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0. Introduction.

In this paper, we give an account of convergence groups in a fairly general context,
focusing on aspects for which there seems to be no detailed account in the literature. We
thus develop the theory from a slightly different perspective to usual; in particular from
the point of view of actions on spaces of triples. The main applications we have in mind
are to (word) hyperbolic groups, and more generally to Gromov hyperbolic spaces. In later
sections, we give special attention to group actions on continua.

The notion of a convergence group was introduced by Gehring and Martin [GeM1].
The idea is to axiomatise the essential dynamical properties of a Kleinian group acting on
the ideal sphere of (real) hyperbolic space. The original paper thus refers directly only
to actions on topological spheres, though most of the theory would seem to generalise to
compact hausdorff spaces (or at least to compact metrisable spaces). The motivation for
this generalisation stems from the fact that a (word) hyperbolic group (in the sense of
Gromov [Gr]) acting on its boundary satisfies the convergence axioms. Indeed any group
acting properly discontinuously on a complete locally compact (Gromov) hyperbolic space
induces a convergence action on the ideal boundary of the space. More general accounts
of convergence groups in this context can be found in [T2], [F1] and [F2].

There are essentially two equivalent definitions of “convergence group”. The original,
and most readily used, demands that every sequence of distinct group elements should
have a “convergence subsequence” (or what we shall call a “collapsing subsequence”) with
very simple dynamics. The second definition, which we focus on here, demands that the
induced action on the space of distinct triples should be properly discontinuous. This is,
in many ways, a more natural formulation. The equivalence of these definitions for group
actions on spheres is proved in [GeM2]. Tt would seem that their argument extends without
change to actions on (metrisable) Peano continua. For the general case (compact hausdorff
spaces) we shall need a slightly different approach. The second definition can be restricted
to give us what we shall call “uniform convergence actions” — where the action on distinct
triples is assumed also to be cocompact. The typical example of such an action is that of
a hyperbolic group on its boundary. In fact, it is shown in [Bo6| that these are the only
such examples. In some ways, this renders further study of uniform convergence actions
superfluous. However certain properties of hyperbolic groups seem to fit most naturally
into this dynamical context (see, for example [Bo2,Bo3,Bo5]), so it is appropriate to give,
as far as possible, a purely dynamical treatment of some of these in the hope of finding
broader applications (for example, to relatively hyperbolic groups). Indeed, introducing
geometric considerations often does not seem to help significantly anyway.
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There are various categories of spaces in which one might be interested. For example,
with decreasing generality, we have compacta (compact hausdorff spaces), perfect compacta
(compacta with no isolated points), continua (connected compacta) and Peano continua
(locally connected continua). Every compactum contains a unique maximal perfect closed
subset, which in all interesting cases is non-empty (i.e. for non-elementary groups). This is
clearly preserved by any group action. We thus do not loose much by restricting to perfect
compacta whenever this is convenient. Continua arise as cases of particular interest (for
example, boundaries of one-ended hyperbolic groups). Peano continua are much easier
to deal with. Most of the standard arguments concerning actions on spheres would seem
to generalise unchanged to this context. The passage to the general case of compacta is
sometimes slightly less trivial.

One of the main motives for writing this paper was to establish some of the groundwork
for a deeper study of convergence actions on continua. These arise as important special
cases of limit sets and ideal boundaries. There are a number of conjectures which assert
that in certain circumstances, such continua are necessarily Peano continua — for example
connected limit sets of geometrically finite Kleinian groups in any dimension (which one
might generalise to relative hyperbolic groups) or finitely generated Kleinian groups in
dimension 3. (The intersection of these cases, namely 3-dimensional geometrically finite
Kleinian groups is already known, see [AnM].) It was also conjectured in [BesM] that
the boundary of a one-ended hyperbolic group is locally connected. They showed that
this is the case if there is no global cut point. The latter now follows from the results
of [Bo2,Bo4,L,Sw|. A more general criterion for the non-existence of global cut points is
given in [Bob], which also has applications to geometrically finite Kleinian groups, and
might shed some more light on the first conjecture mentioned above. With these, and
other, potential applications in mind, it seems appropriate, as far as possible, to deal with
general continua, without any local connectedness assumption.

There is another direction in which one might want to restrict the category of spaces
under consideration. Most standard arguments (see [GeM1,T1,T2] etc.) make reference to
convergence sequences, and thus effectively make some assumption about the order types
of neighbourhood bases, or metrisability. Indeed, all likely applications are to metrisable
spaces. However some natural constructions (for example those of Section 5) cannot be
guaranteed to keep us in the metrisable category. For this reason, we shall avoid making
any such hypothesis. Since we do not need any “diagonal sequence” arguments, this
simply entails replacing the term “sequence” by “net”, and “subsequence” by “subnet”.
The arguments can be translated back into more familiar terms simply by inverting this
transformation.

As mentioned earlier, the original motivation for the study of convergence groups
concerned Kleinian groups, i.e. groups acting properly discontinuously on hyperbolic space
(see for example, [Mas] or [Ni]). More generally, one could consider groups acting on
manifolds of pinched negative curvature. Many of the definitions concerning types of
limit points etc. can be interpreted in the context of convergence groups. For example
one can give a definition of geometrical finiteness intrinsic to the action of the group on
its limit set (see [Bol], generalising the description given in [BeaM].) Thus, a group is
geometrically finite if and only if every limit point is a conical limit point or a “bounded”
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parabolic fixed point. Such definitions make sense for convergence groups, though it’s
unclear to what extent the standard results generalise to this case, or indeed to what extent
such generalisations would be genuinely useful. However, in certain cases, in particular
uniform convergence actions (corresponding to convex cocompact Kleinian groups) such
generalisations seem natural, and leads to some powerful techniques for their study.

As we have already mentioned, any uniform convergence group acting on a perfect
compactum is hyperbolic, and the action is topologically conjugate to the action of the
group on its boundary. One can, however, deduce many properties of such actions directly
from these dynamical hypotheses, for example, the non-existence of parabolics. If the space
is a Peano continuum, then we see that the group must be one-ended. One can go on to
derive the JSJ splitting from a (mostly elementary) analysis of the local cut point structure
[Bo3]. As mentioned earlier, the fact that any continuum admitting a uniform convergence
action is necessarily locally connected requires a lot more work, including knowing the
group is hyperbolic.

The specific cases of convergence groups acting on spheres have been much studied.
In particular, the work of Tukia, Gabai and Casson and Jungreis [T1,Ga,CasJ] tells us
that any convergence group acting on a circle is conjugate to a fuchsian group. (This
result relies on the earlier analysis of convergence actions on the 2-disc by Martin and
Tukia [MarT1]. Tt is, in turn, an essential step in the proof of the Seifert conjecture for 3-
manifolds — see [Me].) One can similarly ask if every uniform convergence group I, acting
on the 2-sphere, S2, is conjugate to a cocompact Kleinian group. Some significant progress
in this direction has been made by Cannon and coworkers (under the assumption that I’
is hyperbolic). See for example [CanS]. (We remark that it is known if I' is quasiisometric
to hyperbolic 3-space [CanC]|.) We also note that [Bo6] together with Stallings’s theorem
on ends [St] and Dunwoody’s accessibility theorem, tells us that any uniform convergence
group acting on a Cantor set is finitely generated virtually free.

We shall give precise definitions of convergence groups in Section 1. In fact, these
definitions make sense for any set of homeomorphisms — closure under composition or
inverses is irrelevant in this regard. We should note that we are using the term “convergence
group” for what was called a “discrete convergence group” in [GeM1]. The term “discrete”
has frequently been omitted in the subsequent literature, and the more general notion of
“convergence group” described in the original paper will not concern us here.

An outline of the paper is as follows. In Section 1, we prove the equivalence of
the two definitions of convergence group in a general setting. We show that a properly
discontinuous action of a group on a complete locally compact hyperbolic space extends to
a convergence action on the boundary. In Section 2, we give a brief outline of the standard
results concerning convergence actions. In Section 3, we consider particular categories of
limit points, in particular, conical limit points. In Section 4, we discuss various equivalent
formulations of quasiconvexity for subgroups of a uniform convergence groups. In Section 5,
we consider how properly discontinuous cocompact actions of a group can be compactified
by uniform convergence actions. In Section 6, we consider connectedness properties of
configuration spaces in continua. Of particular interest is the space of distinct triples.
JFrom this, we can see directly that a group acting as a uniform convergence group on a
Peano continuum is finitely generated and one-ended.
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1. Convergence groups and spaces of triples.

In this section, we give two definitions of the “convergence property” of a set, P,
of homeomorphisms of a compactum, M, to itself. In the case where ® is a group, this
defines the notion of a “convergence action” or “convergence group”, though for most of
this section, there will be no need to assume closure under composition or inverses.

The equivalence of these definitions is shown in [GeM2] for groups of homeomorphisms
of spheres. Their argument would seem to generalise unchanged to the case where M is a
(metrisable) Peano continuum. For the general case where M is any compactum, we shall
use a slightly different argument.

We begin by introducing the space of distinct triples. Let M be (for the moment)
any hausdorff topological space. We give the space of ordered triples, M3, the product
topology. Let A C M? be the large diagonal, i.e. the (closed) subset of triples have at least
two entries equal. Let ©Y(M) = M3\ A be the space of “distinct ordered triples”.

There is a natural continuous surjective map A — M which sends any triple with
at least two entries equal to x to the point z € M. We denote the quotient by 96°(M).
Thus, 90°(M) may be naturally identified with M. In fact, we can define an equivalence
relation on M3 by deeming two triples to be equivalent if two entries of the first triple are
both equal to two entries of the second triple. Clearly, this relation is trivial (i.e. equality)
on O(M). We may thus identify the quotient space as a union ©°(M) U d6°(M). This
quotient is hausdorff, and contains 90°(M) as a closed subset. If M is perfect, then ©° (M)
is dense in ©Y(M) U9O°(M). If M is compact, then so is ©°(M) U IO (M). Also, if M
is locally compact, then so is ©°(M).

Now, the symmetric group on three letters acts on M3 by permuting the coordinates.
This induces an action on ©°(M) U dO°(M), which is trivial on 90°(M). We write the
quotient as ©(M) U 9O(M), where ©(M) is the quotient of O°(M). Again, 0O(M) is
closed, and may be naturally identified as M. We think of an element of ©(M) as a
“distinct (unordered) triple”, i.e. a subset of M of cardinality 3.

Suppose now that M, N are compacta (compact hausdorff topological spaces), and
that @ is a set of homeomorphisms of M onto N. (Of course, we could take M = N, but
we don’t want to distinguish any preferred identity homeomorphism.) We write &1 =
{¢71 | $ € ®}. Note that each ¢ € ® induces a homeomorphism of @(M) onto O(N),
which we shall also denote by ¢.

In actual fact, we don’t really want to assume that all the elements of ® are distinct
homeomorphisms (since we shall eventually want to allow for group actions with non-trivial
kernel). To be more formal we should really view ® as a collection of homeomorphisms
with some indexing set, though to do so explicitly would only confuse our notation.
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In what follows we shall assume that M (and hence N) has at least 3 points.

Definition : We say that ® is properly discontinuous on triples if, for all compact subsets
K CO(M)and L CO(N), the set {¢p € @ | K NL # 0} is finite.

Definition : If ® C ®, a € M and b € N, we say that ® is a collapsing set with
respect to the pair (a,b) if, for all compact subsets K C M \ {a} and L C N \ {b}, the set
{p € ® | pK N L # (0} is finite.

We say that ®' is a collapsing set if it is a collapsing set with respect to some pair (a,b).
y g

Note that the pair (a,b) for a given collapsing set is uniquely determined. We shall
refer to a and b, respectively, as the repelling and attracting points of the set ®. (This
terminology becomes more natural, when we reformulate this in terms of nets.) Note also
that if ® is a collapsing set with respect to a pair (a,b), then (®)~! is a collapsing set
with respect to the pair (b, a).

Definition : We say that ® has the convergence property if every infinite subset & C ®
contains a further infinite subset ®” C ®" which is a collapsing set.

We note that if ® has the convergence property, then so does ®~!, as well as any infi-
nite subset of ®. This statement is also true of the property of being properly discontinuous
on triples. Our first objective will be to show that these notions are equivalent:

Proposition 1.1 : An infinite set of homeomorphisms of a compactum has the conver-
gence property if and only if it is properly discontinuous on triples.

The “only if” part is elementary and well-known. The “if” part is also known at least
for spheres (and metrisable Peano continua). The general case involves a bit more work.

Before we give the proof we shall rephrase the definitions in a form that is more con-
venient to work with. The convergence property is usually phrased in terms of sequences.
For the general case, we shall use nets. We begin by recalling a few standard (and not so
standard) definitions concerning nets and subnets.

Let Z be any set. A net in Z is a map, [n — z,], from a directed set, (D, <), to
Z. We usually denote this by (z,)n, and don’t bother to make explicit reference to the
domain, D. If we use the same subscripts for two nets, then it’s to be assumed that the
domains are equal. A final segment of D is a subset of the form {n € D | n > ng} for
some ng € D. We say that a property is true for all sufficiently large n if it is true for all
n in some final segment. A subset of D is cofinal if it meets every final segment. We say
that a net, (z,,)n, is wandering if for all z € Z, z,, # z for all sufficiently large n.

If (I,<) is another directed set, a map [i — n(i)] from I into D is cofinal if for all
n € D, we have n(i) > n for all sufficiently large i. A subnet of (z,), is a precomposition
of [z — z,] with a cofinal map [i — n(i)] from some directed set (I,<). We write z;
for z,(;), and denote the subnet by (2;);. Clearly every cofinal subset of D determines a
subnet, but, in general, not every subnet need be of this form. In particular, a subnet
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of a sequence need not be a subsequence. However, if (z,),eN is sequence, and (z;); is a
subnet, we might abuse notation, and write z;11 for z,(;)41 etc. Note that every subnet of
a wandering net is wandering.

In what follows we shall assume standard results concerning nets, in particular, a
space is compact if and only if every net has a convergent subnet (see, for example, [K]).

We have thus only changed language slightly from the usual. In the metrisable case,
we can translate back into more familiar terms by replacing “net” by “sequence” and
“subnet” by “subsequence”. A “wandering net” can be translated as a “sequence of distinct
elements”.

We can now reformulate the definitions given above. To say that & is properly dis-
continuous on triples is equivalent to the following hypothesis. Suppose that (¢, ), is a
wandering net of elements of ®, and that (z,)n, (yn)n and (2,), are nets in M. Suppose
that =, = =, Y — VY, 2n — 2, OpTy — ', Opy, — vy and ¢pz, — 2. If z,y, 2 are all
distinet, then 2/, %/, 2’ cannot all be distinct (and so also conversely).

To reformulate the convergence property, we proceed as follows. We say that a net,
(i), of elements of ® is a collapsing net if there are points a € M and b € N such that
the net of maps ¢;|M \ {a} converges locally uniformly to the point b. We shall denote
this by ¢;|M \ {a} — b. Note that a collapsing net is necessarily wandering. Local uniform
convergence can, in turn, be expressed in terms of nets. Thus, ¢;|M \ {a} does not converge
locally uniformly to b if and only if there is some subnet (¢;); of (¢;);, and a net (x;); of
points of M such that z; — = and ¢jz; — 2/, where x € M \ {a} and 2’ € N\ {b}.

We see that & has the convergence property if and only if every wandering net of
elements of ® has a collapsing subnet.

In what follows, we shall freely pass to subnets without necessarily changing notation.
We justify such liberties with phrases such as “without loss of generality”.

We now set about proving Proposition 1.1. One direction is easy:

Lemma 1.2 : If & has the convergence property, then it is properly discontinuous on
triples.

Proof : Suppose (¢,), is a wandering net of elements of ®. Suppose we can find nets
(n)ns (Yn)n and (zp)n, of elements of M such that x,, — =, y — Y, 2, = 2, GnTy — 2,
Onyn — vy and ¢z, — 2’, where x,y,z € M are all distinct, and z’,9, 2’ € N.

After passing to a collapsing subnet, we can find points a € M and b € N such that
¢n|M \ {a} — b. Moreover, we can assume that z,y # a. It follows that ¢,z, — b and
Onyn — b. Thus, 2/ =9’ =b. &

For the purposes of proving the converse, we shall introduce the following notation.
If a,b € N, and (uy), is a net in N, we shall write u,, — {a,b} to mean that for all
neighbourhoods O 3 a and U > b, we have u,, € O UU for all sufficiently large n.

Let’s now suppose that ® is properly discontinuous on triples. In the following lemmas,
(n)ns (Yn)n, (2n)n and (wy,), are assumed to be nets in M, and (¢,,), is a wandering net
in ®.



Convergence groups and configuration spaces

Lemma 1.3 : Suppose x,, — T, Yp — Y, 2n — 2, with x,y, z distinct. Suppose ¢,,x,, — ¥’
and ¢y, — v with ' #vy'. Then ¢z, — {z',y'}.

Proof : Otherwise some subnet of ¢, z, would converge to a point 2z’ ¢ {z’,y'}. &

Lemma 1.4 : Suppose ,, — ©, Yy — VY, 2o, — 2, With x,y, z distinct, and that ¢z, — a,
OnYn — a and ¢pz, — b # a. If w, — w # z, then ¢pw, — {a,b}.

Proof : Without loss of generality, w # y, so we can apply Lemma 1.3 (replacing x,, by
Zn, and z, by wy,). &

Lemma 1.5 : Suppose x,, = x, Yn — Y, 2n — 2z and w, — w, with x,y, z, w all distinct.
Suppose ¢nx, — a, ¢pYyn — a, ¢pz, — b and ¢, w, — b. Then a = b.

Proof : Choose any ¢ € N \ {a,b}, and let u,, = ¢ c. Passing to a subnet, (u,), can be
assumed to converge to some point u € M. Now, either u ¢ {z,y} or u ¢ {z,w}. If a # b,
then applying Lemma 1.4, we derive, either way, the contradiction that ¢ = ¢, u,, — {a, b}.

¢

Lemma 1.6 : Suppose x,y,z € M are distinct, and z,, — z. Suppose that ¢,xr — a,
Ony — a and ¢pz, — b # a. Then ¢,|M \ {z} converges locally uniformly to a.

Proof : First, we prove pointwise convergence. Suppose w € M \ {z}. By Lemma 1.4, we
have ¢, w — {a,b}. If ¢p,,w # a, then, passing to a subnet, we can suppose that ¢, w — b,
contradicting Lemma 1.5.

To prove locally uniform convergence, suppose (maybe after passing to a subnet) that
w, — w # z. By pointwise convergence, we can suppose that w ¢ {x,y}. (Otherwise
replace x or y by some other point of M \ {z}.) Again by Lemma 1.4, we have ¢,w, —
{a,b}. If w,, 4 a, we get a contradiction to Lemma 1.5 as before. O

Lemma 1.7 : & has the convergence property.

Proof : Let (¢5)n, be any wandering net in ®. We want to find a collapsing subnet.
Choose any triple x, y, z of distinct elements of M. Passing to a subnet, and permuting
x, 1, z if necessary, we can assume that ¢,x — a, ¢,y — a and ¢, z, — b for some a,b € N.
If a # b, then Lemma 1.6 tells us immediately that ¢,|M \ {z} — a.
We can thus assume that a = b. Choose any point ¢ € N \ {a}, and let w, = ¢, c.
Passing to a further subnet, we can suppose that w,, — w € M. Without loss of generality,
w ¢ {x,y}. In this case, Lemma 1.6 tells us that ¢,|M \ {w} — a. &

Lemmas 1.2 and 1.7 together prove Proposition 1.1. In fact, we can strengthen Lemma
1.7 as follows:
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Proposition 1.8 : If ® is properly discontinuous on triples, then ® has the convergence
property on ©(M) U 0O (M).

Proof : We know, by Lemma 1.7, that any wandering net in ¢ has a collapsing subnet in
M = 00(M). We are thus reduced to considering a net, (¢,,),, in ® such that ¢, |00(M)\
{a} — b, for some a € 0O(M ) and b € 0O(N). We claim that ¢, |(©O(M)udO(M))\{a} —
b.

Suppose that (¢;); is any subnet, and (6;); is a net in ©(M)UOO(M ), which converges
to some 0 € O(M)UIO(M)\ {a}. We claim that ¢;0; converges to b. We can partition the
domain of the net into two subdomains depending on whether 6; lies in ©(M) or 0O (M ).
This gives us (at most) two subnets, and it’s enough to verify the claim for each of these.
(Of course there’s no reason to suppose that both subsets of the domain are cofinal, but
if one isn’t then there’s nothing to verify in that case.) In fact, we know by construction
that the claim is true for the subnet lying in 9O(M), so we can assume, without loss of
generality that 0; € ©(M) for all .. We write 0; = {x;,y;, z: }-

Suppose first, that 6 € O(M). Write § = {z,y,z}. We can assume that z; — =z,
y; — y and z; — z (since we are free to label the enties in the triple 6; as we choose). Also
without loss of generality, =,y # a. It follows that ¢;x; — b and ¢;y; — b, and so ¢;0; — b
in ©(M)UIO(M) as claimed.

We can thus assume that § € 00(M) \ {a}, so that § corresponds to some point
x € M\ {a}. We can assume that x; — = and y; — x. Since = # a, we have ¢;x; — a and
¢;y; — a in M. Thus, again ¢;0; — b as claimed. &

This concludes the basic observations about sets of homeomorphisms. The cases of
interest here concern group actions.

Suppose that M is a compactum, and that I" is a group acting by homeomorphism on
M.

Definition : We say that I' is a convergence group (or that the action is a convergence
action) if, as a set of homeomorphisms, it has the convergence property.

We see that I' is a convergence group if and only if the induced action on O(M) is
properly discontinuous. Moreover, this implies that the induced action on ©(M)U IO (M)
is also a convergence action.

There are two subtleties we should remark upon. The first is that we have not assumed
that I' acts effectively. Thus, we should more formally view the set of homeomorphisms in
the above definitions as a collection indexed by I'. In any case the definitions imply that
the action should have finite kernel, so the distinction is not really important. The second
point is that we have assumed that M has at least 3 elements. The appropriate definition
of a convergence action on a smaller set may be open to debate, but it would seem natural
to allow any action on a singleton, and any virtually cyclic action on a pair.

The following is a trivial, but useful observation:
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Lemma 1.9 : Suppose the group I' acts by homeomorphism on locally compact hausdorff
spaces X and Y. Suppose f : Y — X is a proper surjective I'-equivariant map. Then
I' acts properly discontinuously on X if and only if it acts properly discontinuously on Y .
Also, I' acts cocompactly on X if and only if it acts cocompactly on Y. &

We finish this section with two applications of this. The first concerns quotient spaces.

Suppose M, N are compacta, and f: M — N is surjective. Let On (M) C ©(M) be
the subset of triples {x,y, z} such that fz, fy, fz are all distinct. We see that f induces a
natural surjective map, Of : O (M) — O(N), given by O f({z,y, z}) = {fz, fy, fz}.

Suppose now that I' acts on M and N, and that f is I'-equivariant. It follows that
On (M) is a I-invariant subset of O(M), and that O f is [-equivariant. If I" acts properly
discontinuously on ©(M), then it does so on © 5 (M), and hence, by Lemma 1.9, on O(N).
We deduce:

Proposition 1.10 :  Suppose that I acts on the compacta M and N, and that f :
M — N is a I'-equivariant map. If I' acts as a convergence group on M, then it acts as
a convergence group on N. &

One can can give an alternative (perhaps simpler) proof of this result using the col-
lapsing subsequence definition instead. (This is set out explicitly in [Bo2].)

The second application involves induced action on boundaries of hyperbolic spaces,
as defined by Gromov [Gr]. For the necessary background, see, for example, [GhH].

Suppose that (X, d) is a complete, locally compact path-metric space which is (Gro-
mov) hyperbolic. Thus, any closed metric ball in X is compact. Also, X can be compact-
ified in a natural way by adjoining its (Gromov) boundary, 0X. Thus, X U0X carries
a natural compact topology. It is also metrisable, though does not admit any preferred
metric.

Suppose a group I' acts properly discontinuously and isometrically on X. We get an
induced action by homeomorphism on X U9X. We claim that this is a convergence action.
For the purposes of future reference, we split this into two parts.

Lemma 1.11 : T acts as a convergence group on 0X.

Proof : Let k be the constant of hyperbolicity of X (in the sense that for any geodesic
triangle in X, there is a point a distance at most k from each of its edges). Let Y C
X x©O(0X) be the subset of pairs, (a, {1, 2, z3}) such that there exist biinfinite geodesics,
a1, g, as, with «; connecting x; to z;y; (with subscripts mod 3) such that d(a,«;) < k
for each i € {1,2,3}. Thus, Y is a closed subset of X x ©(0X). Moreover, the natural
projections of Y to X and to ©(0X) are both proper and surjective. Also the whole
construction is natural and hence I'-equivariant. Since I' acts properly discontinuously on
X, it follows, by Lemma 1.9, that it does so also on Y and hence on ©(9X). O

Proposition 1.12 : T’ acts as a convergence group on X U 0X.
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Proof : (Since X U 90X is metrisable, we may as well phrase everything in terms of
sequences.)

Suppose that (v,), is a sequence of distinct elements of I'. Since I' acts as a conver-
gence group on 0X (Lemma 1.11), we can find a subsequence, (v;); and a,b € 90X, such
that v;|0X \ {a} — b. We claim that v;|(X UJX) \ {a} — b.

To see this, suppose that K C (X U0X) \ {a} is compact. Suppose that (z;);en is
any sequence in K. We can find a compact subset L C 0X \ {a} and points y;,2; € L
such that each z; lies in the (closed) biinfinite geodesic joining y; to z;. Now y; — b and
z; — b, and so it follows easily that z; — b as required. &

This result can be compared with Proposition 5.6, where I" is assumed to act cocom-
pactly, but X is not assumed to be metrisable.

We finish this section by introducing “uniform convergence groups” to which we shall
return again later. Suppose that I' acts by homeomorphism on a perfect compactum, M.

Definition : We say that I' is a uniform convergence group if it acts properly discontin-
uously and cocompactly on the space of distinct triples, ©(M).

We refer to the action as a “uniform convergence action”. The typical examples arise as
boundaries of hyperbolic groups, as we shall see below.

Suppose that I" is a (word) hyperbolic group. Its boundary, dI', is a compact metris-
able space, on which I" acts by homeomorphism. Indeed, if (X, d) is any complete locally
compact hyperbolic space, and I" acts properly discontinuously and cocompactly on X,
then we may naturally identify the (Gromov) boundary, 0X with OI'. The typical exam-
ple of such an X is the Cayley graph of the given hyperbolic group with respect to any
finite generating set. (One could also take the Rips complex etc., see [GhH,BesM].)

We already know (Lemma 1.11) that I' acts as a convergence group on OI'. This is
also shown in and [F1] and [T2]. In this case our previous argument gives us the additional
information:

Proposition 1.13 : A hyperbolic group I' acts as a uniform convergence group on its
boundary, OT.

Proof : Let X be a Cayley graph of I', so that we can equivariantly identify 0I' and 0X.
As in the proof of Lemma 1.11, we construct a locally compact hausdorff space, Y, and
proper equivariant surjections of Y to X and to ©(0X). Since the action on X is properly
discontinuous and cocompact, we see, by Lemma 1.9, the same is true of the action on

0(0X). ¢

This result well known (though I've not found an explicit reference). The converse
was, for a time, an open problem, though it appears that Gromov had long been confident
that this was indeed true. A proof is given in [Bo6].

10
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2. General properties of convergence groups.

In this section, we briefly outline how one may develop the theory of convergence
groups on general compacta. Most of the results stated here are well known, and accounts
can be found in [GeM1] and [T2] (see also [T1], [F1] and [F2]). Some of these are given
in slightly restricted contexts, though the arguments would seem to generalise unchanged.
The proofs are typically based on the “collapsing net” (or “convergence subsequence”)
definition of convergence group.

Typically, the development proceeds via a classification of elements according to their
dynamics, a discussion of “elementary” subgroups, the partition of the space into limit set
and discontinuity domain etc. Here, we shall only concern ourselves with aspects relevant
to the rest of this paper.

Suppose that I' acts as a convergence group on the compactum, M, with card M > 3.
Given v € I', we write fixy = {x € M | vx = z}.

Definition : We say that an element of I' is elliptic if it has finite order.
We say that v € I" is parabolic if it has infinite order, and card fix~y = 1.
We say that v € I" is lozodromic if it has infinite order, and card fixy = 2.

Clearly these possibilities are mutually exclusive. The following is the most basic
result about convergence groups. The proof we give here is more or less copied from [T2].

Lemma 2.1 : Every element of I is elliptic, parabolic or loxodromic.

Proof : Suppose v € T' has infinite order. Since () acts properly discontinuously on
distinct triples, we see that card fixy < 2. It thus suffices to show that fixy # ().
Consider the sequence of elements (7"),en. There is a subnet, (7%);, and points
a,b € M such that v'|M \ {a} - b. Choose any ¢ € M \ {a,v ta}. Now, y'c — b, so
v tle = yyic — ~b. But, v*tle = yiyc — b, since yc # a. Thus, vb = b. &

One can go on to show that, in fact, (v"),en is itself a collapsing sequence. In
particular, () acts properly discontinuously on M \ fix~.

If v is parabolic with fixed point p, we see that, for all x € M, v"x — p asn — o
and as n — —oo. If 7 is loxodromic, we can write fixy = {fix" ~,fix~ v}, such that
"M\ {fix_ v} — fixTv. It’s not hard to see that, in this case, () acts cocompactly
on M \ fixy. Note that every power of a parabolic is parabolic, and every power of a
loxodromic is loxodromic.

It’s known that a loxodromic cannot share a fixed point with a parabolic. Also if two
loxodromics share a fixed point, then they have both fixed points in common. Moreover
the setwise stabiliser of any pair of points is virtually cyclic. (For proofs, see for example
[T2].) We may summarise these results as follows:

11
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Lemma 2.2 : Suppose an infinite subgroup, G < I' fixes some point p € M. Then,
G either consists entirely elliptics and parabolics, or consists entirely of elliptics and lox-
odromics. In the latter case G also fixes some other point, ¢ € M \ {p}, and is virtually

cyclic. %

These cases are mutually exclusive. We refer to them respectively as “parabolic” and
“loxodromic”. In fact, in the parabolic case, G acts properly discontinuously on M \ {p}.
In the loxodromic case, it acts properly discontinuously and cocompactly on M \ {p, q}.

We shall refer to a subgroup G < T', as elementary if it is finite, or preserves setwise
a nonempty subset of M with at most 2 elements. It is shown in [T2] that every non-
elementary subgroup contains a free subgroup of rank 2.

It is conceivable in the “parabolic” case of Lemma 2.2, that G may contain only elliptic
elements. There are no other possibilities for infinite torsion subgroups of I'.

We remark that, from the result of [D2], any finitely generated inaccessible group must
contain an infinite torsion subgroup. If we can rule out such possibilities (for example, for
convergence actions on the 2-sphere), we can deduce that I' is accessible.

Note that any element which commutes with a loxodromic must preserve setwise its
fixed point set. ;From this, it’s a fairly easy deduction that:

Proposition 2.3 : Any infinite virtually abelian subgroup of I' has a subgroup of index
at most 2 which fixes a point. O

The following is shown in [T2]:

Lemma 2.4 : Suppose that U C M is open, with closure, [7._ Suppose v € T' with
YU C U. Then v is loxodromic (with fixT™ vy € U and fix v € M\ U). &

The idea of the proof is to note that the sets (>, 7"U and (o— v " (M \ U) are
non-empty disjoint closed ~-invariant subsets. It’s then easy to see that they must both
be singletons, and hence fixed points of ~.

In particular, we deduce:

Lemma 2.5 : If (v,), is a net in I with ~,|M \ {a} - b, where a # b. Then, ~, is
loxodromic for all sufficiently large n.

Proof : Let U be an open neighbourhood of b with a ¢ U. For all sufficiently large n, we
have v,U C U. For such n, v, is loxodromic. &

The next natural step in working with convergence groups is to define a natural
partition of M into a limit set, A, and discontinuity domain, Q@ = M \ A. The limit set
can be defined as the set of limit points, where a limit point is an accumulation point of
a [-orbit. In other words, x € A if and only if there is a net, (7,)n, in I, and a point
y € M\ {z}, such that v,y — x. Thus, A is closed, and 2 is open. If I is infinite, then A is
non-empty. If we assume that I' is non-elementary, then A is perfect and I' acts minimally
on A. In fact, A is the unique minimal non-empty closed I'-invariant subset of M. In
contrast, I' acts properly discontinuously on 2. (Many actions we will be considering will

12
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be non-elementary and minimal, i.e. Q = (). Note that this implies that M is perfect.) In
the next section we shall be considering particular classes of limit points.

3. Conical limit points.

In studying Kleinian groups, it has proved important to distinguish different classes
of limit points. These are discussed, for example, in [Mas] and [Ni]. Obvious examples
of such classes are parabolic and loxodromic fixed points. A particularly important class
(including the loxodromic fixed points) are “conical limit points” (also known as “radial
limit points” or “points of approximation”). For example, they arise naturally in the study
of conformal densities (as discussed in [Ni]). Also, one can characterise the property of
geometrical finiteness dynamically, by demanding that every limit point is a conical limit
point or a “bounded” parabolic fixed point (see [BeaM,Bo1]). In the context of convergence
groups acting on spheres, conical limit points have appeared in [MarT1] and [MarT?2].

In this section, we define a natural notion of conical limit point for convergence groups,
which reduces to the standard notion in the case of Kleinian groups. It will be immediate
from the definition that, in the case of a uniform convergence action, every point is a
conical limit point. For Kleinian groups, the converse also holds. (This amounts to the
statement that a geometrically finite group with no parabolics and empty discontinuity
domain is cocompact.) I don’t know if this converse is true in general.

Suppose, then, that I' acts as a non-elementary convergence group on a compactum,
M.

Definition : A point z € M is a conical limit point if there are nets (z,,), and (7v,), in
M\ {z,y} and I respectively with z,, — = such that there exists y € M \ {z} such that
Yn(z,y, T,) remains in a compact subset of ©%(M).

(In fact, as we shall see, we get an equivalent definition if we replace the phrase “there
exists y € M \ {z}” by “for ally € M \ {z}".)

Note that we can assume that ~,(z,y, z,) converges on some point, (a, b, c) € ©°(M),
and that (v,), is a collapsing net. In fact, we must have v, |M \ {x} — b. (To see this,
suppose Y, |M \ {z'} = ¥V, so that v, Y|M \ {V'} - 2. Now (v,2n)n and (y,2), converge
on different points, at least one of which must lie in M \ {b’}, whereas, their images under
7,1 both converge on x. It follows that x = 2’. Now, v,y — b, but 7, 1 (v,y) 4 =, so we
must have b = b'.) Note that if z € M \ {z}, then v,(z, z,z,) — (a,b,c). This justifies
our earlier remark about quantifiers. Note also that x is an accumulation point of some
['-orbit. We see:

Proposition 3.1 : A conical limit point is a limit point. &

We should note that the property of being a conical limit point is intrinsic to the
action of I on the limit set, A. (That is, a point € A is conical limit point for the action
of T" on M if and only of it is a conical limit point for the action of I" restricted to A.) This
is easy to see, noting that ©°(A) is a closed subset of ©°(M).

13
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In [Bol], we gave another, equivalent definition of conical limit point. Namely, we
said that x € A is a conical limit point if and only if there is a wandering net, (v, ), in ',
such that for all y € A\ {z}, the ordered pairs (y,x,v,y) lie in a compact subset of the
space of distinct pairs of A (i.e. A x A minus the diagonal). We can assume that (v, ), is a
collapsing net, and that (v,x,v,y) converges on some pair (a,b) with a # b. Now, either
A\ {z} = b or v,|A\ {y} — a. However, the latter cannot occur, since choosing any
z € A\ {z,y}, we would get (ynz,vnz) — (a,a). If we now fix any ¢ € A\ {a, b}, and let
x, = v, 'c, we see that x,, — x. We thus arrive at our original definition of a conical limit
point. The converse statement is elementary.

The following is a standard result in the case of Kleinian groups. (A proof for 3-
dimensionial Kleinian groups is given in [BeaM]| or [Mas|, and generalised to any dimension
in [SuS].) 'm indebted to Pekka Tukia for suggesting a means of significantly simplifying
my original argument.

Proposition 3.2 : A conical limit point cannot be a parabolic fixed point.

Proof : Suppose, to the contrary, that p € M is both. Thus, there is a parabolic, 3 € T,
with fixed point p. Moreover, there is a point, ¢ € M, and nets (z,,), and (y,), in M \{z}
and T respectively, with z,, — p and with v, (p, ¢, 7,) — (a,b,c) € OY(M). As discussed
above, we have v,|M \ {p} — b. We can suppose that ~,p # b for all n.

Now, fix for the moment some n, and consider the net (y,-17,)» (where m ranges
over the same directed set). Now, v,.1|M \ {b} — p, and so v, v,|M \ {7,,1b} — p. Since
v tb # p, we see, by Lemma 2.5, that +,.1v, is loxodromic for all sufficiently large m.

Now, let 0, = 7,87, 1. We claim that the net (4,), is wandering. For suppose not.
This means that there is some n such that the set of m > n with J,, = J,, is cofinal. ;From
the last paragraph, we can find some m > n with 6,, = &, and with v,_.1~, loxodromic.
Now,  commutes with 7,.17,. But by Lemma 2.2, a parabolic cannot commute with a
loxodromic. This contradiction shows that (J,,), is wandering as claimed. We can thus
assume that (d,,), is a collapsing net.

Now, v,p — a and 6, (ynp) = Yup — a. Also v,q — b and 0, (7v,q) = Yn(Bqg) — b. We
see that either ,|M \ {a} — b or §,|M \ {b} — a. Either way, since a # b, we see, by
Lemma 2.5, that ¢,, is loxodromic for all sufficiently large n. But 9,, is a conjugate of 3,
and hence parabolic. We thus arrive at a contradiction. &

We have already observed that, if I' is a uniform convergence group on a perfect
compactum, then every point of M is a conical limit point. Thus, by Proposition 3.1,
we see that every I'-orbit is dense and so the action of I' on M is minimal. Moreover by
Proposition 3.2, there are no parabolics. In summary, we have shown:

Proposition 3.3 : The action of a uniform convergence group is minimal and contains
no parabolics. %

This result is well known for hyperbolic groups acting on their boundary, and so
Proposition 3.3 also follows from the result of [Bo6] that every uniform convergence group
on a perfect compactum arises in this way. It would be nice to have purely dynamical
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proofs of other results concerning hyperbolic groups, for example, the fact that each torsion
subgroup is finite.

One can show [T3,Bo6] that if I is a convergence group acting on a perfect metrisable
compactum, M, such that every point of M is a conical limit point, then I' is a uniform
convergence group. This gives another topological characterisation of hyperbolic groups.
It also suggests a way one might attempt to describe relatively hyperbolic groups dynami-
cally. As in the case of Kleinian groups, or groups acting on pinched Hadamard manifolds
[BeaM,Bol], one could say that I' is (minimal) “geometrically finite” if every point of M
is either a conical limit point or a bounded parabolic fixed point. (A parabolic fixed point,
p, is “bounded” if the quotient of M \ {p} by the stabiliser of p is compact.) (Here M
takes the place of the limit set of a Kleinian group.) There may be other possibilities for
defining geometrical finiteness, for example using the space of distinct triples. It’s unclear
whether they all give rise to same notion in this generality. However, in the case where M
is assumed to be the boundary of a complete locally compact Gromov hyperbolic space,
X, and where the action is assumed to be derived from a properly discontinuous isometric
action on X, then it would seem that all sensible notions of geometrical finiteness are
equivalent, and thus give rise to a well-defined notion of relatively hyperbolic group (as
suggested in [Gr]). It is thus an interesting question as to whether every (dynamically
defined) geometrically finite convergence group arises in this way.

4. Quasiconvex subgroups of uniform convergence groups.

In this section, we give a dynamical characterisation of quasiconvex subgroups of a
uniform convergence group. Given that such groups are hyperbolic [Bo6], this will be seen
to coincide with the usual geometrical notion, though we shall develop the ideas as far
as possible without bringing such geometrical considerations into play. This dynamical
formulation is relevant to the construction of canonical splittings of uniform convergence
groups in [Bo3]. It will be an almost immediate consequence of the definition that a
quasiconvex subgroup acts as a uniform convergence group on its limit set. We shall see
that, in fact, the converse also holds, though the proof we give here is geometric, and
requires the result of [Bo6]. It would be nice to have a dynamical argument. We also note,
from this result, that every torsion subgroup is finite.

Let’s suppose then that I'" acts as a uniform convergence group on a perfect com-
pactum, M. We first note that a subgroup of I' is elementary, in the sense defined in
Section 2, if and only if it is finite or two-ended. It’s natural to deem every finite and
two-ended subgroup to be quasiconvex. This allows us to restrict attention to subgroups,
G, which are non-elementary. Note that in this case, the limit set, AG, is perfect.

Suppose that (Fg¢)eez is a collection of closed subsets of M indexed by some set =.
We say that (F¢)eez is discrete on distinct pairs if whenever we have two disjoint closed
subsets, K and L, of M, the set {£ € E| Fe N K # 0 and Fe N L # 0} is finite.

Suppose G < I' is non-elementary. Let = = I'/G be the set of left cosets of G in I'.
Suppose F' C M is a closed G-invariant set. We can index the I'-images of F' by the set =
by setting F¢ = «vF, where v € I' and { = 7G.
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Definition : We say that G is quasiconvex if there exists a nonempty closed G-invariant
subset, F' C M such that the collection of I'-images, (F¢)¢ez, is discrete on distinct pairs,
where £ ranges over the set, = = I'/G, of left cosets of G.

Note that, without loss of generality, we can take F' to be the limit set, AG, of G.

One can give an equivalent, more intuitive definition of quasiconvexity as follows.
Suppose K C M is closed. Write Oy (K) = {{z,y,2} € ©(M) | x,y € K}. Thus,
O(K) C Oy (K) C O(M). Note that ©/(K) is a closed subset of ©(M).

Suppose that G < T is a non-elementary subgroup, and that A C M is a non-empty
closed G-invariant set. We see that G acts properly discontinuously on ©;(A). Let us
suppose that O,,(A)/G is compact.

We first observe that A is perfect. To see this, we use the same argument that lead
us to Proposition 3.1 to show that if b € A, then there is some a € A and a net, (v, ), of
elements of G with ~,|M \ {a} — b. (For this we use that fact that M is perfect.) Since
G is non-elementary, we know that A contains at least 3 elements, and so we can choose
some ¢ € A\ {a,b}. Now, ,¢c — b, showing that b is not isolated in A.

Now, O(A)/G is a closed subset of ©,/(A)/G and hence also compact. In other words,
G acts as a uniform convergence group on A. Applying Proposition 3.3 in this case, we
conclude that A is a minimal non-empty closed G-invariant set. In other words, A is
precisely the limit set, AG, of G.

We claim that the above condition is equivalent to quasiconvexity as we have defined
it.

Proposition 4.1 : A non-elementary group, G < I' is quasiconvex if and only if there
is a nonempty closed G-invariant set, A C M, such that ©;(A)/G is compact. In such a
case, A is necessarily the limit set of G. Moreover, G acts a uniform convergence group on
A.

Proof : We have already observed that last two statements follow from the our second
definition of quasiconvexity, so it remains to show these definitions are equivalent.

Suppose first, that we have a such a set A with ©,,(A)/G compact. There is a compact
set, P C ©p/(A) with O,(A) = GP.

Suppose that K, L C M are disjoint closed subsets. We want to show that {£ € = |
A N K # 0 and A¢ N L # 0} is finite. Without loss of generality, we can suppose that
M # KUL. We choose any z € M\ (KUL). Let Q = {{z,y,2} € O(M) |z € K,y € L}.
Thus, @ is a compact subset of O(M).

Now, suppose that £ = vG with K NyA # () and LN~A # (. Choose any z € K NyA
and y € LN~A, and let = {z,y,2} € Q. Now, v 10 € ©y/(A) and so, without loss
of generality, we can suppose that v~ € P. In other words, @ NP # (). Since I' acts
properly discontinuously on ©(M), we see that there are only finitely many possibilities
for v and hence for . This shows that G is quasiconvex by the original definition.

The converse is most conveniently expressed in terms of nets. Suppose (6,,),, is a net in
Onr (A). Let 0, = {zpn, Yn, 2o} with z,,,y, € A and z, € M. Since O(M)/T" is compact, we
can find a subnet, (0;);, and elements v; € I' with v,2; — x, v;y; — y and v;2z; — z, where
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x,y,z € M are distinct. Now, v;x;, vy € v\, and so, from the quasiconvexity hypothesis,
there are only finitely many possibilities for the cosets v;G. Thus, after passing to a further
subsequence, we can find some fixed v € T with v~ 1v; € G for all i. But now, v~ v;0;
converges in O7(A). This shows that ©,;(A)/G is compact as required. &

Note that if G is quasiconvex, then the setwise stabiliser of AG is also quasiconvex
and contains G as a finite index subgroup. In fact this stabiliser is precisely the commen-
surator, Comm(G), of G in I, in other words the set of elements v € I" such that G and
vGy~! are commensurable. In this case, Comm(G) is the unique maximal subgroup of
I' which contains G as a subgroup of finite index. We also note that quasiconvexity is a
commensurability invariant.

We next show that the notion of quasiconvexity we have defined coincides with the
standard geometrical one. For this we need to appeal to the fact that a uniform convergence
group is hyperbolic [Bo6], and that the action is topologically conjugate to the action on
the boundary.

Suppose that I" is a hyperbolic group. Let (X, d) be a Cayley graph for I". We identify
0X = OI'. Let k be some constant greater than the hyperbolicity constant with respect
to the “thin triangles” definition. Let V be the vertex set of X. Given 6 € O(JI'), let
V(0) C V, be the set of vertices a € V such that there exist biinfinite geodesics, oy, as, as
connecting the three points of 6 with d(a,a;) < k for each i. Thus, V() is finite and
non-empty. (We shall refer to an element of V(6) as a centre for §.) Given any subset,
F C O(0r), write V(F) = Upep V(0). If F is compact, then again, V(F) is finite. Note
that V(©(0I')) = V.

Suppose that x,y € Ol are distinct. Let « be a biinfinite geodesic connecting x
to y. It’s easy to see that V(©sr({x,y})) lies in some uniform neighbourhood of a.
Conversely, suppose a € a. Now, a € V() for some § € ©(JI'). By a simple geometric
argument, applied to the set 6§ U {z,y}, we see that a lies a bounded distance from a
point of V({x,y,z}) for some z € 6. (This bound depends only on the hyperbolicity
constant.) But, {z,y,2z} € V(Oar({z,y})). In other words we see that « lies inside a
uniform neighbourhood of V(©sr({z,y})). In particular, this shows that V(©sr({z,y}))
is quasiconvex in the geometric sense. Moreover the constant of quasiconvexity is a function
only of the hyperbolicity constant.

More generally, suppose that K C O is closed. Now, Osr(K) = [J{Oar({z,y}) |
xz,y € K,x # y}. Thus, V(Osr(K)) is a union of sets of the form V(Osr({z,y})), which
we showed, in the last paragraph, to be uniformly quasiconvex. Now, x is an ideal point
of V(©sr({z,y})). It follows that for any two sets in this collection there is a third which
shares an ideal point with each. ;From this, it’s a simple geometric argument to see that
their union is (geometrically) quasiconvex. We have shown:

Lemma 4.2 : If K C 0T is closed, then V(Osr(K)) is (geometrically) quasiconvex. <

A subgroup, G, of ' is geometrically quasiconvex if the G-orbit of some (and hence
every) point of V' is quasiconvex, or equivalently if there is a G-invariant quasiconvex
subset, @ C V, with /G finite.

We can now prove the equivalence of this with our dynamically defined notion.
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Proposition 4.3 :  Suppose I' is hyperbolic, and G < I'. Then G is geometrically
quasiconvex if and only if it is quasiconvex (by our earlier definition) with respect to the
action of T' on OT.

Proof : First note that I contains no infinite torsion subgroup. Thus, every elementary
subgroup of I'" is quasiconvex by either definition, so we can suppose that G in non-
elementary.

Suppose, first, that A C OI" is a non-empty closed G-invariant subset with ©sr(A)/G
compact. Thus, V(©sr(A))/G is finite. By Lemma 4.2, V(Oyr(A)) is quasiconvex. It
follows that G is geometrically quasiconvex.

Conversely, suppose that G is geometrically quasiconvex. Let Q C V' be a G-invariant
quasiconvex subset with /G finite. Note that the limit set, AG, is precisely the set of
ideal points of (). Choose any a € V. Now it’s easily seen that for any r > 0, the set of
v € T' such that d(y~'a, Q) = d(a,vQ) < r lie in finitely many left cosets of G in I". ;From
this its easy to see that the collection of I'-images of AG, indexed by the left cosets of G,
is discrete on distinct pairs. Thus, G is quasiconvex by our original definition. &

We noted earlier that a quasiconvex subgroup acts as a uniform convergence group on
its limit set. This suggest an alternative definition. One might define a subgroup, G, of '
to be quasiconvex if it is elementary, or if there is a nonempty closed perfect G-invariant
subset, A C OT', such that ©(A)/G is compact. Again, A is necessarily the limit set of G,
so this is the same as asserting that G acts as a uniform convergence group on its limit
set. (We don’t really need to assume that A is perfect in the definition, since any closed
subset has a natural perfect closed subset, which is non-empty in the case where G is
non-elementary. )

To show that this apparently weaker definition is equivalent to the standard one,
suppose G is non-elementary, and that #(A)/G is compact. Let A = V(O(A)) and B =
V(®ar(A)). We know that A/G is finite. If we can show that B lies inside a uniform
neighbourhood of A, then it follows that B/G is finite, and so Oyr(A)/G is compact, as
required.

Suppose, to the contrary, that there is a sequence (b;);en, of points of B with
d(b;, A) — oo. Let a; be the nearest point of A to b;. Since A/G is finite, we can
suppose, after translating by elements of G, and passing to a subsequence, that a; = a
is constant. Moreover, we can suppose that (b;); converges on some point b € 9I'. Now,
each b; lies a bounded distance from a geodesic connecting a pair of points of A. A simple
geometric argument shows that by choosing one element from each such pair, we can find
a sequence of points of A tending to b. This shows that b € A.

Now, since A is perfect, we can find a sequence, (z;);, of points of A\ {b} tending to
b. Fix any point, y € A\ {b}, and let ¢; be a centre for the three points b,y,x;. Thus
c; € A, and ¢; — b. Moreover the points ¢; all lie a bounded distance from a fixed geodesic
(namely one connecting y to b). Since b; — b, a simple geometric argument shows that we
can find 4, j such that d(b;, a) > d(b;, ¢;), contradicting the fact that a is the nearest point
of A to b;. This gives the result.

I don’t know of a purely dynamical proof of this in general. It’s not hard to find such a
proof in the case where A is connected, using the first definition we gave of quasiconvexity.

18



Convergence groups and configuration spaces
5. Compactifications.

In this section, we describe how uniform convergence actions naturally “compactify”
properly discontinuous cocompact actions. The typical example is that of a hyperbolic
group acting on its Cayley graph, X. We can compactify X as X U JI', and extend the
action of I' to a convergence action on this space. Moreover the induced action on O is a
uniform convergence action.

Suppose that M is a perfect compactum admitting a uniform convergence action
by some group I'. We know from [Bo6] that I' is hyperbolic, and that M is equivariantly
homeomorphic to OT'. (In [Bo6] we assume M to be metrisable. However, the arguments go
through without this assumption, replacing sequences by nets. One can therefore conclude,
in retrospect, that M must be metrisable.)

Lemma 5.1 : If agroup I' acts as a uniform convergence group on perfect compacta, M
and N, then there is a unique I'-equivariant homeomorphism from M onto N.

Proof : The existence of such a homeomorphism follows from [Bo6], as mentioned above.
The uniqueness will be a corollary of Proposition 5.5, though one can give a direct argument
as follows. Suppose that g and h are two such homeomorphisms, and that x € M. Now
x is a conical limit point, so it is the attracting point, in M, of a collapsing net, (v,), in
[. Thus, (Yu)n = (goynog 1)n = (ho~y, o h™1), is also a collapsing net for N with
attracting point g(z) = h(x). &

This is the only point that we need to make any reference to the the result of [Bo6].
This can be avoided simply by taking the existence of such a homeomorphism as hypothesis
where necessary.

We give a few definitions.

Definition : By a compactified space, (X,0X), we mean a compactum, X UJX, with a
partition into two disjoint subsets, X and 90X, with X open and dense in X UJX (so that
0X is closed).

Note that if (X,0X) is a compactified space, then X is locally compact hausdorff,
and 0X is a compactum.

Definition : A morphism f : (Y,0Y) — (X,0X) between two compactified spaces
consists of a continuous surjective map, f: Y UJY — X U0X, such that f(Y) = X and
f|0Y — 0X is a homeomorphism.

Note that f|Y : Y — X is a proper continuous surjection. Note also that the
composition of morphisms is a morphism. This definition also gives a notion of isomorphism
of compactified spaces, where the morphism is assumed to be invertible.

Suppose that (X,0X) is a compactified space, and that the group I' acts by homeo-
morphism on X U 0X, respecting the partition into X and 0X. In other words, I" acts by
isomorphism on the space (X, 0X).
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Definition : We say that T' acts properly on (X,0X) if the action on X U 09X is a
convergence action, the action on 90X is a uniform convergence action, and the action on
X is properly discontinuous and cocompact.

We see easily that 0X is precisely the limit set of the action on X U9X. (In particular,
the attracting and repelling point of any collapsing net lie in 0X.)

Typical examples of such actions are that of a hyperbolic group, I', on (X, dI'), where
X is the Cayley graph of the group; or that of a group on the space (O(M),90(M)) in
induced by a uniform convergence action on M.

We note:

Lemma 5.2 : Suppose that I" acts by isomorphism on compactified spaces (X, 0X) and
(Y,0Y), and that f : (Y,0Y) — (X,0X) is a I'-equivariant morphism. Then T" acts
properly on (X,0X) if and only if it acts properly on (Y,0Y).

Proof : This result follows from Lemma 1.9 and Proposition 1.10, except for one point,
namely that if I' acts as a convergence group on X U 0X then it acts as a convergence
group on Y U Y. To see this, suppose that (), is a wandering net in I'. Passing to a
subnet, we can suppose that v,[(X UJX) \ {a} — b, where a,b € 0X. If o/, € 9Y are
the preimages of a,b € 0X, the we see easily that v,[(Y UJY) \ {a’'} - V. &

We want to consider the uniqueness of compactifications of properly discontinuous
cocompact actions. A useful observation is the following:

Lemma 5.3 : Suppose the group, I', acts properly on compactified spaces, (X,0X) and
(X',0X"). Suppose that K C X and K' C X' are compact subsets, and that h : 0X —»
0X' is a T'-equivariant homeomorphism. Then, | JT' (K x K')Ugraph(h) is a closed subset
of ( X UJX) x (X"UoX').

Proof : Certainly, (JT(K x K’) and graph(h) are closed in X x X’ and 0X x 90X’
respectively. If the conclusion fails, we can find some point, (z,y), of ((X U0X) x (X' U
0X')\ (X x X) which lies in the closure of [JT'(K x K') and with y # h(x). Without loss
of generality, we can suppose that x € X (otherwise replace h by h~1). We can find nets,
(n)n, (Yn)n and (yn)n in K, K" and T respectively, such that y,z, — = and y,y, — ¥.
Passing to a subnet, we can suppose that (v, ), is a collapsing net for both X U 90X and
X' U dX’, with attracting points ¢ € 9X and b € 90X’ respectively. Now, considering
the action of I on 0X’, we see that h(a) is the attracting point of the collapsing net
(ho (yu|0X)oh™1), = (y1|0X"),. We see that b = h(a). But now, returning to X U9X
and X' U 0X’, we know that v,|K and ~,|K’ converge uniformly to a and b = h(a)
respectively. Thus, v,z, — a and v,y, — b, so © = a and y = h(a). This gives us the
contradiction that y = h(x). $

Corollary 5.4 : Suppose the group I' acts properly on the compactified spaces (X,0X)
and (X',0X’) (so that there is a I'-equivariant homeomorphism from 0X to 0X'). Then,
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there is a compactified space, (Y,0Y), admitting a proper I'-action, and T'-equivariant
morphisms f: (Y,0Y) — (X,0X) and f': (Y,0Y) — (X', 0X").

Proof : Choose compact sets K C X and K’ C X’ such that X = JT'K and X' = |JTK".
Let h : 0X — 0X' be a I'-equivariant homeomorphism. Let Y = |JI'(K x K’) and let
dY = graph(h). By Lemma 5.3, we see that YUY is a closed subset of (X U0X) x (X'U

0X'). We see that (Y, 9Y) is a compactified space. Moreover, the coordinate projections,
f:YUQY — XUOX and f/: Y UIJY — X' UOX’ are morphisms. &

(In fact, it’s not hard to see directly that the conclusion of Corollary 5.4 defines an
equivalence relation on the proper actions of a fixed group. We have thus shown that, for
any given group, there is just one equivalence class.)

Proposition 5.5 : Suppose that I' acts properly on compactified spaces (X,0X) and
(X',0X"). Suppose that f : X UdX — X' UJX' is a I'-equivariant function with
f(X) C X" and f|X continuous, and with f|0X a homeomorphism onto X’. Then, f is
continuous.

Proof : Let K C X be compact, with X = [JT'K. Let Y = [JI'(K x fK)Ugraph(f|0X).
Thus, graph(f) C Y, and Y is a closed subset of (X U0X) x (X' UdX").

Suppose z, — = € 0X and f(z,) >y € X' U0X’'. We see that (z,y) € Y N (90X x
(X'U0X") =Y N(0X x 0X') = graph(f|0X) and so y = f(x). This shows that f is
continuous on 0X, and hence on X U0X. &

Thus, if f|X is a homeomorphism of X onto X', we get an isomorphism of (X,0X)
to (X’,0X’). In particular, this proves the uniqueness of compactifications of properly
discontinuous cocompact actions.

As remarked earlier, it also gives another proof of the uniqueness of the topological
conjugacy between two uniform convergence actions — consider the induced actions on
the compactified spaces of triples.

We need to consider the question of existence of compactifications. To this end, we
begin by observing that one can reconstruct compactified spaces as domains or ranges of
morphisms. We first make a few general topological observations.

Suppose that M is a compactum. The topology on M is unique among comparable
topologies in the sense that any strictly coarser topology will fail to be hausdorff and
any strictly finer topology will fail to be compact. If N is another compactum, and
f N — M is a continuous surjective map, then the topology on M is determined as the
quotient topology. In other words it is the coarsest topology such that f is continuous.
Alternatively, it is the unique hausdorff topology such that f is continuous. Note that
if U C M then the subspace topology on U is the quotient of the subspace topology on
f~u.

More generally, if X and Y are locally compact hausdorff spaces, and f : Y — X
is a continuous proper surjective map, then the topology on X is also determined as the
quotient topology. To see this, note that f extends to a continuous surjective map from
the one-point compactification of Y to the one-point compactification of X. The statement
follows from the observations of the previous paragraph.
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Suppose, now, we are given a compactified space, (Y,0Y), and a continuous proper
surjective map, f : Y — X, to a locally compact hausdorff space, X (so that the topology
on X is the quotient topology from Y'). We may extend f to a morphism as follows. We let
0X = 0Y (as aset), and extend f to amap f: Y UIJY — X UOIX by setting f|0Y to be
the identity. We give X U0X the quotient topology. Clearly X UJX is compact, and since
every point preimage in Y UJY is compact (given that our original map f was proper) we
see that X U 0X is also hausdorff. We also see that f|0X is a homeomorphism, and X is
open in X U9dX. Also the new (subspace) topology on X is the quotient topology from
Y, and thus agrees with the original. Clearly, if Y is dense in Y U dY, then X is dense in
X UOX. We conclude that X U0X is a compactified space, and f : (Y,0Y) — (X,0X)
is a morphism. Moreover, (X, 0X) is unique up to isomorphism.

Now, suppose we are given a compactified space, (X,0X), and a continuous proper
surjective map, f : Y — X. As before, we want to extend f to a morphism. Again, we
set Y = 0X (as a set) and extend f to Y UJY by taking f|0Y to be the identity. We
topologise Y U dY by taking as base all open subsets of Y together with all sets of the
form f~1V as V varies over open subsets of X UOX. This collection is clearly closed under
finite intersection, and is thus indeed a base for a topology. Moreover, f is continuous,
and so X U0X is hausdorff. Also f|0Y is a homeomorphism, and the subspace topology
on Y agrees with the original. We need to check that Y U dY is compact. To this end,
suppose that & and V are collections of open subsets of Y and X U dX respectively, such
that U U {f~1V | V € V} covers Y UJY. Now, V covers 0X, and so there is some finite
subset Vo C V covers 0X. Let K C X \ [JVy. Thus, K is a compact subset of X. Since
f is proper, f~1K is a compact subset of Y, and hence of Y UJY. It is thus covered by a
subset, Uy U{f~V | V € V1 }, where Uy C U and V; C V are finite. It follows that Y UJY
is covered by UgU{f~1V |V € VoUV;}. Thus Y UJY is compact. Note that if X is dense
in X U0X, then Y is dense in Y UJY. We have shown that (Y,0Y) is a compactified
space, and that f: (Y,90Y) — (X,0X) is a morphism.

In fact, the construction of the last paragraph is natural up to isomorphism. Indeed,
the topology on Y UQY is determined as the unique compact topology inducing the original
topology on Y and such that f is continuous. To see this, suppose that Y U Y admits
another topology with this property. It’s clear that this topology must be finer that
constructed above. However, if it were strictly finer, then it would fail to be compact.

Suppose now that I' acts properly on the compactified space (X, 0X), and acts prop-
erly discontinuously and cocompactly on a locally compact hausdorff space, X’. We can
compactify X’ as a space (X', 0X’), admitting a proper I-action, as follows.

Let K C X and K’ C X' be compact sets such that X = |JTK and X’ = [JTK'.
Let Y =I(K x K') C X x X', and let f:Y — X and f': Y — X' be the natural
projection maps. Now, Y is closed in X x X', and hence locally compact. Moreover, f
and f’ are proper and surjective. As described earlier, we can find a compactified space
(Y,0Y) and extend f to a morphism f : (Y,0Y) — (X,0X). Since this construction is
natural, we get a [-action on (YY) such that the map f is I-equivariant. By Lemma
5.2, this action is proper. Similarly, we construct a compactified space (X', 0X’) admitting
a proper I'-action, and extend f’ to a I'-equivariant morphism f’: (Y,9Y) — (X', 0X’).

Now given any uniform convergence action of a group, I', on a perfect compactum,
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M, we can take, as starting point for the above construction, the proper action of I'" on
the compactified space (©(M),00(M)). We conclude:

Proposition 5.6 : Suppose we are given a uniform convergence action of a group I'
on a perfect compactum, M. Suppose I' acts properly discontinuously cocompactly on a
locally compact hausdorft space X. Then there is a natural compactification of X as a
compactified space (X, 0X) admitting a proper action of the group I', extending the action
of I' on X. This compactification is unique up to isomorphism. Moreover, there is a unique
I'-equivariant homeomorphism of M onto 0X. &

Note that if M is disconnected, then I' has more than one end. This follows, either
from Proposition 5.6, (taking X to be the Cayley graph), or appealing to [Bo6] and the
standard fact for hyperbolic groups. Thus, Stallings’s theorem [St] tells us that I" splits
over a finite subgroup. Dunwoody’s accessibility theorem [D1] then leads us naturally to
considering uniform convergence actions on continua.

6. Configuration spaces in continua.

In this section, we give some general results relating to continua (connected compacta).
Our main concern will be with connectedness properties of configuration spaces. For
applications, this means spaces of triples, though for the most part, we have little reason
to restrict to this case. jFrom our discussion we can deduce something about convergence
groups acting on continua. We shall proceed here in a fairly general manner, given what
seem to be some useful general observations along the way. (For some general discussion
of the theory of continua, see, for example, [HY] and [Na].)

Suppose that M is any hausdorff topological space. Let II% (M) C M™ be the open
subset of distinct ordered n-tuples (i.e. n-tuples with no two entries equal). Let IL, (M) be
the quotient space of IIY (M) under the action of the symmetric group on n letters which
permutes the coordinates. We think of an element of II,,(M) as an unordered n-tuple, in
other words a subset of M of cardinality n. We refer to the spaces 112 (M) and I1,,(M)
as “configuration spaces”. Note that ©°(M) = II3(M) and ©(M) = [3(M). Our main
interest is in ©(M ), though since there is nothing very special about the number 3, we
may as well proceed in greater generality.

Our first main result (Theorem 6.3) tells us that if M is connected, then so is IT,, (M)
for all n. Alhough it is of no direct relevance to the rest of the paper, it is also interesting
to consider when TI% (M) is connected (in the case of metrisable continua). Finally, if M
is a Peano continuum, we shall see that II,, (M) has only one end for n > 2.

All of this is clearly related to the manner in which M is separated by finite subsets.
This seems to be an interesting question in itself. As a special case we have the “treelike”
nature of the set of global cut points of a connected hausdorff space, as formulated in [W].
(See also [Bo2].) More generally, we have the following lemma, which seems to be quite
useful, though I haven’t found any mention of it in the literature.

First, recall that a quasicomponent of a topological space is an equivalence class under
the equivalence relation defined by deeming to points to be equivalent if every clopen
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(closed and open) subset containing one also contains the other. Quasicomponents are
always closed (though not necessarily connected). Clearly, a space is connected if and
only if it has precisely one quasicomponent. For further discussion, see [HY]. If M is a
connected hausdorff space, C' C M is closed, and x,y € M \ C, we say that C' separates x
fromy in M if x and y lie in different quasicomponents of M \ C. In other words, we can
write M \ C as a disjoint union of two open sets M \ C = O U U with x € O and y € U.

It turns out that if F¥ C M is any finite subset, then the separation properties of
(subsets of ) F' are determined by an embedding of F in a finite graph. To be more precise,
we construct a finite graph, G = G(M, F'), with vertex set V(G) = F, by joining z,y € F
by an edge if z and y lie in the same quasicomponent of (M \ F') U {x,y}.

Lemma 6.1 : Suppose M is a connected hausdorff space, and F' C M is finite. Let
G = G(M, F) be the finite graph described above. If C C F and a,b € F'\ C, then C
separates a from b in M if and only if C separates a from b in G.

Proof : Suppose a and b are connected by an edge in G. Then a and b lie in the same
quasicomponent of (M \ F') U {a,b}, and hence in the same quasicomponent of M \ C.
More generally, it follows that if @ and b are connected by a path in G \ C, then they lie
in the same quasicomponent of M \ C.

To prove the converse, suppose that we can write FF = AU B U C, with a € A and
b € B, and such that no edge of G connects any point of A to any point of B.

Suppose © € A and y € B. By the definition of a quasicomponent, we can write
(M\ F)u{z,y} =0UU, withz € O,y € U and O,U open. We write O(x,y) for some
such set O. Note that its closure, O(x,y), is contained in (O(x,y) U F)\ {y}.

Now, let O(z) = (,cp O(x,y). Thus, O(z) is open, € O(z) and BN O(z) = 0.
Moreover, O(x) C Nyen O(z,y) C (O(x)UF)\ B=0(x)U (F\ B).
~ Now let O = (J,c4 O(z). Thus, O is open, A C O, and BN O = (). Moreover,
O COU(F\B)=0U(AUC)=0UC. Let U = M\ (OUC). Then, M\ C = OUU, with
O,U open, a € O and b € U. Thus, a and b lie in different quasicomponents of M \ C. {

Corollary 6.2 : G(M, F) is connected.

Proof : Take C = 0. &

Before applying this to configuration spaces, we show how it gives us the “treelike”
nature of cut points in a connected hausdorff space, as alluded to earlier. This treelike
structure is critical in obtaining splitting of one-ended hyperbolic group with non-locally-
connected boundary, leading eventually to the conclusion that no such groups can exist.

Suppose that M is a connected hausdorff space. Given x,y,z € M, we say that y
lies between x and z if y separates x and z in M. This defines a ternary “betweenness”
relation on M. It’s known that this relation satisfies certain axioms introduced by Ward
[W]. These axioms turn out to be equivalent to the following property. Suppose F' C M
is any finite subset, then we can embed F' in a finite tree, T', such that if x,y, z € F', then
y lies between = and z in M if and only if y lies between x and z in 7. In other words, if
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we restrict Lemma 6.1 to the case where card C' < 1, we can suppose that our finite graph
is a tree (except that F' need not the the entire vertex set of the tree).

Deducing this fact from Lemma 6.1 is elementary graph theory. Suppose that G is
any finite connected graph. A block in G is a maximal 2-vertex connected subgraph. (We
consider a single edge to be 2-vertex connected.) Thus, two blocks intersect, if at all, in a
common vertex. Let T'(G) be the bipartite graph whose vertex set is an abstract disjoint
union of the vertex set of G and the set of blocks of G. An edge of T'(G) connects a vertex
to a block if and only if the vertex lies in the block (in G). One verifies that T(G) is a
tree. Moreover, if x,y, z are vertices of G and hence also of T'(G), then y lies between z
and z in T'(G) if and only of y separates x from z in G. Thus, starting with F' as a finite
subset of our space M, and setting G = G(M, F'), we see that the betweenness relations
on F as a subset of M agree with those on F' as a subset of T'(G). An alternative proof
of the existence of such a tree is given in [Bo2]. The treelike structures arising from these
axioms are analysed in that paper, and, from a somewhat different perspective, in [AdN].

We now return to the objective of studying configuration spaces. As before, M is a
connected hausdorff space. The following observation will be useful.

Fix n > 2, and suppose that C C M is a subset with n — 1 elements. The map
[ — CU{z}] : M\ C — II,(M) is continuous. In particular, we see that if a and
b lie in the same quasicomponent of M \ C, then C' U {a} and C' U {b} lie in the same
quasicomponent of II,,(M). We can now prove:

Theorem 6.3 : If M is a connected hausdorff space, and n > 1, then IL,(M) is
connected.

Proof : Suppose, first, that F' C M is a subset with n 4+ 1 elements. Thus, each x € F
gives us an element, F'\ {z}, of II,(M). Now, if z,y € F are connected by an edge
of G = G(M, F), it follows, from the definition of G and the observation immediately
preceding the proof, that F'\ {z} and F'\ {y} lie in the same quasicomponent of IL, (M ).
Since G is connected (by Corollary 6.2), it follows that the elements, F'\ {z} lie in the
same quasicomponent of IL,, (M) for all x € F.

Now, we can get from any set of n elements of M to any other by moving one element
at a time. ;From the previous paragraph, we see that each such move keeps us in the same
quasicomponent of II,, (M). It follows that I, (M) has only one quasicomponent, and is
thus connected. &

Although we shall have no need of the result here, it is amusing to ask when the space
of distinct ordered n-tuples is connected. If we restrict to the case where M is a metrisable
continuum, we can give a complete answer to this question:

Proposition 6.4 : Suppose M is metrisable continuum not homeomorphic to an interval
or a circle, then 112 (M) is connected.

Clearly, if M is a (non-degenerate) interval, then I1,, (M) has precisely n! components,
whereas if M is a circle, it has (n — 1)! components. (In these cases, everything is locally
connected, so components and quasicomponents agree.)
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We shall only give a rough sketch of the argument here. To this end we shall need
topological characterisations of circles and finite trees among metrisable continua. (By a
“finite tree”, we really mean the realisation of a finite simplicial tree). Recall that a (global)
cut point in a continuum is a point whose complement is disconnected. The following result
can be found in [Naj:

Lemma 6.5 : A metrisable continuum is a finite tree if and only if it has finitely many
non-cut points. %

A characterisation of the circle is given in [HY]. Thus, M is homeomorphic to a circle
of and only if the complement of any pair of distinct point of M is disconnected. We shall
need a slight variation on this, as follows.

Given a continuum, M, define a 4-ary relation, §, on M by saying that §(z,y, z, w)
holds if and only if the pair {z, 2} separates y from w. We say that M is cyclically separated
if ¢ is a cyclic order. The following can be deduced from the result cited in the previous
paragraph. We omit the proof.

Lemma 6.6 : A cyclically separated metrisable continuum is homeomorphic to a circle.

¢

Now, Lemma 6.1 effectively reduces Proposition 6.4 to a problem in graph theory.
Suppose G is a finite connected graph, and [ is a set with n elements. Consider the
collection of injective maps into the vertex set, V(G), of G. We say that two such maps,
f,g: 1 — V(G) are related by a move if there is some i € I such that f(i) and g(i) are
adjacent, and f|I\ {i} = g/ \ {¢}. Intuitively, we imagine placing counters labelled by
the elements of I on distinct vertices of G. We can think of a move as sliding a counter
labelled ¢ form one vertex to an adjacent vacant vertex. Suppose A C V(G) is a subset
of n elements, and we have two functions f, g which are related by a finite sequence of
moves, and with f(I) = g(I) = A. Then, go f~! gives us a permutation of A. The set of
permutations arising in this way defines a subgroup of the symmetric group on n letters
which is well defined up to conjugacy, and independent of the choice of A. If this subgroup
is the whole symmetric group, we say that G is n-permutable. One can ask which graphs
have this property. The following result is no doubt far from optimal. We omit the proof.

Lemma 6.7 : Given any n € N, there is some k(n) € N such that if G is a finite
connected graph with at least k(n) non-cut vertices, then either G is a circle, or it is
n-permutable. &

It seems that k(n) = n + 2 will do the trick. I'm not sure about k(n) =n+ 1. In any
case, any number, k(n) will serve for our purposes.
We are now ready to sketch the proof.

Proof of Proposition 6.4 : Suppose that M is a metrisable continuum, and that
Y (M) is not connected. It follows that if I C M is any finite subset, then G(M, F) is
not n-permutable.

Now, it’s easy to see that among finite trees, the only possibility for M is an interval.
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We can thus suppose that M is not a finite tree. By Lemma 6.5, we can find a set A C M
of non-cut points, with card(A4) = k(n).

Now, suppose B C M is any finite subset. The graph, G(M,A U B) is not n-
permutable. Also, G has at least k(n) non-cut vertices, corresponding to the subset A.
Thus, by Lemma 6.6, G is a circle. It follows that the 4-ary relation, ¢ restricted to AU B,
and so in particular to B, is a cyclic order. Since B was arbitrary, it follows that ¢ is a
cyclic order on M. (In fact, it suffices to verify this for all subsets B with card(B) = 5.)
It follows that M is cyclically separated, and hence, by Lemma 6.5, homeomorphic to a
circle. &

We now restrict attention to Peano continua (locally connected continua). We shall
see that, in this case, I12 (M) has one end.

First, we recall a bit of general topology. A hausdorff space, X, is locally connected
if every point has a base of connected neighbourhoods. ;From this, it’s easily seen that
each connected component of each open subset is open. It follows that, in fact, every point
of X has a base of open connected neighbourhoods. Moreover, every open subset of X is
locally connected, and every component of X is also a quasicomponent.

Suppose that X is also locally compact. We say that X “has one end” if, for every
compact set, K C X, there is another compact set, L C X, with K C L and X \ L
connected. In fact, its enough to find a compact set L such that X \ L lies inside a single
component of X \ K. (Since this component is open, its complement will be a compact set
containing K.)

If M is a Peano continuum, then I, (M) is connected, locally connected and locally
compact. (Connectedness follows from Theorem 6.3. To see local connectedness at a point
{z1,...,2,} € II,(M), choose arbitarily small, pairwise disjoint neighbourhoods, U; > z;.
The product of these neighbourhoods in M™ projects to a connected neighbourhood of
{z1,...,zn} in II,(M).) In fact:

Proposition 6.8 : If M is a Peano continuum, and n > 2, then I1,,(M) has one end.

We shall only give a proof of this in the case of real interest to us, namely when n = 3,
in other words, for O(M) = II3(M). It will be seen that the general case follows by a
similar but slightly more complicated argument. We shall thus content ourselves with:

Proposition 6.9 : If M is a Peano continuum, then ©(M) has one end.

Proof : Suppose K C ©(M) is compact. A simple compactness argument shows that we
can find a finite open cover, (U;), c.s, of M with the property that if ¢, j € J, z,y € U; and
z € Uj, then {x,y, 2} ¢ K. We can also find a finite refinement, (O;)icy, of this cover with
the property that if 4, j, k € I with O; N O; # 0 and O; N Oy, # 0, then there is some [ € J
such that O; UO; U Oy, C U;. Moreover, we can take all the O; and U; to be connected.

Given i,j € I, let ©;; = {{z,y,2} € O(M) | z,y € O;,2 € O;}. Thus, ©;; = ©(0;) C
O(M). Let E =, ;c; Oij, and let L = O(M)\ E. We see that L is compact, and K C L.
We claim that E lies in a single component of ©(M) \ K.
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Let N be the nerve of the cover (O;);cr. In other words, N is the graph with vertex
set I, and with ¢, j € I connected by an edge if and only if O; N O, # 0. We see that N is
connected.

Now, for each k € J, the space O(Uy) C ©(M) is connected (by Theorem 6.3), and so
lies in some component of (M) \ K. Also, if 4, j € I with O; N O; # 0, then there is some
k € J with O; U Oj C Uy, so that @(OZ) U @(O]) - @(Uk) Thus @(Ol) and @(OJ) lie in
the same component of O(M) \ K. Since N is connected, we see that all the sets ©(0;),
and hence all ©(Uy) lie in this same component. We call this component D. We want to
show that ¥ C D, in other words, ©;; C D for all 4,5 € I.

Suppose then that i,7 € I. Let d = d(7,j) be the combinatorial distance, in N,
between ¢ and j. We prove, by induction on d, that ©,;; C D.

Suppose first, that d < 2. Then there is some [ € J with O; U O; C U;. Thus,
©,; CO(U;) C D, as claimed.

Now suppose that d > 3. There is some k € I, adjacent to j, with d(i, k) = d—1. Now
d(i, k) > 2, and so O; N (0O, U Oy) = 0. Fix any distinct z,y € O;, and consider the map
[z = {z,y,2}] : O; UO, — O(M). This is continuous, and its image misses K. Since
0; N Oy, # 0, the set O; U Oy, is connected, and so Q = {{z,y,2} € O(M) | z € O; UOy}
lies in some component of ©(M)\ K. Now, QNO;; # ) and QNO;; # . By the induction
hypothesis, we have ©;;, C D, so it follows that ©;; C D.

It follows, by induction, that ©;; C D for all 4, j € D, and so £ C D. This shows that
©(M) has one end. &

The results of this section can be used to give direct proofs of some facts concerning
convergence actions on continua. For example it’s easy to see that such a group must be
finitely generated. Moreover, we have:

Proposition 6.10 : Any group which acts as a uniform convergence group on a Peano
continuum is one-ended.

Of course, these results also follow from the fact that such groups are hyperbolic.

To give a direct argument, suppose that M is a continuum, and that I" is acts as a
uniform convergence group on M. Now, ©(M) is locally compact hausdorff, and so we can
find an open set O C ©(M), whose closure, O, is compact, and with M = |JTO. Since
the action of I" on ©(M) is properly discontinuous, the cover I'O is locally finite. Let N
be the graph with vertex set V(N) =T and with two vertices, v and 7 joined by and edge
if yON~'0O # (). Thus N is a locally finite graph, on which T" acts with finite quotient.
Moreover, using Theorem 6.3, we see that N is connected. Thus, I' is finitely generated.

Suppose now, that ' C I' = V(N) is a finite set of elements which separates the graph,
N into two unbounded pieces. In other words, we can write V(N) \ F = A; U Ay with
A; and As both infinite, and with no edge connecting any element of A; to any element
of As. Let U; = U, c4,70. Thus, U; is open and not relatively compact in ©(M). Also
UrNUz =0 and ©(M) \ (U1 UU2) C U, 70 is compact. It follows that ©(M) has more
that one end. If M is a Peano continuum, Proposition 6.9 tells us that this is impossible.
We deduce that N and hence, by definition, I' is one-ended. This proves Proposition 6.10.

This is only the start of the analysis of uniform convergence groups acting on Peano
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continua. As mentioned earlier, one can derive a lot more information about the structure
of M and I'. For example, M has no global cut point, and there is a bound on the valencies
of local cut points. As for I', one can derive most of the essential features of the JSJ
decomposition, as introduced by Sela [Se], from this hypothesis alone. In particular, this
describes all possible splittings of I' over two-ended subgroups. Details of this procedure,
and applications to hyperbolic groups are given in [Bo3|.
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