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0. Introduction.

In this paper, we prove a result concerning the nature of global cut points in continua
which admit certain kinds of convergence actions. One of the principal motivations con-
cerns the boundaries of one-ended hyperbolic groups. It was conjectured in [BeM] that
such boundaries are locally connected, or equivalently, have no global cut point. This was
shown to be the case for strongly rigid groups in [Bo3,Bo5] and strongly accessible groups
in [Bo6]. An ingenious idea of Swarup showed how to adapt these arguments to deal with
the general case [Sw]. Inspired by this idea, we reset this result in a broader dynamical
context, which will have applications also to limits sets of relatively hyperbolic groups,
and in particular to geometrically finite groups. There are close connections between the
algebraic structure of such groups and the topology of their boundaries. In this, local and
global cut points play a major role.

Before stating the main theorem, we need a few definitions. Convergence groups were
defined by Gehring and Martin [GeM]. (See also [T] and [Bo7] for some discussion relevant
to the present paper.) Let M be a continuum, i.e. a connected compact hausdorff topo-
logical space. Suppose that Γ acts as a convergence group on M . (Throughout this paper
we use the term “convergence group” for what was called a “discrete convergence group”
in [GeM].) Such an action is minimal if there is no proper non-empty closed invariant
subset. A parabolic element of Γ is an infinite order element with precisely one fixed point.
If G is a two-ended (i.e. virtually cyclic) subgroup of Γ, we write ηΓ(G) for the number
of ends of the pair (Γ, G). (Note that if Γ splits over G, then ηΓ(G) > 1.) A loxodromic
subgroup, G, of Γ is one whose limit set, ΛG, consists of precisely two points. Such a
group is necessarily two-ended, and (M \ ΛG)/G is compact hausdorff. We write ηM (G)
for the number of connected components of (M \ ΛG)/G. If the dynamics of Γ on M in
some way reflects the intrinsic geometry of Γ, one might expect the quantities, ηΓ(G) and
ηM (G) to be somehow related. All we are really concerned about in this paper is whether
these numbers are equal to or greater than 1. (We do not assume them to be finite.)

The statement of the main result is a little technical:

Theorem 0.1 : Let Γ be a one-ended finitely presented group with no infinite torsion
subgroup. Let M be a metrisable continuum which admits a minimal convergence action
by the group Γ. Suppose that, for any loxodromic subgroup, G ≤ Γ, with ηΓ(G) > 1, we
have ηM (G) > 1. Then, every global cut point of M is a parabolic fixed point.

In fact, we can get away with a little less. We only really need that if Γ splits over
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a loxodromic group, G, then ηM (G′) > 1 for some finite index subgroup, G′, of G. That
some kind of “non-degeneracy” assumption of this nature is necessary is apparent from
the well-known examples of surface groups which act as convergence groups on dendrites
with no parabolics.

The main application of this result will be the following. Recall that a “relatively
hyperbolic group” consists of group, Γ, and a class, G, of preferred “peripheral” subgroups
such that Γ is “hyperbolic relative to” G. This notion was a defined by Gromov [Gr]. It
is discussed further in Section 4. Associated to a relatively hyperbolic group, (Γ,G), is
a canonical compact metrisable space, ∂(Γ,G), called the “boundary” of (Γ,G). Now Γ
acts as a convergence group on ∂(Γ,G) such that the peripheral groups are precisely the
maximal parabolic subgroups. In our notation, we shall frequently omit explicit reference
to the peripheral structure, G. If the peripheral structure is empty, we are reduced to the
standard case of (word) hyperbolic groups.

Theorem 0.2 : Suppose that Γ is a relatively hyperbolic group whose boundary, ∂Γ, is
connected. Suppose that each peripheral subgroup is finitely presented, either one-ended
or two-ended, and contains no infinite torsion subgroup. Then every global cut point of
∂Γ is a parabolic fixed point.

This result has two immediate corollaries. The first, in the case where there are no
peripheral subgroups, gives us:

Corollary 0.3 : The boundary of a one-ended hyperbolic group has no global cut point.

As mentioned above, this has been obtained by Swarup [Sw], using results of [Bo3],
[Bo6] and [L]. It follows, by [BeM] that such a boundary is locally connected. Thus, for
example such a group is semistable at infinity [M], and one can derive the JSJ splitting of
Sela [Se] from the local cut point structure of the boundary [Bo4].

The second application is the special case of limit sets of geometrically finite groups in
pinched negative curvature [Bo2]. In this case, peripheral subgroups are finitely generated
virtually nilpotent [Bo3], and hence automatically satisfy the hypotheses of Theorem 0.2.

Corollary 0.4 : Suppose a group Γ acts as a geometrically finite group on a complete
simply connected manifold of pinched negative curvature. If the limit set, ΛΓ, is connected,
then every global cut point is a parabolic fixed point.

Now, given the result of Theorem 0.2, it’s not hard to see that, if Γ has a global cut
point in its boundary, it must split over a parabolic subgroup relative to the peripheral
subgroups. (This will be discussed in [Bo10].) An alternative dynamical approach to
this is given in [BoS] in the case where all peripheral groups are one-ended. (It’s not
clear if one can give a purely dynamical formulation which allows for two-ended peripheral
subgroups.) These results form part of the larger project of showing that the boundary
of a relatively hyperbolic group, satisfying the same hypotheses as Theorem 0.2, is locally
connected. An overview of this project is described in [Bo9]. In particular, this shows that
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the boundary of a geometrically finite kleinian group is locally connected if it is connected.
The 3-dimensional case is described in [AnM]. The higher-dimensional case seems to call
for a completely different approach, and has been open for some time. The case of kleinian
groups is discussed in [BoS].

For the purposes of exposition, we shall first give direct proofs of the two corollaries.
The proof of the second corollary can be adapted easily to prove Theorem 0.2, as we discuss
in Section 4. Since this calls for additional background material, as set up in [Bo8], we
give the main argument in the more familiar context of pinched hadamard manifolds.

Most of this paper was prepared at the University of Melbourne. I am indebted to
Walter Neumann and Craig Hodgson for inviting me to take part in the Special Year in
geometric group theory, and to the other members of the geometry group for stimulating
discussions.

1. Proof of the main theorem.

We shall need the following observation, which appears to be folklore. (A proof an
analogous result for the property FPn is given in [Bi].)

Lemma 1.1 : Suppose Γ is a finitely presented group which splits as a finite graph of
groups all of whose edge groups are finitely presented. Then, all the vertex groups are
finitely presented.

Proof : Let (V,E) be the graph of groups. Given v ∈ V and e ∈ E, we write Γ(v)
and Γ(e) respectively for the vertex and edge groups. We choose simplicial complexes,
K(v) and K(e), with fundamental groups Γ(v) and Γ(e). We take all the edge complexes,
K(e), to be finite. Moreover, if e is incident on v, we can suppose that K(v) contains an
embedded homeomorphic copy, K(v, e) of K(e), such that the inclusion induces the given
edge-to-vertex group inclusion on the level of fundamental groups. We can assume that
the complexes, K(v, e) are disjoint, as e ranges over the set, E(v), of edges incident to v,
and also that each K(v, e) has an embedded product neighbourhood, K(v, e) × [0, 1], in
K(v). We form a complex, K, by identifying K(v, e) with K(w, e) whenever v and w are
the endpoints of some edge e. In this way we get π1(K) ∼= Γ.

Now, let L be a finite complex with π1(L) ∼= Γ. Let f : L −→ K be a simplicial map
inducing an isomorphism of fundamental groups. We can assume that f is injective. (For
example, by replacing K by K×Q, where Q is a cone over L, and replacing f by a diagonal
map.) Identifying L with its image under f , we can assume that L is a subcomplex of K.
In fact, we claim that we can choose the pair K,L so that, for each e ∈ E, the complex
L ∩K(e) is connected and carries all of Γ(e) = π1(K(e)). (The only reason for modifying
K in this process is to ensure that L remains embedded.)

The proof of the claim relies on a variation of Stallings’s “binding tie” argument.
(A similar application of these ideas can be found in [BeF1].) Suppose that L ∩K(e) is
disconnected. Let α be an arc in K(e) connecting distinct components of L∩K(e). Since
L carries all of π1(K), we can find an arc, β, in L which is homotopic to α relative to
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its endpoints. Thus α ∪ β spans a disc, D, in K, which we can assume (modifying K
if necessary) to be embedded and to satisfy L ∩ D = β. Moreover we can assume that
D∩

⋃
e∈EK(e) consists of a finite set of arcs. (We can easily eliminate closed curves, given

that each K(e) is π1-injective in K.) We now replace L by L ∪D. This reduces the total
number of components of L∩

⋃
e∈EK(e). Thus, after a finite number of steps, we arrange

that each complex L∩K(e) is connected. To ensure that each L∩K(e) carries all of Γ(e),
we carry out another sequence of operations of this type. This time we choose the arcs
α so as to generate what remains of Γ(e), using the fact that the edge groups are finitely
generated. This proves the claim.

Now it’s a simple exercise to check that if v ∈ V , then L ∩ K(v) is connected. Let
L(v) = (L ∩K(v)) ∪

⋃
e∈E(v)K(v, e). Again, it’s easily verified that the inclusion of L(v)

in K(v) induces an isomorphism of fundamental groups. In particular, Γ(v) ∼= π1(L(v)) is
finitely presented as required. ♦

We shall need another lemma about splittings. Let Γ be a group. By a two-ended
splitting of Γ, we mean a representation of Γ as a finite graph of groups with each edge
group two-ended. Also, we shall not allow vertices of degree one with the vertex group
equal to the incident edge group. (On the level of trees, this means we are only considering
minimal actions.) We say this splitting is maximal if none of the vertex groups split further
(non-trivially over two-ended subgroups) relative to the incident edge groups. Recall that
a splitting is reduced in the sense of [BeF1] if it contains no reducible vertices. A reducible
vertex is a vertex of degree 2, such that one of the incident edge groups is equal to the
vertex group. If Γ is finitely presented, then the result of [BeF1] puts a bound on the
complexity of a reduced small splitting of Γ, where complexity is measured by the number
of edges in the graph of groups. In particular, this deals with two-ended splittings.

We need a slight variation on this. The following result can be deduced from the
description of the JSJ splitting of a one-ended finitely presented group (see for example
[DuS]). For completeness, we summarise the relevant part of the argument.

Lemma 1.2 : Any one-ended finitely presented group admits a maximal two-ended
splitting.

Proof : Let Γ be a finitely presented one-ended group. We start with a reduced two-
ended splitting of Γ of maximal complexity, as given by [BeF1]. If it is possible to split
one of the vertex groups relative to the incident edge group, then we would obtain a
more complex graph of groups, which must therefore contain a reducible vertex. If the
theorem fails, then we can iterate this process indefinitely. We can only ever introduce
reducible vertices. (For if, at some point, we introduced a non-reducible vertex, we could
collapse back all the previously introduced reducible vertices, to obtain a reduced graph
of greater complexity than the original.) We thus obtain a sequence of graphs of groups,
with arbitrarily long chains of reducible vertices inserted along the edges of the original
graph. This subdivides any such edge into “subedges”, where the subedge stabilisers each
increase or decrease as we move along the edge. Now we cannot have a subedge stabiliser
with both adjacent subedge stabilisers strictly smaller (since contracting this subedge to a
vertex would introduce a new non-reducible vertex). We are therefore quickly reduced to
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worrying about the existence of arbitrarily long sequences of subedges with either ascending
or descending subedge stabilisers.

Now, infinite ascending chains might indeed occur. However they do not concern us
here, since they correspond to splitting the vertex groups trivially relative to the incident
edge groups, and hence do not interfere with maximality, as we have defined it. We
thus only need to rule out the possibility of infinite descending chains. This is based on
Dunwoody’s track construction, cf. [D].

For the purposes of the argument it is convenient to collapse all the irrelevant parts
of the graph of groups to vertices, so as to give us an amalgamated free product or HNN
extension over a two-ended subgroup. For convenience of exposition, let’s suppose we are
dealing with an amalgamated free product. The graph consists of a single edge, which
we identify with the unit interval, [0, 1]. We imagine successively inserting new degree-2
vertices into the graph at the points 2−n, for n ≥ 1. Taking the corresponding trees, we
get a sequence of simplicial trees, Tn, with quotient maps to [0, 1]. We now fix a finite
2-dimensional simplicial complex, K, with fundamental group Γ, and define a sequence of
Γ-equivariant resolutions, φn : K̃ −→ Tn, where K̃ is the universal cover of K. Passing to
the quotient under Γ, these induce a sequence of of maps ψm : K −→ [0, 1]. If m ≥ n, we
can suppose that ψ−1

m [2−(n+1), 1] = ψ−1
n [2−(n+1), 1], and that ψm agrees with ψn on this

preimage.

For each n ≥ 0, let en be an edge of Tn which maps to [2−(n+1), 2−n] under the
quotient map. We choose these edges so that Γ(en+1) ⊆ Γ(en), and so the edge stabilisers
are strictly decreasing. Let t̃n be a component of the preimage of the midpoint of en which
separates K̃ into two unbounded components. Let tn be the projection of t̃n to K. Thus,
tn is a track in K, which represents a splitting of Γ = π1(K) over a subgroup of Γ(en).
Since Γ is one-ended, this subgroup must be infinite. Now, we have arranged that all the
tracks tn are disjoint, and so a standard argument (cf. [D]) shows that all but finitely many
are parallel, and hence carry the same subgroup of Γ. But, these subgroups are all infinite,
and their intersection is finite (since the intersection of the groups Γ(en) is finite). We thus
arrive at a contradiction. ♦

Before proceeding, we should make a few brief comments on the proof of Lemma
1.2. Strictly speaking, our definition of a reduced graph should have contained a clause
relating to the specific case where Γ is a virtual Baumslag-Solitar group. However, this
case is easily dealt with separately, and does not concern us here anyway. More details
of the argument ruling out descending chains of reducible vertices can be found in [DS].
Examples demonstrating the possibility of infinite ascending chains can be constructed
from Abels’s example [Ab] of a finitely presented group whose centre is isomorphic to the
diadic rationals, as observed by Dunwoody and Sageev.

We now move on to consider actions on R-trees.

Suppose that a group, Γ, acts isometrically on an R-tree, Σ. In this case, we say that
a subgroup, G, of Γ, is parabolic (on Σ) if it fixes a point of Σ. If Γ is infinite and acts with
finite edge stabilisers, then this point is unique. (Note that, in this context, “parabolic
actions” are sometimes referred to as “trivial actions” or as “elliptic actions”. However, the
former term is somewhat misleading, and the latter term is at odds with the terminology
of convergence actions. We therefore adopt our slightly non-standard terminology.)
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Suppose that Γ is a finitely presented group with a stable non-parabolic action on an
R-tree, Σ, with finite edge-stabilisers. Then, the result of [BeF2] tells us that Γ is either
one-ended virtually abelian, or splits non-trivially over a finite or two-ended subgroup.
Moreover, if H1, . . . , Hn are finitely generated subgroups of Γ which act parabolically on
Σ, then, in the latter case, we can choose the splitting of Γ so that each of the subgroups
Hi is conjugate into one of the vertex groups.

Lemma 1.3 : Suppose Γ is a finitely presented one-ended group which acts stably on an
R-tree Σ with finite edge-stabilisers. Suppose that every two-ended subgroup over which
Γ splits is parabolic, and every rank two abelian subgroup of Γ is parabolic. Then Γ is
parabolic.

Proof : Note that it follows that every one-ended virtually abelian subgroup of Γ is
parabolic. Suppose, for contradiction, that Γ is not parabolic, and hence not virtually
abelian. By Lemma 1.2, Γ admits a maximal two-ended splitting. Let T be the corre-
sponding simplicial tree. Let V (T ) be the vertex set respectively of T . Given v ∈ V (T ),
let Γ(v) denote the vertex stabiliser. By Lemma 2.1, each Γ(v) is finitely presented. By hy-
pothesis, each edge stabiliser is parabolic. We claim that each vertex stabiliser is parabolic.

Suppose that Γ(v) were not parabolic. ¿From our hypotheses, Γ(v) is not one-ended
virtually abelian. It also cannot be virtually cyclic (otherwise it would contain an edge
group of finite index). Thus, by [BeF2], Γ(v) splits over a finite or two-ended subgroup
relative to the incident edge groups, contradicting our choice of T , and proving our claim.

It now follows that all vertex and edge stabilisers must fix the same point of Σ. Thus
Γ is parabolic. ♦

Note that in the hypotheses, we only really need to assume that a certain algebraically
predetermined finite set of subgroups of Γ are each parabolic.

Recall that a dendrite is a locally connected metrisable continuum which is uniquely
arc-connected.

Lemma 1.4 : Suppose that Γ is finitely presented one-ended and contains no infinite
torsion subgroup. Suppose that Γ acts as a minimal convergence group on a dendrite, D,
in such a way that every two-ended subgroup over which Γ splits is parabolic on D. Then
D is trivial (i.e. a point).

Proof : Suppose D is non-trivial. Then, using either [L] or [Bo5], we construct an R-tree,
Σ, on which Γ acts isometrically and non-parabolically with finite edge stabilisers. The
non-existence of infinite torsion subgroups ensures that this action is stable. Moreover, if
H1, . . . , Hn are finitely presented subgroups of Γ which are parabolic on D, then we can
assume that they are parabolic on Σ.

Now, any rank-two free abelian subgroup of Γ is necessarily parabolic on D (see, for
example, [T]). Let H1, . . . , Hn be the edge groups in a maximal splitting of Γ as described
in the proof of Lemma 1.3, together with those vertex groups which are virtually abelian.
These groups are all parabolic on D, and so can be chosen to be parabolic in Σ. By Lemma
1.3, and the subsequent remark, we arrive at the contradiction that Γ is parabolic on Σ.
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♦

Proof of Theorem 0.1 : Define an equivalence relation on M by deeming two points,
x, y ∈ M , to be not equivalent if there exists a subset of M consisting of points which
individually separate x from y, and which is order isomorphic to the rational numbers in
the natural linear order (arising from the pointwise separation properties of this subset).
The quotient of M by this relation is a dendrite, D. If M contains a cut point which is
not a parabolic fixed point, then it follows from [Bo3] that D is non-trivial. Moreover, Γ
acts as a minimal convergence group on D.

Suppose that Γ splits over a two-ended subgroup, G ≤ Γ. We claim that G is parabolic
on D. If G is parabolic on M , then it is certainly parabolic on D, so we can assume that it
is loxodromic on M . Thus, its limit set, ΛG, consists of precisely two points, say a and b.
Moreover (M \ΛG)/G is compact hausdorff. By hypothesis, (M \ΛG)/G is disconnected,
so we can write it as a disjoint union, A1 ⊔ A2, of non-empty closed subsets. Now, the
preimage, Ui, of Ai inM \ΛG is open inM \ΛG and hence inM . Thus, Bi = Ui∪ΛG ⊆M
is closed and G-invariant. Moreover, M = B1 ∪B2 and ΛG = B1 ∩B2.

We claim that Bi is connected. To see this, let K be a connected component of Bi.
If K ∩ ΛG were empty, then we could find a closed and open subset, L, of B which does
not meet ΛG. We see that L must be closed and open in M , contradicting the fact that
M is connected. This shows that K ∩ ΛG 6= ∅. Suppose that a ∈ K ∩ ΛG. Let H ≤ G
be the subgroup (of index at most 2) of G which fixes a. Now, K is H-invariant, and so
either ΛG ⊆ K or K = {a}. In the former case, we see that Bi = K is connected as
required. In the latter case, we deduce similarly, that {b} is a component of Bi, giving the
contradiction that Bi = ΛG.

It now follows that no point ofM separates the two points of ΛG. Thus, ΛG collapses
to a point in D, and so G is parabolic in D.

The hypotheses of Lemma 1.4 are now satisfied, giving the contradiction that D is
trivial. ♦

It is unclear to what extent the algebraic hypotheses on Γ in Theorem 0.1 are really
necessary. It is conceivable it might hold for any finitely generated group, though one
might want to interpret a “parabolic fixed point” to mean one whose stabiliser is an
infinite (possibly torsion) subgroup. One can drop the assumption that M is metrisable,
though to do so would introduce technical complications with little obvious benefit — all
likely applications are to metrisable spaces.

2. Proof of the first corollary.

Let Γ be a one-ended hyperbolic group (in the sense of Gromov [Gr]). Its boundary,
∂Γ is a metrisable continuum, on which Γ acts as a minimal convergence group without
parabolics (see, [GhH,F,T,Bo7]). Moreover, Γ has no infinite torsion subgroup.

Let X be a Cayley graph of Γ, so that X ∪ ∂Γ admits a natural compact hausdorff
topology. Suppose that G ≤ Γ is two-ended with ηΓ(G) > 1. Thus, (X ∪ ∂Γ \ ΛG)/G is
compact hausdorff. There is an open relatively compact subset, N , of X/G such that we
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can write (X/G) \ N as a disjoint union of two closed non-compact subsets A1 and A2.
Let Āi be the closure of Ai in (X ∪ ∂Γ \ ΛG)/G, and let Bi = Āi ∩ (∂Γ \ ΛG)/G. In this
way, (∂Γ \ ΛG)/G is a disjoint union of the non-empty closed sets B1 and B2, showing
that η∂Γ(G) > 1.

The hypotheses of Theorem 0.1 are now satisfied. Since Γ has no parabolics on ∂Γ,
there can be no global cut point. This proves Corollary 0.3.

3. Proof of the second corollary.

As mentioned in the introduction, the argument we present here will go through, with
minor modification, to the case of relatively hyperbolic groups, as discussed in Section 4
(where the convex hull of the limit set will be replaced by a locally finite hyperbolic 2-
complex). Most of the proof of Corollary 0.4 is given up to dealing with the complication
of two-ended parabolic subgroups.

Let Y be a complete simply connected riemannian manifold of pinched negative cur-
vature. We can naturally compactify Y to a closed ball, Y ∪ ∂Y , by adjoining the ideal
sphere, ∂Y . (To avoid any confusion with ideal boundaries, in this section we shall use
frA to denote the topological boundary or “frontier” of a set A.)

Suppose a group, Γ, acts as a geometrically finite group on Y , as discussed in [Bo2].
It was shown there, that Γ is finitely generated, and a simple extension of these arguments
shows that it must, in fact be finitely presented. Also, Γ has no infinite torsion subgroup.

Let ΛΓ ⊆ ∂Y be the limit set of Γ, and let X be the intersection of its closed convex
hull with Y . (In fact, it would be more convenient to take a uniform neighbourhood of the
convex hull — in this way, X is a codimension-0 submanifold with C1 boundary.) Now,
X ∪ΛΓ is a closed subset of Y ∪∂Y . In fact, X is intrinsically a Gromov hyperbolic space
with ideal boundary ∂X = ΛΓ. Let Π ⊆ ΛΓ be the set of parabolic fixed points. Given a
point p ∈ Π, its stabiliser, Γ(p), is finitely generated virtually nilpotent [Bo1], and hence,
in particular, is either one or two-ended. The groups, Γ(p), are precisely the maximal
parabolic subgroups of Γ. Now, each parabolic fixed point, p, is “bounded” in the sense
that (ΛΓ \ {p})/Γ(p) is compact. Moreover, we can choose an open horoball, B(p), about
p such that S(p) = X∩ frB(p) is connected. (To see this, choose any compact set, Q ⊆ ΛΓ
such that ΛΓ =

⋃
Γ(p)Q, and generators, γ1, . . . , γn for Γ(p). Now, Q′ = Q∪

⋃n

i=1 γiQ is a
closed subset of ΛΓ missing the point p, and so we can find a horoball, B(p), whose closure
does not meet the convex hull of Q′. Now each component of X \B(p) must meet ΛΓ, and
so it follows that X \ B(p) is connected. It follows that X ∩ frB(p) is connected.) Note
that S(p)/Γ(p) is compact. We refer to C(p) = X ∩ B(p) as a cusp region. Note that its
closure equivariantly retracts onto S(p). We can choose the horoballs B(p) equivariantly
with respect to the action of Γ, and with the property that distinct horoballs have disjoint
closures. Let X0 = X \

⋃
p∈ΠC(p). In this way, X0/Γ is compact. Note that X0 is

contractible. The connected components of X \ X0 are precisely the cusp regions C(p),
and the components of the boundary of X0 in X are precisely the sets S(p).

We write Π = Π1 ⊔Π2, where Γ(p) (and hence S(p)) is one-ended for all p ∈ Π1, and
Γ(p) (and hence S(p)) is two-ended for all p ∈ Π2. Let X2 = X \

⋃
p∈Π2

C(p). We thus
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have Γ-invariant sets, X0 ⊆ X2 ⊆ X .

We note that Γ is one-ended if and only if X0 is one-ended (since X0/Γ is compact).
Also ΛΓ is connected if and only of X is one-ended (since ΛΓ is the ideal boundary of X).
¿From the topology of cusp regions described above, we see easily that the one-endedness
of X is equivalent to that of X2, and is implied by that of X0. If it happens that Π2 = ∅,
then these are all equivalent.

We first prove Corollary 0.4 in the case where Π2 = ∅, i.e. all maximal parabolic
subgroups are one-ended. ¿From the previous paragraph, we see that Γ is one-ended.
Suppose G ≤ Γ is loxodromic. Now, the quotient, (X ∪ ΛΓ \ ΛG)/G is compact. Also G
intersects every parabolic subgroup in a finite group, so each cusp region, C(p), projects
finite-to-one into X/G. In particular, these projections are connected, and have one-ended
boundaries. Removing them we obtain the quotient X0/G. Now, if ηΓ(G) > 1, then X0/G
has more than one end. Thus, X/G also has more than one end. As in the proof of
Corollary 0.3, we see that (ΛΓ \ΛG)/G is disconnected. In other words, ηΛΓ(G) > 1. The
hypotheses of Theorem 0.1 are now satisfied, proving Corollary 0.4 in this case.

We note that the essential points of the argument were that X is one-ended and
Gromov hyperbolic with boundary ΛΓ. The idea to deal with the general case will be to
use a “doubling” construction that will preserve this hyperbolicity. We will also want to
verify that the resulting space is one-ended. This is perhaps most simply done directly,
but to make a cleaner, and more general statement, we translate it into a lemma about
groups.

We begin with a definition. Suppose that G is a finitely presented group, and
Hi, . . . , Hn are finitely presented subgroups. We can construct finite complexes, K(G)
and K(Hi) with these groups as fundamental groups. We can assume that K(G) contains
disjoint embedded copies, K(G,Hi), of each K(Hi). Moreover, we can assume that each
K(G,Hi) has a neighbourhood homeomorphic to K(Hi)× [0, 1], with K(G,Hi) embedded
as K(Hi) × {0}. We write K̃(G) etc. for the universal covers of these spaces. We say
that G is one-ended relative to the subgroups Hi if every compact subset of K̃(G) whose
complement has more than one unbounded component meets a lift of some K(G,Hi). We
shall need the following:

Lemma 3.1 : Suppose that a finitely presented group, Γ, splits as a finite graph of groups
with all edge-stabilisers two-ended. Suppose each vertex group is one-ended relative to the
incident edge groups, and is not itself two-ended. Then Γ is one-ended.

Proof : For each vertex group, Γ(v), and incident edge group, Γ(e), we construct fi-
nite complexes, K(Γ(v)), K(Γ(e)) and K(Γ(v),Γ(e)) as described above, and glue them
together, as in the proof of Lemma 1.1, to obtain a finite complex K with fundamental
group Γ.

Let (V,E) be the simplicial tree arising from the graph of groups. Given v ∈ V and
e ∈ E, we write Γ(v) and Γ(e) for the vertex and edge stabilisers in Γ. For each v, we
get copy, K̃(v), of the universal cover of K(Γ(v)) embedded in K̃. We similarly get a
subcomplex, K̃(e), for each e ∈ E. Note that K̃(e) is two-ended and separates K̃ into two
components.
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Connectedness properties of limit sets

We first show that if F ⊆ K̃(v) is a compact subset meeting only one edge complex,
K̃(e), then K̃(v) \ F has precisely one unbounded component. There is no loss in taking
F to be a finite subcomplex. Moreover, we can assume that each component of K̃(v) \ F
and of K̃(e) \F is unbounded. Now, each component of K̃(v) \F meets K̃(e). If K̃(v) \F
is not connected, we see that it must have precisely two components, say O and U , each
meeting K̃(e) in a neighbourhood of an end. Let γ be an infinite order element of Γ(e).
We can suppose that K̃(e) ⊆

⋃
∞

n=0 γ
−nU . It follows easily that

⋃
∞

n=0 γ
−nU = K̃(v), and

so
⋂

∞

n=0 γ
−nO = ∅. Similarly, we see that

⋂
∞

n=0 γ
nU = ∅. We see easily that K̃(v) =⋃

∞

n=−∞
γnF ∪

⋃
∞

n=−∞
γn(U ∩ γO). But now, fr(U ∩ γO) ⊆ F ∪ γF is compact. Also,

(U ∩γO)∩K̃(e) is relatively compact. It follows that U ∩γO is relatively compact in K̃(v)
(otherwise, pushing it slightly off K̃(e), we would obtain an unbounded set in K̃(v) whose
boundary is compact and does not meet any edge complex). We conclude that K̃(v)/Γ(e)
is compact, and so Γ(e) is of finite index in Γ(v), giving that Γ(v) is two-ended, contrary
to the hypotheses.

Now, suppose that F ⊆ K̃ is compact. (We can again take it to be a finite complex.)
We claim, by induction on the number of edge complexes which intersect F , that K̃ \F has
only one unbounded component. Suppose that e ∈ E. Then K̃(e) separates K̃ into two
pieces, say K̃1 and K̃2, whose boundary components, fr K̃1 and fr K̃2, are identified with
K̃(e). Now, from the tree structure, we can choose e such that F ∩ K̃1 meets fr K̃1 but
no other edge complex in K̃1. By the previous paragraph, we can see that the two ends of
fr K̃1 lie in the same component of K̃1 \F . By the induction assumption (pushing F ∩ K̃2

slightly away from fr K̃2), we see that each unbounded component of K̃2 \ F contains at
least one end of fr K̃2. On gluing back together, we see that K̃ \F has only one unbounded
component. Thus, by induction, K̃ is one-ended. ♦

(An alternative approach to Lemma 3.1 can be given using the description of relative
splittings over finite groups in [Bo9], though this requires additional machinery.)

We now return to our geometrically finite group, Γ. We observe:

Lemma 3.2 : If Γ is geometrically finite, then the limit set, ΛΓ is connected if and only
if Γ is one-ended relative to its two-ended maximal parabolic subgroups.

Proof : We have already observed that ΛΓ is connected if and only if X2 is one-ended.
This is in turn equivalent to saying that X0 is one-ended relative to the subsets S(p)
for p ∈ Π2 (i.e. every compact set, F ⊆ X0, whose complement has more than one un-
bounded component meets at least one S(p)). It’s not hard to see that the last statement
is equivalent to saying that Γ is one-ended relative to the group, Γ(p), for p ∈ Π2. ♦

We only need the “only if” statement here. We omit the details, since we only need
the result to feed into Lemma 3.1, and the argument of Lemma 3.1 can be applied directly
to the construction we are about to describe, without translating it into group theoretical
terms.

Recall that X2 is a contractible manifold with boundary. We write frX2 =
⋃

p∈Π2
S(p)

for the topological boundary of X2 in X . Note that each S(p) is concave in the riemannian
sense. We see easily that in the induced path metric on X2, each S(p) is totally geodesic
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Connectedness properties of limit sets

(in the metric space sense) and is quasiisometric to the real line. ¿From this, it’s a simple
exercise (via the linear isoperimetric inequality, for example) to verify that X2 is intrin-
sically Gromov hyperbolic. (This is essentially the same argument as that which shows
that a group which is hyperbolic relative to a class of two-ended subgroups is intrinsically
word hyperbolic, see for example [Bo8].) We write ∂X2 for its ideal boundary. Now, Γ
acts isometrically on X2, and if p ∈ Π2, then Γ(p) is loxodromic on X2. Write L(p) ⊆ ∂X2

for its fixed point set. Thus, S(p) ∪ L(p) is closed in X2 ∪ ∂X2. We obtain, topologically,
the space X ∪ ΛΓ by collapsing L(p) to the point p, for each p ∈ Π2.

Now, X2/Γ is an orbifold with orbifold fundamental group Γ, and with frX2/Γ a
suborbifold of the orbifold boundary. We construct an orbifold, X ′

2/Γ
′, by doubling X2/Γ

in frX2/Γ. Here, X ′

2 is the universal cover, and Γ′ is the orbifold fundamental group of
the double. The group, Γ′, can be defined abstractly as a graph of groups with two vertex
groups each isomorphic to Γ, connected by a set of two-ended edge groups given by (the
conjugacy classes in Γ of) two-ended maximal parabolic subgroups. Note that, by Lemmas
3.1 and 3.2, if ΛΓ is connected, then Γ′ is one-ended. Also, Γ′ contains no infinite torsion
subgroup. (Every finite subgroup of Γ′ is conjugate into one of the vertex groups.)

The space, X ′

2, is obtained by gluing together two copies of X2 along the components
of frX2. Since these components are totally geodesic (in the induced path metric) one can
verify that X ′

2 is hyperbolic in the induced path metric. (Note that we can assume that
distinct boundary components of X2 are far apart in relation to the hyperbolicity constant
of X2. This follows since this constant is a function of the upper curvature bound, and
the diameters of the sets S(p)/Γ(p). These diameters can also be bounded as functions of
the curvature bounds by choosing appropriate horoballs. The hyperbolicity of X ′

2 can now
be verified using the treelike manner in which it is built up to show that, for any geodesic
triangle, there is some point a bounded distance from each side.) Let ∂X ′

2 be the ideal
boundary of X ′

2. We can obtain X ′

2 ∪ ∂X
′

2 by gluing together copies of X2 ∪ ∂X2 along
sets of the form S(p) ∪ L(p).

Since X ′

2 is hyperbolic, Γ′ acts as a convergence group on ∂X ′

2 (see, for example,
[Bo7]). Since Γ′ is one-ended, ∂X ′

2 is connected. We are now effectively back in the case in
which we have already proved Corollary 0.4 — with Γ′ replacing Γ, X ′

2 replacing X , and
∂X ′

2 replacing ΛΓ. (We have introduced some singular codimension-1 manifolds into the
picture but these have no bearing on the argument — they do not affect the topology or
the large-scale geometry of the set-up.) We conclude that every global cut-point of ∂X ′

2 is
a parabolic fixed point of Γ′.

Now suppose, for contradiction, that q ∈ ΛΓ \ Π is a global cut point of ΛΓ. We
can find a closed set, Q ⊆ X ∪ ΛΓ with Q ∩ ΛΓ = {q}, and such that ΛΓ meets at least
two components of the complement of Q in X ∪ ΛΓ. Since q /∈ Π, we can assume that Q
does not meet any of the sets S(p). Thus, Q ⊆ X2 ∪ {q}. Now, we can assume X2 to be
embedded in X ′

2. Under this embedding, Q \ {q} maps to a closed subset, Q1, of X
′

2. Let
Q′ be the closure of Q1 in X ′

2 ∪ ∂X
′

2. Thus Q′ ∩ ∂X ′

2 consists of a single point, say q′, in
∂X ′

2. Note that ∂X ′

2 meets at least two components of (X ′

2 ∪ ∂X
′

2) \ Q
′. We see that q′

is a global cut point of ∂X ′

2, and hence fixed by a parabolic, say γ in Γ′. Now, Γ is the
setwise stabiliser of W , so it follows that γ ∈ Γ (for otherwise the closure of γW would not
meet Q′ giving γq′ 6= q′). Now, Γ must fix setwise the copy of X2 in X ′

2 which contains
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Q′. Thus, γ ∈ Γ. Since γ has no other fixed point in ∂X ′

2 we see easily that it can have
no other fixed point in ∂X2 and hence no fixed point in ΛΓ. It follows that γ is parabolic
for the action of Γ on ΛΓ.

This proves Corollary 0.4 in the general case.

4. Proof of Theorem 0.2.

We can adapt the proof of Corollary 0.3 easily to deal with the case of relatively
hyperbolic groups. Details of the relevant constructions can be found in [Bo8].

Suppose that Γ is a group and that G is a set of infinite finitely generated subgroups of
G. We shall say that Γ is hyperbolic relative to G if there exists a proper (complete locally
compact) hyperbolic path-metric space, X , and a geometrically finite action of Γ on X
such that G is precisely the set of maximal parabolic subgroups. ¿From this, we deduce
that G is a union of finitely many conjugacy classes of subgroups, that each element of G
is equal to its normaliser, and that the intersection of any two distinct elements of G is a
finite group. We refer to G as a “peripheral structure” on Γ, and to an element of G as a
“peripheral subgroup”. The term “geometrically finite” can be defined by saying that each
point of the limit set, ΛΓ ⊆ ∂X , is either a conical limit point or a bounded parabolic fixed
point. It turns out that this limit set depends, up to Γ-equivariant homeomorphism, only
on Γ and G. It thus gives us a well-defined boundary, ∂(Γ,G), of the relatively hyperbolic
group, (Γ,G).

It turns out that we can make a number of simplifying assumptions about the space,
X , without any loss of generality. Since we have already dealt with hyperbolic groups, we
shall assume that G 6= ∅ (though the distinction is artificial — it will be clear that one can
give a unified argument). In this case, we can take X to be a 2-complex consisting of a
set of ideal hyperbolic triangles glued together so that only finitely many meet along any
given edge, and such that the union of two adjacent ideal triangles is an ideal hyperbolic
square. Now, Γ acts isometrically on X , and that there are finitely many orbits of such
triangles. Let Π ⊆ ∂X be the set of parabolic points. Thus G = {Γ(p) | p ∈ Π}, where
Γ(p) is the stabiliser of p. Each triangle is isometrically embedded in X and its three ideal
points all lie in Π. We note that we can choose a Γ-invariant system of disjoint horoballs,
(B(p))p∈Π, such that for each p ∈ Π, the boundary S(p) = frB(p) is a locally finite graph
with S(p)/Γ(p) finite, and B(p) is a hyperbolic cone over S(p). Moreover, we can assume
that each horoball B(p) is convex in X , and that the distance between distinct horoballs
is arbitrarily large in relation to fixed hyperbolicity constants, as well as in relation to the
diameters of the graphs S(p)/Γ(p).

The proof now proceeds almost exactly as with that of Corollary 0.3, where the com-
plex, X , plays the role of the convex hull of the limit set. It is no longer true that X is
contractible (though it would be a simple matter to embed it as a quasidense subset of
a contractible space). In any case, the precise topology of X only served as a convenient
language for expressing what were essentially combinatorial or geometric constructions. As
before, we can construct the space X2 by removing all horoballs with two-ended stabilisers.
The space X ′

2 can be constructed explicitly by gluing together copies ofX ′

2 along two-ended
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subsets which are intrinsically geodesic. The pieces are glued together in treelike fashion,
as dictated by the structure of the doubled group, Γ′. Now, Γ acts cocompactly on X ′

2.
It is easily verified that X ′

2 is hyperbolic, and that the action of Γ′ on X ′

2 is geometrically
finite. (One can also give a cleaner combinatorial verification of these statements using the
ideas of [Bo9].) The remainder of the argument proceeds exactly as with Corollary 0.4.
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