blyw) U a(w) U f(wz)

forms a closed path — an “octagon”. Consecutive edges of the octagon can remain parallel
only over a bounded distance (in terms of the hyperbolicity constant). Moreover, by
Lemma 5.4, f(xz) and [(zw) have the same length, and remain parallel over a bounded
distance. Similarly, S(yz) and B(yw) have the same length, and remain parallel over a
bounded distance.

It is now an exercise in hyperbolic spaces to show that if a(x) and «(y) are far apart,
then «(z) and a(w) remain close over a large distance. In particular, if 5(xy) is very long,
then par(Q(z), Q(w)) is large, contradicting (A1’).

This shows that G(xy) has bounded length, as claimed. &

Next we assume:

(D6) If zyz € I12, at least two of the edges zy, yz, zz lie in simpices of I13.
(D7) Each edge of II' lies in at least two simplices of II2.

Lemma 5.6 : We assume (Al’), (D1)-(D7). If zy € 11}, then the length of 3(zy) is
bounded above in terms of the parameters of the hypotheses.

Proof : By (D7) there are distinct z,w € IIY with zyz, zyw € 112, Now if B(xy) is very
long, then by Lemma 5.5, xy cannot lie in any simplex of I12. Thus, by (D7), zy, yz, 2w, yw
must all lie in simplices in I13. By Lemma 5.5 again, the lengths of each of 8(xy), B(yz2),
B(zw) and [(yw) are bounded.

As in the proof of Lemma 5.5, we consider the octagon

a(z) U B(zz) Ua(z) U B(zy) Ualy) U Byw) U a(w) U fwz).

This time, we note that all the $-edges have bounded length, and that a(y) and «a(z) are
far apart. Again by a (simpler) excercise in hyperbolic spaces, a(z) and a(w) remain close
over a large distance, giving a contradiction as before. &

In other words, we have shown (A1’), (D1)—(D7) imply (B1). In particular, in Lemma
5.3, we can substitute hypothesis (B1) with (D1)—-(D7).

We finally come to the application of all this to coarse hyperbolic 3-manifolds. To be
clear about our assumptions, we start again at the beginning.

Let M be a coarse hyperbolic 3-manifold, and let I' = 71 (M).

Suppose that I" also acts on a 3-dimensional simplicial complex, II, and let R(IT) and
(D(z))zemo be as constructed earlier. Given x € II°, write I'(x) for the stabiliser of = in
. Let II3 be a '-equivariant subset of T12.

We suppose:
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(E1) Every edge II is contained in at least two 2-simplices of II.

(E2) If z € T1°, then I'(z) is infinite cyclic.

(E3) If z,y € T1° are distinct, then T'(x) NT'(y) is trivial.

(E4) The setwise stabiliser of any element of II? is trivial.

(E5) If xyz € 112, we can choose generators, g(x), g(y), g(z) respectively of I'(z), T'(y), T'(2)
such that g(z)g(y)g(z) = 1.

(E6) If zyz € 12, then at least two of its edges lie in TI3.

Note that T' acts freely on R(II). We write II = II/T" and R(II) = R(II)/T. Given
any z € 119, we have a subset D(z) = D(z)/T'(z) of R(IT). Note that to each z € II°, we
have a free homotopy class of closed curve, y(x), in M and hence also in ¥. (We do not
assume, for the moment, that this is simple in X.)

We now make the following “a-priori bounds” assumption:
(E7) There is some L > 0 such that if 2 € II°, then I;(y(z)) < L.

Given any z € II° we write ~v*(x) for a shortest representative in M. If n <
we write T, (z) for the n-Margulis tube about v*(x). In Section 1, we saw that this is a
standard tube.

Note that if y € T1%, there are canonical lifts 7*(x) and T;; (z) to M.

Lemma 5.7 : Let M be a coarse hyperbolic 3-manifold and I" = w1(M). Suppose that
I' acts on a simplicial complex, 11, satisfying (E1)-(E7) above. Then there are positive
constants &, nz,n3 with n3 < 1y, depending only on the parameters of M and of (E7) such
that the following holds. We can write I1° as a I'-invariant disjoint union I1° = IIYUTIY, and
find a T-equivariant ¢-lipschitz map ¢ : R(II) — W(M) to the lift of the ny-non-cuspidal
part of M, such that:

(1) If z € T1Y, then Iy (y(x)) < 13 and ¢(D(z))
(2) If € 10§, then Iy (y(z)) < n2 and ¢(D(z))
(3) For all € T, T, (x) N ¢(R(M)) C T, (x).

Proof : We choose 7z and 73 and define II§ and I1{ similarly as in [Bow5]. If x € I1°, we
set Q) = *(x) if Ly (y(x)) > 12 and Q(x) = Ty, (x) if lpr(y(2)) < M2 By the results
of Section 1.2, we see that (Q(z))x € II” satisfy the conditions laid out above. We now
proceed as in [Bowb], applying Lemmas 5.6 and 5.3 to construct a lipschitz map, and then
modify inside Margulis regions, either projecting to the boundary or to the axis, depending
on the depths of the respective Margulis regions. &

Passing to the quotient, we get a map f : R(I) — O(M), where O(M) = ¥ (M) \

U, ero int Ty, (2).
As in [Bowb] we see:
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Lemma 5.8 : There is some 14 > 0, depending only on the parameters of M and on the
constant L of (D7) such that if f(r(1I) = ©, then ©(M,n3) C O(M) C O(M,ny). &

In particular, it then follows that © is a “thick part” of M.

6. A coarse version of the ending lamination conjecture.

We now have most of the machinery in place to give a version of the ending lamination
conjecture for coarse hyperbolic 3-manifolds. This will follow the arguments of [Bowb]
and we shall give a brief overview of that paper, explaining how the relevant notions are
reinterpreted. Here we discuss mainly the doubly degenerate surface group case, though
there is scope for applying these ideas to more general manifolds.

We shall use exactly the same “combinatorial model” is in [Bow5|, which is, in turn,
essentially just a reformulation of that used in [Mi].

Given a_,a; € 0G(X), with a_ # a4, one constructs a “combinatorial model”,
P = P(a_,ay). This is a riemannian manifold, with a preferred “non-cuspidal part”,
¥(P), homeomorphic to ¥ x R. Thus ¥(P) had two ends, e” and e, which we designate
as “negative” and “positive” respectively, and are associated to the “end invariants” a_
and a respectively. Each component of P\ ¥ (P) is a standard Margulis Z-cusp, with fixed
universal constant. Note that P need not be canonical. We only need that its construction
only uses makes use of the data a_ and a.

Suppose that M is a coarse hyperbolic 3-manifold (i.e. satisfying (M1)—(Mb5) of the
introduction). We write W(M) for its non-cuspidal part (with fixed constant depending
only on the parameters). We designate the ends of M as e and 64]\_4 . We aim to prove:

Proposition 6.1 : Suppose that M is doubly degenerate and a_ € A(eM) and a, €
A(el!). Let P = P(a_,ay) be a combinatorial model constructed from a_ and ay. Then
there is a proper uniformly lipschitz map, f : P — M, vyjth~f_1(\11~(M)) = ¥(P),
which sends e to eM and e¥ to e}!, and such that the lifts f : P — M and f|¥(P) :

W(P) — W(M) to universal covers are both uniform quasi-isometries. Here “uniform”
means depending only on the parameters of M.

We will eventually see (Proposition 6.8) that A(e}!) = {a+}, and so P depends only
on the “end invariants”, a(elf). However, for the moment, a1 may be any elements of
A(el). Recall that, by Lemma 4.8, A(e™) N A(e}!) = 0, and so the construction of P
makes sense.

For the proof, we will need to recall various facts about P that arise directly from its
construction.

There is a closed submanifold, A(P) C ¥(P), such that each component of A(P) is
isometric to the interior of a standard Margulis tube. The set of such tubes is unlinked
in ¥(P) 23 x R, and no two tubes are freely homotopic in W(P). They are therefore in
bijective correspondence to a certain subset, X (P) C X(X). We write T'(y) C ¥(P) for
the closed tube corresponding to v € X (P).
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The submanifold, A(P), has bounded geometry, with injectivity radius bounded below.
(This is the bit constructed as a union of bricks.) In fact, there is a uniformly bilipschitz
homeomorphism from A(P) to R(II), where I = II/T", and where II is a 3-dimensional sim-
plicial complex admitting an action of I' = 71 (X). Here R(IT) = R(IT)/T is the truncated
realisation described in Section 5. In fact, IT and I" satisfy all of the conditions (E1)—(E7)
laid out there. Moreover, to each x € II°, we have associated a unique curve v(z) € X(P)
such that the homeomorphism sends T'(y(x)) to D(z), where D(z) is the 2-dimensional
subcomplex of R(IT) associated to x.

We also note that X (P) C H(a—_,ay), where H(a_, a4 ) is the hierarchy associated to
a_,a4 € 0G(X) described in Section 4. In fact, there is a bi-infinite geodesic (;); in G(X)
from a_ to ay with ; € X (P) for all i. As i — do0, T(v;) — eX.

Suppose that ¥ C X(P) is a subset. We set A(P,Y) = W(P)\ U, cpint T(y). (Thus,
A(P,0) = U(P) and A(P, X(P)) = A(P).) We shall assume that for each v € X(P)\
Y, T'(v) has bounded depth. (A particular choice of Y will be given later, when the
construction is applied.) This implies that the injectivity radius of A(P,Y’) is bounded
below. We define a reduced pseudometric p = pp on V(P), similarly as for W(M), by
deeming each tube T'() for v € Y to have p-diameter 0. We see that p is a proper
pseudometric on W(P). It turns out that (V(P), p) is quasi-isometric to the real line. In
fact, we can be more explicit.

Given x € U(P), we can find an embedded surface, S, in ¥(P), such that the in-
clusion (S,0S) into (¥(P),0¥(P)) is a relative homotopy equivalence, and such that the
p-diameter of {z}US is uniformly bounded above. In fact, we can assume that S C A(P,Y).

Now, since p is proper, we can find a proper map = : R — (¥(P), p) which is
uniformly quasi-isometric (that is, for all t,u € R, p(w(t),7(u)) is bounded above and
below by uniform increasing linear functions of |t — u|), and such that w(t) — ef as
t — +oo. (In fact, we can take 7 to be as close as we want to being geodesic with respect
to p.) Now, given any t € R, we can find a surface, S; C A(P,Y) C ¥(P) of the type
described above such that the p-diameter of {7(¢)} U S; is bounded above. From this, we
can deduce that 7 is, in fact, a uniform quasi-isometry from R to (V(P), p). Recall that
this applies to any subset Y C X (P) so that the injectivity radius of A(P,Y) is bounded
below. We will settle on a particular subset later.

We will also need a fact about the non-distortion of components of OA(P,Y) in
A(P,Y). This will be mentioned again when it is applied.

Now let M be a coarse hyperbolic 3-manifold and let a_ € A(e!) and ay € A(el),
and let P = P(a_, a4 ) be a combinatorial model constructed from a_ and a. .

Lemma 6.2 : There is some uniform L > 0 such that X (P) C X (M, L).

Proof : We know from the construction that X (P) C H(a—,a+). By Lemma 4.13, we
have H(a_,a4+) C X(M, L). O

This is the “a-priori bounds” property (E7) listed in in Section 5. As in Section 5,
we now obtain a subset O(M) C (M), and a lipschitz map of A(P) to ©(M). More
precisely:
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Lemma 6.3 : There is a proper uniformly lipschitz map, f : A(P) — ©(M) such that
f7HOY(M)) C Y(P) and f~1(0O(M)) C OA(P), and which extends continuously to
a relative homotopy equivalence (V(P),0¥(P)) — (¥(M),0¥(M)). Moreover, for each
~v € X(P) either f(0T (7)) lies in the boundary component of ©(P), or else f(OT(y)) = v*,
where v* is a shortest representative of v in M.

Here, of course, we can assume that the relative homotopy equivalence (¥ (P), 0¥ (P)) —|}
(U(M),0¥(M)) commutes with the natural homotopy equivalence of these pairs to (3, 0%) |

Proof : By construction, A(P) is uniformly bilipshitz equivalent to a truncated complex,
R(IT). We can therefore apply Lemma 5.7 to get a uniformly lipschitz map from R(II)
to W(M). Precomposing with the bilipschitz map to A(P), we get a lipschitz map f :
A(P) — W(M). The fact that A(P) C O(M) and the other properties listed, follow from
Lemma 5.7. &

We set Y C X(P) to be the set of curves v € X(P) such that f(9T(y)) lies in
a boundary component of ©(M), and write O(P) = A(P,Y) C ¥(P). If vy € X(P)\
Y, then f(9T(v)) = ~*, which has length bounded below by 73 and bounded above by
L. Since f|0T()\) is lipschitz, we see, as in [Bow5| that T'(vy) has bounded depth, and
that f|OT(v) extends to a uniformly lipschitz map from T'(y) to v*. (This only depends
on the intrinsic geometry of v* as a circle.) We thus obtain a uniformly lipschitz map
f:O(P) — O(M) with f~1(00(M)) C O(P). We can extend this to a homotopy
equivalence f : (U(P),0V(P)) — (¥(M),0¥(M)), though for the moment, it is only
defined topologically in W(P) \ ©(P).

As in [Bow5] we see that f sends ef to el!. (This stems from the fact that we have
a bi-infinite geodesic (7;); in G(X), with realisations as curves of bounded length in ¥(P)
and W (M) respectively, and tending out e} and e} resepectively, as i — F0c.) One then
deduces that f is surjective. By Lemma 5.7, we see that the injectivity radius of ©(M) is
uniformly bounded below, and so is a “thick part” of M.

We can now prove Theorem 0.6, namely that the components of W(M) \ ©(M) are
unlinked in W(M). This results from the following topological statement:

Lemma 6.4 : Suppose that £ and L' are locally finite collections of disjoint essential
non-peripheral closed curves in ¥ x R. Suppose that f : ¥ x R — ¥ x R is a surjective
proper homotopy equivalence of the pair (¥ x R, 9% x R). Suppose that f~*(|JL') =L
and that f|JL:JL — UL is a homeomorphism. If L is unlinked in 3 x R, then so is
L'

Proof : This argument is an application of [FrHS], or more precisely, the topological tower
construction used there in the case of a homotopy equivalence of a surface to a 3-manifold.
The account given in [O] can be reinterpreted in a general topological setting as outlined
in [Bowb]. The idea is as follows.

Since £ is unlinked, we can assume that each vy € £ lies in a surface S() of the form
Y x {t(v)} where t : L — R is injective with discrete image. For each v € £ whe have
v C f(S(7)), where ' = f(v) € L'. We surger f(S(v)) as in [Ot] using the methods of
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[FrHS] to obtain an embedded surface S’(y) D 4/, whose inclusion into ¥ x R is a relative
homotopy equivalence (S’(7),95'(y)) — (2 x R,0% x R). Moreover, we can arrange
that the surfaces S’(7y) are all disjoint. Since f||JL: UL — (L' is a homeomorphism,
each element of £’ lies in such a surface, and so £’ is unlinked. &

Proposition 6.5 : The components of U(M)\ ©(M) are unlinked in W(M).

Proof : We have defined f : U(P) — V¥(M). By construction, the components of
U(P)\ O(P) are unlinked in ¥(P). Moreover, f~1(O(M)) = ©(P), and the result follows
from Lemma 6.4. &

This now proves Theorem 0.6, since we can assume that 1 was chosen such that
O(M) C ©(M,n), so that each T' € T lies in a component of W(M) \ ©O(M).

It now follows as in [Bowb] that f|O(P) : ©(P) — O(M) is a homotopy equivalence,
and homotopic to a homeomorphism.

The remainder of the proof of Proposition 6.1 follows as in [Bowb]|, where only the
bounded geometry of ©(M) was used.

Briefly, one shows that the lift, f : ©(P) — ©(M) to universal covers is a uniform
quasi-isometry. Moreover, we can homotope f a bounded amount near JO(P) so that
it becomes uniformly bilipschitz from 0©(P) to 0O(M). (This uses a fact about the
non-distortion of 00(P) in O(P), alluded to earlier.) One can now extend in bilipschitz
fashion over the Margulis tubes and Z-cusps, giving a map f : P — M with the required
properties.

This proves Proposition 6.1.

The following corollary is immediate:

Corollary 6.7 : Let M, M’ be doubly degenerate coarse hyperbolic 3-manifolds with
AleMyn AeM) +# @~ and ﬁ(ef) N A(ef) # 0. Then there is a uniform equivariant
quasi-isometry from M to M', sending U(M) to ¥(M'). O

The quasi-isometry respects the ends of W(M) and W(M’) in the sense that we can
find sequences a:zi in (M) and yii in W(M') related by the quasi-isometry and whose
projections to W(M) and W(M’) tend out e} and e}’ respectively.

We remark that in the course of proving Proposition 6.1, it is shown that f : (U(P), pp)
(U(M), par) is a quasi-isometry, where pp and pjs are the reduced metrics on W(P) and
U (M) respectively. In particular, we see:

Proposition 6.8 : (V(M), pas) is quasi-isometric to the real line. &

A couple of the trickier statements in the introduction remain to be proven. First, we
have the uniqueness of the end invariant.

For this, let e be a simply degenerate end of a coarse hyperbolic 3-manifold, M. We
want to show:
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Proposition 6.9 : A(e) = {a} for some a € 0G.

Proof : Let ¢’ be the other end (about which we make no assumptions). We can find a
map 7y : R — V(M) that is uniformly quasi-isometric with respect to the metric pys
on V(M). (Indeed we can take it abritrarily close to geodesic.) Moreover, my(t) — e as
t — oo and mp(t) — €' as t — —oo. The existence of 7y is an easy consequence of the
fact that pys is proper.

Suppose, for contradiction that we have a,b € A(e) with a # b. Let P = P(a,b) be a
combinatorial model.

We now proceed as in the proof of Proposition 6.1. We get a lipschitz map, f :
A(P) — M with f(A(P)) C O(M). Setting Y = {y € X(P) | f(0T(v)) C 906(M)} and
©(P) = A(P,Y) we extend to a lipschitz map f : ©(P) — O(M), and then continuously
toamap f: U(P) — W(M), which is a relative homotopy equivalence of (V(P),0V(P))
to (U(M),0¥(M)). This time, however, both ends of W(P) get sent out the same end, e,
of U(M).

Let 1p = m: R — W(P) be a quasi-isometric map to (¥(P), pp) as described earlier.
Given t € R, there is a surface, Sy C ©(P) such that the pp-diameter of {mp(t)} U S; is
uniformly bounded above. Now f(S;) must separate the ends of M, and so must meet
mu (R). Choose t' € R so that mp(t) € f(S:) and set o(t) =t'. Now the pp/-diameter of
f(S¢) is also bounded above, so this is well-defined up to an additive constant. Moreover,
the map 0 : R — R is quasi-isometric. These statements follow exactly as in [Bow5]
(where they formed an essential part of the proof that f : ©(P) — ©(M) is a quasi-
isometry in the doubly degenerate case).

But now, since f sends both ends of ¥(P) out e, we see that o(t) — +o00 as t — —00
and as t — +oo. This gives a contradiction, thereby proving Proposition 6.9. &

We can now write A(e) = {a(e)}, where a(e) € 9G(X) is the end invariant of e.

Note that we have now proven Theorem 0.4, and the definition of “end invariant”
arising from it agrees with that defined above.

In the light of this, Theorem 0.5(1) arises from Lemma 4.8 and Theorem 0.7 arises
from Corollary 6.7.

It still remains to prove Theorem 0.5(2).

We begin by remarking that we can now always reduce to the case of a (constant
curvature) hyperbolic 3-manifold, since any coarse hyperbolic 3-manifold is equivalent to
such, in the sense that their universal covers are equivariantly quasi-isometric. In fact, if
M is doubly degenerate, there is a unique doubly degenerate hyperbolic 3-manifold, M’,
with the same pair of end invariants (using Thurston’s double limit theorem). Theorem
0.7 then tells us that M and M’ are uniformly equivariantly quasi-isometric. In particular,
curves of bounded length in M will also be of bounded length in M’. Theorem 0.5(2) is
already known for such manifolds, and the general case then follows.

One can argue more directly along the following lines. First note that X (M,ly) is
unformly quasiconvex, and it follows that any bi-infinite geodesic in G(X) from a(ey) to
a(e_) lies in a bounded neighbourhood of X (M,ly). Conversely, there is a bi-infinite
geodesic (;); in G(X) with length(v}) < [ for all ¢ and with v} — ey as i — £oo. Note
that par(7;,7;51) is bounded for all i. It now follows that any point of M is a bounded
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pa-distance from some v (cf. Propostion 6.8). To complete the argument, we need the
following general lemma:

Lemma 6.10 : Given [,h > 0, there is some r > 0 depending only on I, h and the
parameters of M such that if 3,y € X(M,1) with pp(8*,~v*) < h, then dgs)(8,7) <.

Here M can be any coarse hyperbolic manifold. Again, in the case of a doubly
degenerate manifold, it can be deduced from the corresponding statement in constant
curvature.

Alternatively, suppose v € X (M,1). Then by [Bow6], as in the proof of Lemma 3.2,
is carried on a train track 7 which admits a lipschitz map into M. Since v* has bounded
length, it passes through a bounded number of branches of 7. Moreover, 7 either contains
a curve, ¢, homotopic to a Margulis tube, or else 7 has bounded diameter. In the former
case, dg(s)(7,0) is bounded. In the latter case, we can find thick structure o, on ¥, and
a uniformly lipschitz map of (X, 0) into #(M), such that v has bounded length also in
(X,0). We can now transfer this picture back to the model space P. We see that ~ lies
in a surface in the thick part of the model that passes through only a bounded number
of brick or Margulis tubes of bounded depth. It follows that v has bounded intersection
number with some curve § arising the hierarchy used to construct the model. In either of
the above cases, we see that - is a bounded distance in G(X) from a curve in a bi-infinite
geodesic from used in the construction of the model. The result now follows.
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