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0. Introduction.

In [MM1], Masur and Minsky showed that the curve complex associated to a surface
is hyperbolic in the sense of Gromov. In this paper we give another proof of this result.
Our constructions are more combinatorial in nature, and allow for certain refinements
and elaborations. The result applies to a compact surface, possibly with boundary (apart
from a few trivial cases), or equivalently to a closed surface with a prefered finite subset,
thought of as punctures. We use the latter formulation. For simplicity, we describe only
the orientable case.

Let ¥ be a closed orientable surface, and let I C ¥ be a (possible empty) finite
set. In [Harv], Harvey associated a “curve complex” to (3,II) as follows. The vertex
set, X = X (3,1I), consists of the set homotopy classes of simple closed curves in ¥ \ II
(which we refer to simply as “curves”). A set of curves is deemed to span a simplex in
the curve complex if they can be realised disjointly in 3\ II. There are a few “exceptional
cases”, namely if ¥ is a 2-sphere and |II| < 3, then X = (), and if ¥ is either a 2-sphere
with |TI| = 4, or a torus with |[II| < 1, then the associated complex is just a countable
set points. On the other hand, if (3, II) is non-exceptional, then it’s not hard to see that
the curve complex is connected, and has dimension 3 genus(X) + |II| — 4. We shall take
C(X%,1I) = 3genus(X) + |II| — 4 as a convenient measure of the “complexity” of (X,1I).
Thus (X, 1) is non-exceptional if C(X,1I) > 0.

The main result of [MM1] can be stated as follows.

Theorem 0 : If C(X,1II) > 0, then the curve complex is hyperbolic.

The hyperbolicity constant may depend on (X,1I). In [MMI1] part of the argument
is non-constructive, and thus there is no explicit estimate of this constant (though in
principle, their arguments can be adapted to give some computable bound). In this paper
we show that the hyperbolicity constant is bounded by a logarithmic function of complexity
— see Proposition 6.1.

Note that all that is relevant here is the 1-skeleton of the curve complex. We shall
denote this graph by G = G(X,1II). We write d for the induced combinatorial path-metric
on X which assigns unit length to each edge of G. We shall confine our discussion of
hyperbolicity to graphs.

The notion of a hyperbolic metric space was introduced by Gromov [Grl]. Other ex-
positions are [Bol,CDP,GhH,S]. Hyperbolicity is a quasiisometry invariant, from which one
can deduce immediately that certain variations on the curve complex are also hyperbolic
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Hyperbolicity of the curve complex

(see Section 1). The result is thus quite robust.

We remark that the curve complex has some nice combinatorial and topological prop-
erties, which have been used to illuminate the structure of the mapping class group. See,
for example, [Hare,I,L] and further references therein.

The large scale geometry of these objects has only come the fore more recently, notably
in [MM1]. In a sequel, [MMZ2], the same authors build on this work to investigate certain
hierarchical finiteness properties of the curve complex. This is an important ingredient in
the study of ends of hyperbolic 3-manifolds by Minsky and his collaborators, culminating in
proof of the ending lamination conjecture [BrCM]. A description of the Gromov boundary
of the curve complex is given in [K]. The geometry of the curve complex is also used in
[BeF] to show that subgroups of the mapping class group that are not virtually abelian
have infinite dimensional second bounded cohomology.

Of course, all this would be rather trivial if the curve complex had finite diameter.
However, a simple argument given in [MM1], which the authors attribute to Luo, shows
that any non-exceptional curve complex has infinite diameter. Indeed, it is also shown
in [MM1] that any pseudoanosov mapping class is loxodromic in curve complex, i.e. has
positive stable length.

The proofs of the paper are logically independent of those of [MM1], though the latter
served as the main source of inspiration for the present paper. The two main components
of [MM1] are a sophisticated study of nested train tracks, and an analysis of the geometry
of Teichmiiller geodesics. Some ideas from the latter are used in this paper, though they
are mostly phrased more combinatorially in terms of intersection numbers. Indeed, one
can give a description of geodesics and centres etc. purely in terms of intersection numbers.
Some of this laid out explicitly in Section 6.

Much of the work for this paper was carried out at the Centre de Recerca Matematica,
Barcelona and the Max-Planck Institut fiir Mathematik, Bonn and the Universitiat Bonn.
I am grateful for the hospitality of these institutions. I thank Thomas Delzant and Ursula
Hamenstadt for their interest and helpful discussions.

1. Intersection numbers.

In this section, we prove a couple of simple results relating intersection numbers to
distances in the curve complex. We go on to briefly comment on a few variations of the
curve complex, which can also be seen to be hyperbolic using Theorem 0.

Given curves, a, 3 € X, we write i(«, 3) for the intersection number of o and 3, i.e.
the minimal cardinality of N among realisations of « and 3 in ¥ \II. (Thus, i(a, ) = 0.)
By definition, d(«, 3) < 1 if and only if i(«a, ) = 0.

We describe two inequalities relating d(«, 3) and i(a, 3). The first is simple and
explicit, and the second, which we describe in more detail, has optimal asymptotics.

For the purposes of proving Theorem 0, any upper bound on d(a, () in terms of
i(a, #) will suffice. The logarithmic bound of Lemma 1.2 is required to obtain the bound
in Proposition 6.1.
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Lemma 1.1 : IfC(X, 1) > 0, then for all o, 3 € X we have d(«, 5) <i(a, ) + 1.

Proof : Write j(a, ) = i(a, 8) + 1. If j(o, 3) > 2 then except in one particular case, we
can find a curve v € X with j(a,y)+j(7, 8) < j(a, ). This can be proven by an argument
similar to that of Lemma 1.3. We omit the details here. The exceptional case consists of
two curves, a, 3 on a twice punctured torus, one obtained from the other by double Dehn
twist, so that i(a,3) = 2. In this case, one verifies directly that d(«, ) = 3. In general,

by continuing this subdivision, we arrive at a sequence of curve, a = 7g,...,v, = # with
J(Vi,vit1) = 1 for all 4. This gives a path of length n from « to S. Moreover, the above
inequality implies that n < j(«, 3), and so the result follows. &

The following variation is better for large distances:

Lemma 1.2 :  There is a function, F : N — N with F(n) = O(logn) such that if
C(X,1I) > 0 and o, f € X then d(«, 5) < F(i(a, 5)).

In general, one can not do better than logarithmic, as can be seen for example by con-
sidering the images of a fixed curve a under the iterates of a pseuoanosov, 1, (see [MM1]).
In this case d(a,¥™(«)) grows linearly in n, whereas i(a, " («)) grows exponentially. Of
course, there is no general lower bound, and in some sense, it would seem that in the
“generic” situation one should expect something better than logarithmic.

Before continuing, we should note that, since we are assuming ¥ to be orientable, the
intersections of two curves, «, (3, can be natural partitioned into two subsets according to
the relation of the orientations of «, # and X.

To prove Lemma 1.2 we need:

Lemma 1.3 : Suppose C(3,I1) > 0. If o, 3 € X and a,b € N with ab > 2i(«, 3), then
there is some v € X with i(a,y) < a and i(3,7) < b.

Proof : Let n = i(a, 3). We can assume that b < a, and so ¢(b+ 1) > n, where c is the
integer part of a/2. We can thus write & = a3 U --- U «a, where each «; is a subarc of «
containing at most b+ 1 points of a N 3. We can also assume that n > 2c¢ + 1, otherwise
n < a, and we could simply take v = 3. Now let 3y be any subarc of 3 containing exactly
2¢ 4+ 1 points of N B. There must be some i so that |a; N Gy| > 3. Thus, at least two
intersections, say x,y € «; N By, have the same orientation. Let o/ and 3’ be the subarcs of
«; and [y respectively lying between x and y. By passing to smaller subarcs, if necessary,
we can suppose that the interiors o/ and (3’ meet, if at all, in a single point with the
opposite orientation.

Now if o/ U (' is simple then it represents an element, v € X with i(«,v) < 2¢ < a
and i(83,7) < b (as can be seen by representing v by a parallel curve running close on one
side of &/ U ). If & and ' meet at an interior point, z, then z cuts o/ = o} U o, and
B = B U B, where of, 3] join = to z and o, 35 join z to y. At least one of the curves
oy U (=p1), ab U (=pF%) or of U B5 U (—ab) U (=) is essential and represents an element
~v € X. This satisfies i(a,y) < 2¢ < a and i(3,7y) < b as required. O
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Proof of Lemma 1.2 : Write h(n) = logz(n) — 1. If n > 6 is an integer, then there
are integers a,b > 4 with 2n < ab < 3n. Thus h(a) + h(b) < h(n). Given o, € X, write
jla, B) = max{h(4),h(i(a, 3))}. Applying the previous observation and Lemma 1.3, we
see that if o, 8 € X with i(«, ) > 6, then we can find v € X with j(a,7) + j(7,8) <
j(a, B). Continuing to subdivide in this fashion, we eventually arrive at a sequence o =
Y0, V15 - Ym = 67 with 2211 j(’y’ifla ’71) < j(Oé, 6>’ and with i(’)/ifh %) <95 for all 4. ThUS,
mh(4) < j(a, 3). Moreover, applying Lemma 1.1, we have d(v;—1,7;) < 5+ 1 = 6 for all
i. Thus d(a, B) < 6m/h(4). Setting F(n) = 6 max{1, h(n)/h(4)}, the result follows. &

Before continuing, we note that if d(«, 3) > 3, then «, 8 fill the surface ¥ \ II. This
means that for any realisation of a and 3 in X \ II, every complementary component of
Y\ II is trivial, that is a topological disc containing at most one point of II.

We can use intersection numbers to define a number of variations of the curve graph
G(%,II) which we briefly comment on. Given any p > 0, write G, = G, (X, II) for the graph
with vertex set X = X (3,1II), where «, 5 € X are deemed to be adjacent if i(a, 3) < p
(so that Gy = G). The embedding of G in G, is a quasiisometry, and so G, is hyperbolic if
C(X,1II) > 0. We note that if genus(X) =1, |II| <1 and p =1 or if genus(X) = 0, |II| = 4
and p = 2, then G,(3,1I) is a Farey graph, and hence hyperbolic (indeed quasiisometric to
a regular infinite valence tree). The graphs are thus also hyperbolic for any larger p.

Indeed we can generalise further. Given ¢ > 0, let X, be the set of curves with
self-intersection number at most ¢ (i.e. those that can be realised with at most ¢ self-
intersections). If p > ¢, we define G, , to be the graph with vertices «, f € X, adjacent
if d(a, 5) < p. Clearly G, embeds in G, , as a full subgraph. Unless genus(X) = 0 and
III| < 3, every point of X, is adjacent to a point of X. Indeed if o € X, then there is
some 3 € X which can be homotoped into the image of a such that there is at most one
preimage of any point other that a self-intersection of a. We have d(«, 3) < ¢ < p, so o, 3
are are adjacent. Moreover, the map that sends « to 8 sends cannot increase intersection
numbers, and so sends adjacent points to adjacent points. It thus defines a retraction of
Gp,q onto G,. It follows that the inclusion of G, into G, 4 is a quasiisometry. In the special
case where ¥ is a sphere and |II| = 3, then G, , is a finite connected graph whenever
p>q=>lorp>q>2.

From all this, we may conclude:

Proposition 3.4 : Suppose X is a closed orientable surface, I1 C ¥ is finite, and p,q € N
with p > q. If G, ,(X,II) has positive dimension, then it is hyperbolic. &

Finally another variation on the curve complex is used in [MM2]. Suppose P C II. In
addition to classes of simple closed curves in X\ 11, we allow classes of arcs with endpoints in
P, but otherwise disjoint from II. An arc might have its two endpoints identified to a single
point of P. Two arcs are in the same class if one can be deformed to the other through
such arcs. This defines the vertex set, X (X,II, P). Two vertices are deemed adjacent
if they can be realised so as to be disjoint outside P. This defines a graph G(3,1I, P).
Note that G(X,11,0) = G(3,1II). Moreover, the inclusion of G(X,1I) into G(3,1II, P) is a
quasiisometry, and so the latter is hyperbolic if C'(3,II) > 0. Indeed, we can include the
cases where genus(X.) = 1 and |P| = |II| = 1, and where genus(X) = 0, |II| =4, and P # (.
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2. The idea of the proof.

In this section, we sketch the strategy for proving Theorem 0. We also introduce some
terminology regarding multicurves that will also be used later.

Suppose C(3,1II) > 0 and write X = X (X,1II) and G = G(X,II). The basic idea, as in
[MM1], is to construct a preferred family of paths connecting any pair of vertices. Thus,
if a, 8 € X, we have a path m,5 in G from o to 5. In [MM1] the authors construct a
kind of uniform retraction from X onto each 7,3, which far from 7,z decreases distances
by a definite factor. However the latter point is difficult to establish, and relies, among
other things, on a certain combinatorial lemma resulting from a sophisticated analysis of
nested train tracks. Here, we do not need such an estimate. Instead, we show directly that
any triangle formed by three paths m.g, mg, and 7y, is “thin” in an appropriate sense.
In particular, there is a “centre”, ¢(«, 3,v) € X, which is a bounded distance from all
three sides. A key point in the argument is to show that if 7,6 € X are adjacent, then
d(p(a, B,7), (e, 3,6)) is bounded. (A similar statement is also proven in [MM1] by a dif-
ferent method.) Given this, one sees that the paths 7,3 are uniformly quasigeodesic. From
this, the hyperbolicity of G follows via a subquadratic isoperimetric inequality (Proposition
3.1).

In practice, we first construct a “line” from o to 3. This is a subset A,g C X which
will be within a bounded Hausdorff distance of m,g. It also carries a “coarse order”, <.z,
which measures the approximate order of points along m,3.

To this end, we define a weighted curve formally as a pair, (A, «) where A € (0, 00)
and a € X. We denote this by Aa, and think of A\ as a weight assigned to a. We write
W X for the set of all weighed curves. By identifying 1o with «, we can regard X C W X.
Given Ao, uf € WX, we write d(Aa, uf) = d(a, 8) and (A, pf) = Api(a, B).

To define A,g, we can assume i(a, 3) > 0, and choose A, u > 0 so that i(Aa, uf) = 1.
One can show (Lemma 4.3) that, for some fixed R > 0, depending only on C'(3,II), there
is some § € X with i(Aa,d) < R and i(uf,d) < R. Moreover, for given A, i1, any two such
curves are a bounded distance apart in X. We now let A, u vary, and let A,p the set of all
curves arising in this way.

The construction of a centre of a, 3,7 € X is based on a similar idea. We can assume
that no two of these curves are equal or adjacent, and so we can renormalise them so as
to give weighed curves, a, 3,7 € WX, with i(a, 3) = i(3,7) = i(y,a) = 1. In this case,
we can take a centre, ¢(a, 3,7), to be a curve § € X with i(a,d) < R, i(3,6) < R and
i(y,0) < R (Lemma 4.7).

It turns out that one can do a similar construction for multicurves — a fact that used
to put a bound on d(¢(a, 8,7), d(«, 3,9)) for v, adjacent (Propostion 4.11).

To this end, we will need to introduce some notation regarding multicurves. A mul-
ticurve is a non-empty subset, {a1,...,a,}, of X that spans a simplex in the curve com-
plex, i.e. the curves «; can be realised disjointly. A weighted multicurve is a formal sum,

a = > Na; where A € [0,00) and > A > 0. If o/ = > | Ma; and v > 0, we
write a + o/ =Y 1 (A + N)a; and va = > (vA;)oy. We say that o and va are in the
same projective class. We write M X and WM X for the sets of multicurves and weighed

multicurves respectively. We view X C MX C WMX and X C WX C WMX. (In
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practice, we only need to deal with multicurves with at most two elements, but this makes
not difference to the discussion.)

Ifaed, Nai, B=73;p8 € WMX, we write i(a, 3) = >, ; Aipgi(a, B5) and
d(Oé, B) = mini,j d(Oéi, ﬁj)

3. A characterisation of hyperbolicity.

In this section, we describe the characterisation of hyperbolicity we shall use. It can
readily be interpreted for any path-metric space, though we state it only for a connected
graph, G, with vertex set, X, and distance function d, that assigns unit length to each
edge.

We assume that X has associated to it the following structures. To each pair, a,b € X,
we have an associated subset Ay, € X, an well as a “coarse order”, <,,, on Ay,. By a
coarse order we mean that <, is reflexive and transitive and and satisfies the dichotomy
rule (for all z,y € Ayp, either & <, y or y <, x). However it need not be antisymmetric.
We define minima and maxima in the usual way. Moreover, we assume we are given a
ternary function, ¢ : X x X x X — X. We refer to (Agp, <,p) as the line from a to b,
and to ¢(a,b,c) as the centre of a, b, c.

We assume that ¢ and [(a,b) — (A, <.p)] satisfy the following conditions. We have
Aoy = Ao for all a,b € X. Moreover, Ay, and Ay, have reverse order, ie. <,, = >p,.
Given x,y € Agp, with <, y, we shall write

Aab[xay] = Aab[yax] = {Z S Aab|x <ab 2 <ab y}

We suppose that ¢ has the symmetry ¢(a, b, c) = ¢(b, c,a) = ¢(b,a,c) and that ¢(a,a,b) =
a, for all a,b,c € X. We suppose that ¢(a,b,c) € Agp N Ape N Acq. Moreover, there is a
constant, K > 0 with the following properties.

(1) If @, b,c € X then HausDist(Agpla, ¢(a, b, )], Aucla, d(a, b, c)]) < K.
(2) If z,y € X with d(z,y) <1, then diam Ayp[é(a, b, x), ¢(a,b,y)] < K.
(3) If ¢ € Ay, then Agple, ¢(a,b,c)] < K.

Here diam and HausDist denote respectively, diameter and Hausdorff distance with
respect to the metric d on X.
We shall show:

Proposition 3.1 : If X admits a system of lines and centres satisfying the above axioms
then X is hyperbolic with hyperbolicity constant depending only on K. Moreover, for all
a,b € X, the line Ay, is a bounded Hausdorff distance (again depending only on K ) from
any geodesic connecting a to b.

We remark that the converse in clear. Given a,b € X, let [a,b] be any geodesic
connecting a to b. We can take A, to be a uniform neighbourhood of [a, b]. Thus ¢(a, b, ¢)
is a centre of the triangle [a,b] U [b,c] U [c,a]. The coarse order on A, can be obtained
from the linear order of nearest points on [a, b].
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We now set about proving Proposition 3.1. We fix, for the moment, a,b € X. Given
x € X, we write ¢p(x) = dap(x) = ¢(a,b,x). Thus ¢ : X — Ay with ¢(a) = a and
o(b) = b.

Lemma 3.2 : There is a sequence a = xg < r1 < -+ < x,, = b of points of Ay, with
diam Agp[x;, i41] < K for all i, with n < d(a,b) and |i — j| < d(z;,x;) + 2 for all i, j.

Proof : By a chain we mean a sequence (x;) in A,y with 29 = a, x,, = b and with
diam Agp[zi, i+1] < K for all i. Such a chain exists, since if we connect a to b by a
geodesic, a = yo,Y1,-..,Yn = b in X, then (¢;(y;)); is a chain. We now choose a chain,
(x;)7_g, with n minimal. Thus n < d(a,b). Moreover, if i < j, let z; = 20, 21,...,2m = T
be a geodesic in X from z; to x;, so that m = d(z;,x;). Let w; = ¢(2;). Replacing
Ty Tiq1y- -+, Tj DY Tj, Wo, W1, ..., Wn,T;, we get another chain, so by minimality of n, it
follows that 7 —i < m + 2 as claimed. Finally suppose z;11 < x;. Then there is some
J > i with z; <z; and xj41 > x;. Thus Agp[zi, xj41] C Aap[xj, it1]. We could thus omit

the points x;41,...,2; to obtain a shorter chain. It follows that z¢p < 1 < --- < x,, as
claimed. %
Note that Ay, = U?:_OI Awplzi, i11]. In particular, {zg,z1,...,2,} is K-dense in Agp.

We write 7, for the concatenation of the paths [z;, z;41] where [z, y] denotes any geodesic
connecting = to y. Thus, HausDist(7ap, Agp) < K. We refer to each z; as a breakpoint of
Tap. We can assume that 7, = mp,. We write T'(a, b, ¢) for the triangle mqp U mpe U Teq.
Note that the total number of breakpoints in T'(a, b, ¢) is at most d(a,b)+d(b, c)+d(c,a) <
3diam{a,b,c}. Given x,y € map, write map[x,y] for the segment of m,;, between x and y.
We note:

Lemma 3.3 : For all a,b € X, the paths ., are uniformly quasigeodesic.

Proof : In other words, if x,y € 74, then the length of 7, is bounded above by a fixed
linear function of d(x,y). We can assume that = z; and y = x; are breakpoints. But
now, length(map|x;, z;]) < Kli — j| < K(d(zi,x;) + 2) as required. &

Before continuing, we need to formulate the notion of an “isoperimetric inequality”.
We need to make sense of the notion of a curve v in the graph G “spanning a disc” of area
to most A. There are several ways to do this. One is as follows.

We can think of v as a map, v : S' — G, where S! is the boundary of the unit disc
D. A cellulation of D is a representation of D as a CW-complex. A “spanning disc” for
~ is then an extension of v to the 1-skeleton of some cellulation of D. Its mesh is the
maximal length of the boundary of a 2-cell of the cellulation. Its area is the number of
2-cells.

Hyperbolicity can be characterised by a subquadratic isoperimetric inequality [Grl,
CDP,0,P,Bo2] as follows:

Theorem 3.4 : Given M > 0 and a function g : N — N with g(n) = o(n?) as n — oo,
there is a constant k > 0 such that if G is a graph in which every loop in G bounds a
spanning disc of mesh at most M and area at most g(length(vy)), then X is k-hyperbolic.
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This is a standard form that will suffice for Theorem 0. To get better control on
the hyperbolicity constant for Proposition 6.1, we use another formulation in terms of
homology and where the mesh is defined in terms of diameter rather than length. This is
discussed in Section 7.

We now return to our particular space X.

Lemma 3.5 : There is a constant, M, depending only on K, such that for all a,b,c €
X, the triangle T'(a,b,c) bounds a spanning disc of mesh at most M and area at most
3diam{a, b, c}.

Proof : Let w = ¢(a,b,c). Let pup and py, be equal or adjacent breakpoints of 7., with
DPab <ab W <gp DPoa in Aab- We Simﬂarly define Puvcs Peby Pea and Pac- Let Oab — 71-ab[avpotb]
etc. Thus, from the construction of m,,, HausDist(oup, Aap[a, pap]) < K. Also, since
Aap[Pab, W] € Aap[Pab, Poa, it follows that diam(Agp[pas, w]) < K. One of our assumptions
is that the Hausdorff distance between Agpla, w] and Agcla, c] is at most K. We conclude
that d(pac, Pap) < 2K and that HausDist(oup, 04c) < 3K.

Now since o4, and o, are uniformly quasigeodesic (depending on K), it is an easy
exercise to show that o4, U 04c U [Pab, Pac] bounds a spanning disc of bounded mesh, and
with area bounded by the number of segments in o,,. Indeed this can be achieved by
adding a set of geodesics between distinct breakpoints of o, and distinct breakpoints of
0qc- We perform similar constructions with respect to the vertices b and ¢. By including
the hexagonal curve pupPpaPbePebPeaPbaPab @S the boundary of a 2-cell, we obtain a spanning
disc for T'(a, b, c), with at most 3 diam{a, b, ¢} 2-cells, and with mesh bounded in terms of
K as required. &

Proof of Proposition 3.1 : We first show that G is hyperbolic by deriving a sub-
quadratic isoperimetric inequality, as described by Theorem 3.4.

To this end, let v be a loop of length n in G. Given a natural number p, we shall
divide v into 2P*! segments, v = 77 U~5 U---72, ., by binary subdivision as follows.
We start by writing v = 7Y U~9, with |length(7}) — length(79)| < 1. We now continue
inductively. If we have constructed 4"~ ", ... 4%, ", we write each 7" " = 7%, U~L , with
|length(+5, ;) — length(7%,)| < 1. After ¢ = [logy(n — 1)] < log, n steps, we find that
length(v]) <1 for all i and we stop.

Now let 3% be a geodesic in G with the same endpoints as v7. We can suppose that
B? = 89 and that 8] =~ for all i. Welet 3? = fYUB5U---UpBL,,,. Thus B? is a 2P*!-gon
with vertices in . Moreover 39 = ~, and the image of 3° consists of a single geodesic.

Now the region between $P~! and [P consists of a cycle of 2P triangles of the form
ﬁffl upgh.  uph, fori=1,...,2P. By Lemma 3.5, each such triangle bounds a spanning
disc of mesh at most M and area at most three times the diameter of its vertex set,
and hence at most 3(length(v5, ;) + length(+5;)). Thus, the region between 3P~ and

(P is spanned by a union of spanning discs of total area at most 32?:1 length(7?) =
3length(y) = 3n. Assembling these for p = 1,...,q < log, n, we obtain a spanning disc
for v of mesh at most M, and area at most 3nlog, n. This proves that G is hyperbolic.
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Now, by Lemma 3.3, the path 7, is uniformly quasigeodesic, for any a,b € X. Since
G is hyperbolic, it follows that ., is within a bounded Hausdorff distance of any geodesic
connecting a to b. Thus, A, is also within a bounded Hausdorff distance of any such
geodesic. This proves Proposition 3.1. &

4. Construction of lines and centres.

In this section, we describe how to construct a system of lines and centres in the curve
complex satisfying the hypotheses of Proposition 3.1. This will prove Theorem 0 modulo
one result, namely Lemma 4.1, whose proof we postpone until Section 5.

Let (X,1I) be a non-exceptional surface. (In other words, we insist that |II| > 5 if 3 is
a sphere, and that |TI| > 2 if ¥ is a torus.) Recall that X, WX, MX, WMX are the sets
of curves, weighted curves, multicurves and weighted multicurves respectively. We view
XCWXCWMX and X C MX C WMX. Given a € X, we write N(o) = {f € X |
d(a, 8) < 1}.

We shall need the following notions. Suppose «, 5 C WM X with i(«a, 3) = 1. Given
0 e WMX, set

1(0) = lap(d) = max{i(e, 9),4(5,0)}.

If § € X, write
i(7,9)
()

For the latter, we adopt the convention that 0/0 = 0 and that n/0 = oo for n > 0. Thus
m(J) € [0,00]. Note that, for all v, € X, we have [(0) < m(d) and i(y,9) < I(y)m(J).
Indeed, by linearity of intersection number, the second inequality holds for all vy € WM X.
Moreover, if m(d) < oo and I(vy) = 0, then i(y,d) = 0. (A more intuitive description of
m(9) in terms of the reciprocal of the width of an annular neighbourhood of ¢ in ¥\ IT will
be given in Section 5.)

Given r > 0, write

m(0) = sup({{(0)} U { |y e X}).

L(a,B,r)={0 € X |1(d) <r}
M(a,B,r) ={0 € X | m(5) <r}.

Clearly, M(a, 8,7) C L(a, 8,7).
In Section 5, we shall show:

Lemma 4.1 : There is some R > 0, depending only on the topological type of (3,1I)
such that if a, 3 € WM X with i(«, 8) =1 and d(«, 8) > 2, then M («, 3, R) # 0.

‘We deduce:

Lemma 4.2 : For all v > 0, diam L(«, 5,7) < 2Rr + 2.
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Proof : Choose any 6 € M(«, ). If v € L(c, 8,7) by Lemma 1.1, d(v.0) < i(y,6) +1 <
I(y)m(6) +1 < Rr + 1. The result follows. &

In particular, setting D = 2R? + 2, we see:

Lemma 4.3 : L(«a, (3, R) is non-empty and has diameter at most D. &

We remark that using Lemma 1.2 in place of Lemma 1.1, we can replace 2Rr + 2 in
Lemma 4.2 by a function that is O(log(Rr)). This gives D = O(log(R)). This observation
also applies to the proof of Lemma 4.12 below.

Now, given «, f € WM X with d(a, 5) > 2, write

k(a, B) = logi(a, B).

Given t € R, write oy = e .. Setting u = k(«, ) —t and 3, = e~ "3, we get i(ay, B,) = 1.
Given v € WMX and 0 € X, write l;(y) = la,3, () and m.(0) = mq, s, (0). (We use
lt.ap(7y) and my op(9) if there is any ambiguity concerning a, 8.) If r > 0, set:
L(t,r) = Lag(t,r) = L(at, Bu,7) = {v € X | ls(v) <7}
M(t,r) = Myg(t,r) = M(ay, Bu,r) ={y € X | m(y) <r}.
Note that L,g(t,7) and Myg(t,r) depend only on the projective class of 3 (since the
weighting on « is fixed by ¢, and hence determines that on 3). We abbreviate L(t) = L(t, R)
and M (t) = M(t, R).
Suppose now that a, 8,7 € WM X with min{d(«a, 8),d(5,7),d(v,a)} > 2. Write
1
Ta = Taﬁ(ﬁ)/) = Ta’y(ﬁ) = E(I{(aaﬁ) + KJ(O[,")/) - hj(ﬁa ’7))

etc. permuting «, 3,7. Thus, 7, + 75 = k(a, 8), 75 + 7 = /i(ﬁ v) and 7y + 7o = K(7, @).
Setting @ = a,, = e T« etc. we obtain i(a,3) = i(3,7) = i(y,a&) = 1. Note also that

Laﬁ(Ta) Lﬁa(Tﬁ) ( 67 ) and Maﬂ(Ta) Mﬁa(Tﬁ) (O_é B ) etc.
We note:

Lemma 4.4 : Ift <7,, then M,g(t) C Lay(1).

Proof : Let u = k(a, 3) —t, v = k(a,y) —t and A = e™ " > 1. Thus, t +u = x(a, §) =
Ta+7T3,80 By = e 4“3 =e!"Tee"™ 3 = A1 3. Similarly, v, = A719. We also have a; = \a.
Suppose § € My3(t). Now
(8, ar) < max{i(d,as),i(d, Bu)}
= ltap(y) < miap(y) < R.
Also,
i(0,70) < mt,ap(0)lt,ap(0)

< R max{i(&b 70)7 Z(ﬂ?m 71))}

= Rmax{i(A\a,\"7),i(A"'3,A717)}

= Rmax{i(a,7), \"%i(5,7)}

= Rmax{1,\?} =R

10
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Thus l;,q~(9) = max{i(d, on),i(0,7,)} < R, and so § € L~ (t) as required. O

Putting this together with Lemma 4.1, we see that L,(t) N Lo~ (t) # 0, so by Lemma
4.3 we see:

Lemma 4.5 : Ift < 7,, then diam(Lyg(t) U Lo~ (1)) < 2D. &

We are now in a position to define lines. Suppose o, 3 € X and d(«,3) > 2. Given
t € R, we define L(t) as above. Note as t — oo the weights assigned to « and [ tend to
0 and oo respectively. It follows that L(t) = N(f) for all sufficiently large ¢. It is thus
natural to define L(oco) = N(f3). Similarly, set L(—o0) = N(a).

Given I C [~o00,00], set L(I) = Lag(I) = U, L(t). We define

A = Aap = Lag([—00, o).

Suppose 7 € X \ (L(—o00) U L(0)). Setting A =i(c,y) > 0 and B = i(5,7)/i(c, 5) >
0, we see that [,(y) = max{Ae~", Be'} attains a unique minimum when ¢ = 1 log(4/B) =
Ty = Tap(y). If v € L(c0), we set To5(y) = —oo and if v € L(o0) set 743(7y) = co. In
the “exceptional” case where v € L(—o00) N L(co) (so that d(c, 8) = 2), we leave 745(7)
undefined.

We write T'(y) = Tap(y) = {t € [—00,00] | v € L(t)}. Thus T(y) # 0 if and only if
A € A. In this case T'(7) is a closed interval centred on 7() (where we deem [—o0, t] and
[t,00] to be centred on —oo and oo respectively, for all ¢ € R).

Given I C [—o0,00] write B(I) = Bog(I) ={y € A | 7(y) € I}. Thus B(I) C L(I).

Ifv,6 € A\(A(—00)UA(0)), we write vy < J or v <, 6 to mean that 7(v) < 7(J). This
defines a coarse order whose sets of minima and maxima are respectively A(—o0) \ A(oc0)
and A(o0) \ A(—o0). In the exceptional case where d(«, ) = 2 we can (rather arbitrarily)
deem that each point of A(—oc) N A(co) lies strictly between these sets of minima and
maxima. If v <4, we write:

Ay, 8] = A[5,7) = fe € A |y < e < 0},
Note that by deinition, Aly, §] = B([r(v),7(5)]), so Alv,d] C L([7(v), 7(3)]).
We note:
Lemma 4.6 : For all y € X, diam L(T'(v)) < 2D.
Proof : If § € L(t) and € € L(u) with t,u € T(y), then v € L(t) N L(u), so by Lemma
4.3, d(d,¢€) < d(d,v) +d(v,€) < 2D. o

We next want to define centres. Let o, 3,7 € X. Suppose first, that min{d(«, 5),d(5, ), d(y, @)}
2. Let 74, 73 and 7, be as defined above, and set a = a;, etc. We set

Qopy = Laﬁ(Ta) N Lgy (Tﬁ) N ngx(ﬁ)
= {6 € X | max{i(a,9),i(8,9),i(7,6)} < R}
- Aag N A/g,y N A,ya.

We note:

11
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Lemma 4.7 : ®,3, # 0 and diam @3, < D.

Proof : By Lemma 4.1, M,3(7a) = Mpa(73) # 0. But Mus(7a) C Las(7s) and by
Lemma 4.4, Myp(73) C La~y(78) and Ma,(73) C Lg,(73). Thus ®,4, # 0. Finally, since
®o3y C Lap(Ta), it follows by Lemma 4.3 that diam ®,3, < D. O

We can thus define ¢(«, 3,7) to be an arbitrary element of ®,3,, subject to the
constraints that ¢(a,3,7) = ¢(8,7,a) = ¢(v,6,«) for all o, 3,7 € X. (Unlike our
previous constructions, the above choice is arbitrary. However, choosing a particular point
only really serves for notational convenience.)

It remains to define these notions in a few exceptional cases, where two or more curves
are close. If d(«, 5) < 1, we define A3 = N(a) UN(f3), and set v <,5 ¢ for all v, € Log.
For all o, 8 € X, we set ¢(a,a,3) = a. If a, 3,7 € X and d(o, 5) = 1, d(cr,y) > 2 and
d(fB,v) > 2 set ¢(«, 3,7) to be an arbitrary element of N(a) N N(3). If a, 3,7 € X and
d(a, 8) = 1 and d(B,v) = 1 and 3 # ~, then set ¢(«, 3,7) to be an arbitrary element of
N(a) N N(B) N N(v). Again, these choices are subject to symmetry.

Lemma 4.8 : Ifa,f € X and d(o, ) < 2, then diam A,g < 2D + 2.

Proof: We can suppose that d(a, ) = 2. Choose any € € N(a)NN(3). Suppose v € Ayg.
Thus v € Lag(t) for some ¢t € [—o0,00]. If t € {—00,00}, then d(v,{«,3}) < 1. If not,
choose any 0 € M,p(t). Now m;(6) < oo, and l¢(y) = 0 (since v is disjoint from both o
and ). Thus, i(d,€) = 0. In other words, d(d,¢) < 1. By Lemma 4.3, d(v,d) < D and so
d(v,€) < D + 1. The result follows.

Now suppose again that o, € X with d(a,3) > 2. Given v € X, write ¢(y) =
bap(y) = ¢(a, 5,7). We note:

Lemma 4.9 : Ify e A,g, then diam Ay, ¢(y)] < 2D.

Proof : By definition, ¢(y) € Aug(7(7)), so 7(7) € T(é(7)). Also, since ¢(v) € A, we

have 7(¢(7)) € T(¢(7)). Thus, ALy, ¢(v)] € L([7(7), 7(¢(7))]) € L(T(¢(7))). By Lemma
4.6, diam L(T(¢(v))) < 2D. O

(Note that Lemma 4.9 also holds trivially in the case where d(«, 5) < 1.)

For the next proof we need to note that if 7,6 € X, with T'(y) N T(§) # 0, then
L(T(y))NL(T(6)) # 0, so Lemma 4.6 shows that diam L(T'(y) UT(6)) < 4D. (Indeed the
same argument shows that diam L(T'(y) UT'(d)) < 3D.)

Lemma 4.10: Ifa,B,v € X withmin{d(a, 3),d(83,7),d(y,a)} < 2D and § = ¢(«, 3,7),
then HausDist(Aqg(a, 6], Aoy, 8]) < 4D.

Proof : Let e € Aygla, d], and let t = 7,5(€). Thus t < 7,3(d) and t € T'(¢). Writing
Ta = Tap(7) as above, we have, by definition, § € Lyg(7a), and so 74 € Thz(9).

Case (1) : t > 7,.

12
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Now t € [Ta, Tap(0)] C 703(d). Thus Tha(e) NTap(d ) # (), so by the above observation
(Lemma 4.6) d(e,d) < 4D. ut d € Ayy[a, 6] and so we're done.

Case (2) : t < 74.

By Lemma 4.1, M,a(t) # 0, so we can choose some ¢ € M,z(t). Thus, €,¢ € Las(t),
so by Lemma 4.3, d(e,() < D. By Lemma 4.4, M,g(t) C Lo~ (t), and so ( € Lq~(t). Let
u = Tay(¢). We have t,u € Ty, (C).

Case (2a) : u < 7o~(6).

In other words, 7,~({) € Ta~(0), so by definition, ¢ € Aygla, 6] and we're done.
Case (2b) : u > 74,(9).

Recall that ¢t < 7, that t,u € T,,(¢) and that 7,,74,(6) € Th~y(6). It follows that
Tory () NTor(0) # 0. Thus, by Lemma 4.2, d(¢,d) < D, and so d(e,d) < d(e,¢) +d((,0) <
2D. But 6 € Ay ], 0] and we're done. &

In fact, Lemma 4.10 remains true if one or more of the distances is at most 1. In
view of Lemma 4.8, the only non-trivial case that need to be checked is where d(3,~) =
1, d(a, ) > 3 and d(a,y) > 2. In this case, from our definition of centre, 7,3(0) =
Tay(0) = 00 and so Aggle, 8] = Ay and Ay [, 0] = Aqy. We thus need to check that
HausDist(Anp, Aay) > 4D. This is not hard to see this directly, though we omit the
argument as it follows also from Lemma 4.12 below.

In order to verify the hypotheses of Proposition 3.1, it remains to check the following;:

Proposition 4.11 : Suppose that a, 3,7°,v! € X with d(7°,~v') < 1, then

diam Aqs[¢as(1°), dap(y")] < 18D.

We first consider the case where d({c, 3}, {~*,7"}) > 2, and discuss the remaining
cases at the end.
We begin with the following observation:

Lemma 4.12 :  Suppose that 4,4 € WMX are both supported on a multicurve
v € MX. Suppose that o € WMX with d(a,y) > 2. Then, for all t € R, diam(L-o(t) U
Loyi(t)) <4D.

Proof : We claim that L,.o(t,2R) N L1 (t,2R) # 0. By Lemma 4.2, the diameter of
each of these sets is at most 2R(2R) +2 = 4R%+2 < 2D, from which the result will follow.

We have observed that the set L,.o(t,2R) depends only on the projective class of
7%, We can thus assume that i(c,7?) = 1 (where oy = e 'a, as in the definition of
Loso(t,2R)). Similarly, we can assume that i(ay,v') = 1. Let 3 = (7% +~'). Thus,
i(ag, 8) = 1 (so that ¢ = k(«,3)). By Lemma 4.1, there is some § € M(ay, 3, R) C
L(o, B, R). In other words, l4,3(0) < R and so i(at,0) < R and i(83,6) < R. Since
Y0 +41 =283, we have i(79, 6) < 2i(3,5) < 2R, and i(y!, ) < 2R. Thus, § € L(ay,7°,2R)N
L(ow,7, 2R) = Ly0(2R) N L1 (2R) as claimed. &
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Note that it follows that HausDist(Ay~0, Agy1) < 4D. Applying Lemma 4.8 and then
4.12 inductively to a geodesic sequence in X connecting a to (3, it follows that

diamA,3 < (n —2)4D + (2D + 2) < 4nD

where n = d(«, 3). (However, this argument only a-priori gives an exponential bound on
any sensible notion of “length” of A,3 — defined taking account of the coarse order of
points on A,g.)
Now let a, 3,7°,4' € X with d(a,8) > 2 and d({o, 8}, {7°,¥'}) > 2. Let 7o =
Tap(1°), T = Tapg(Y'"), T = Tap(dap (7)) and 7{ = Ta5(das(7")). By definition, Aag[¢as(7°), das(v"
Bas([7,11]) € Lag([t5, 7). But 70,7, € T(¢(7°)) and so by Lemma 4.6, diam Lz ([70, 7]) <l
2D. Similarly diam L,g([m1,71]) < 2D. To prove Proposition 4.11 in this case, it is thus
enough to show:

Lemma 4.13 : diam Lyg([m0,71]) < 14D.

Proof : We can assume that 79 < 71. Suppose that to, 1 € [10,71], and that 6° € L,g(to)
and 0 € Log(t1). We want to show that d(6°,6') < 14D. We can assume that to < ¢1.
Let t = 2(to+1t1). Thus 19 <to <t <t; <71. Given p € [0,1], let v* = (1—p)7y" +uy' €
WMX. Note that

1 . (1 —M)i(aﬁo) +/J’Z(Oé771)
raa(r#) = 5 1o (i, 0) =1 |
’ 2 (1= p)i(B,9°) + pi(B,7")
varies continuously between 7y and 7. In particular, we can find v = v* so that 7,5(y) = t.
Let u = 73 (a) and v = 7y, (8). Let ug = r(e, B)—to, u1 = ke, B)—t1 and v/ = v—t+ty <
v. Thus
t+u:to+u0 :tl + U :H(Oé,ﬂ)

t+v=t +v =r(a,7)
u+v=ug+v =k(8,7).

By assumption, §° € L,g(tg) which equals Lg,(ug) since to + ug = r(a, 8). Now ug =
(e, B) —to < k(a, B) — 70 = T84(7"), and so by Lemma 4.5, diam(Lgq(uo) U Lo (ug)) <
2D. Thus there is some € € Lgo(ug) with d(6°,€”) < 2D.

Now ~° and 4! are both supported on the multicurve {9, v} with d(3, {7°,7'}) > 2,
and so by Lemma 4.12, diam(Lg,o(ug) U Lg(ug)) < 4D. Thus there is some ¢° € Lg (u)
with d(e%, (%) < 4D.

Since ug+v" = k(5, ), we have Lg.(ug) = L,3(v"). Moreover since v" < v, by Lemma
4.5, diam(L,g(v") U Lo (v")) < 2D. Since t; + v = k(«,7), we have Lo (V') = Lo~ (t1).
Thus, there is some ¢! € Lo, (t1) with d(¢%,¢t) < 2D.

We now invert the process, swapping the roles of a and 8 and of ¢ and ug. Thus
applying Lemma 4.12, we find €' € L,.1(t1) with d(¢*,€') < 4D. Applying Lemma 4.5
(since t1 < 71 and &' € Log(t1)) we see that d(e', ') < 2D.

We conclude that d(6°, %) < 2D +4D + 2D + 4D + 2D = 14D as required. O
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To complete the proof of Proposition 4.11, it remains to deal with a few exceptional
cases. First note that if d(«, ) < 3, then by the remark following Lemma 4.12, we have
diam Ang < 6D + 2 and so there is nothing to prove in this case. We can thus assume
that d(a, ) > 4. Note that if v € X with d(a,y) < 1 then 6 = ¢op(7y) € N(«). Thus,
Tap(0) = —oo and so Aggle, 0] = L(—o0) = N(a). The only case that needs to be
considered is where d(a,7°) = d(7%,7') = 1 and d(a,~') = 2. Let 6* = ¢ap(y!). By
Lemma 4.10, HausDist(Aagla, 8], Agq1 [, 6%]) < 4D. But Ayqier, 6] € Ayqr which has
diameter at most 2D +2 by Lemma 4.8, and Aug[das(7°), Pas(7')] = Aagle, 61]. It follows
that diam Agg[das(7°), das(¥})] < (2D 4 2) +2(2D) = 10D + 2 < 18D.

This completes the proof of Propositon 4.11. We have thus proven Theorem 0 modulo
Lemma 4.1, which we prove in Section 5.

5. Singular euclidean structures.

In this section, we give a proof of Lemma 4.1. We give a geometric argument using
singular euclidean structures. There is a similar argument in [MM1], phrased in terms of
quadratic differentials. However, their argument involves a limiting process, and so does
not a-priori give explicit constants. For this reason we offer an alternative proof below
that will give the bound required for Proposition 6.1.

Let S be a compact surface, and let ) C S be a finite set. By a singular euclidean
structure on S, we mean a metric locally modelled on the euclidean plane E? = R? away
from @), and with cone singularities at points of (). We shall assume in addition that one
can restrict the holonomy to translations of R? possibly composed with rotations through
w. This implies, in particular, that all cone angles are integral multiples of 7. Locally
we have preferred “horizontal” and “vertical” coordinates, ((,§) corresponding the axes
of R2. The euclidean metric, p¥, is given infinitesimally by 1/d(2 + d¢2. We also have
“horizontal” and “vertical” pseudometrics given by |d(| and |d¢|, as well as an L metric
given by max{d(, d¢}. By integrating, we can define the euclidean, horizontal, vertical and
L lengths of a piecewise smooth curve, 7, in S, which we denote respectively by 1Z(v),
12 (%), 1V(y) and I1(y). Clearly I'(v) < 1F(y) < V2l (7). We say that v is “horizontal”
(“vertical”) if IV (y) = 0 (I¥(y) = 0). We say 7 is inefficient if there is some subpath
a C v and a horizontal or vertical path 8 such that a U g is a closed curve bounding a
disc containing no point of ). Otherwise, we say that ~ is efficient. Efficiency is really a
local property. Any (local) geodesic with respect to the euclidean metric p¥ is efficient.
An efficient closed curve will minimise the L*° length in its homotopy class.

Now suppose that (X,II) is a non-exceptional surface (i.e. if ¥ is a 2-sphere we insist
that |II| > 5 and if ¥ is a torus, we insist that |[II| > 2, so that C'(X3,II) > 0. Suppose
that o, 5 € MX with d(a, ) > 2. We realise a and [ so that |a N 3| = i(a,3). (For
example, take closed geodesics on a complete hyperbolic metric on S\ P.) Now aU 3 has
the structure of a connected 4-valent graph, T, with vertex set ang3. We partition the edge
set into “horizontal” and “vertical” edges lying in o and [ respectively. We construct a
complex, S = S(a, #) by taking a rectangle for each vertex of T and gluing them together
so that T embeds in S as a dual to its 1-skeleton. More precisely, each rectangle has two
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“horizontal” and two “vertical” sides. Two rectangles associated to the endpoints of a
horizontal /vertical edge of " are glued together along a common vertical /horizontal edge.
We see that S is a closed surface. We write P set of vertices (i.e. 0-cells) of S of degree
2.

If au g fills (3, 1II) (for example, if d(a, 3) > 3), then there is a homeomorphism from
> to S carrying II to a subset, P, of the vertex set of S, and carrying YT to the dual graph
to the 1-skeleton. Note that P™ C P.

The special case where «, 3 do not fill (3,II) (so that d(«,3) = 2) is a bit more
complicated. In this case, ¥ and S have a common quotient, which is a “nodal surface”
N. More precisely, the quotient map g : S — N identifies certain 0-cells of S. There
is a (possibly disconnected) subsurface, X' C 3, disjoint from « U 3, so that the quotient
map 7y, : & — N is obtained by collapsing each component of ¥’ to a point, in such
a way that mx(II U X’) lies in the image under mg of the O-skeleton of S. We write
P = 7r§17r2(1'[ UY'). Again, P C P. The case of the preceding paragraph corresponds
to X =0 and ¥ = N = S. In all cases, | P| is linearly bounded in terms of C (3, II).

Now suppose & = Y ;v Ny € WMX and 3 = Y0, ;3 € WMX, where a =
{ar, ..., } and B = {f1,...,0n}, and A, p; > 0 for all 4, 5. We put a singular euclidean
structure on S as follows. If R is a rectangle which corresponds to an intersection of «;
with 3;, then we give R the structure of a euclidean rectangle with vertical side length

A; and horizontal side length p;. We write S(@, 3) for the resulting surface. Note that
area S(a@, 3) = i(a, 3). The cone points of positive and negative curvature are precisely the
0-cells of degree 2 and at least 6 respectively. Clearly, S(a, 3) comes equipped with local
horizontal and vertical coordinates, and we can define the length functions ¥, I, [V and

I as above.

We assume henceforth that i(a, 3) = 1 so that area S(a, 3) = 1.

Suppose that a U 3 fills (,1II), so we can identify ¥ with S(a,3) and II with P.
Suppose v € X. By definition, v represents a free homotopy class in ¥ \ II. If we allow
ourselves the freedom to homotop 7 so that it touches II (but not to homotop across points
of IT), then we can realise v as an efficient path in S(&, 3), for example a euclidean geodesic.
(More presicely, we can take the lift of v to the completion of the universal cover of ¥\ II,
realise it as a biinfinite geodesic, and then project back to 3.) In this case, it follows from
the definition that 17 (y) = i(3,v) and [V (y) = (&, ). Thus, I/(y) = I(v). Note also, that
any representative of v will satisfy I(y) < IZ(v).

In the case where aU 3 does not fill (X, II), we can realise y in ¥ so that its premage in
S of its image in N is a union of efficient paths, say 71, ...,7,. (Either this is a single closed
curve, or else each ; is a path connecting two points of IL.) In this case, I(7) = Y i, I/ (7).

In order to prove Lemma 4.1, we need to find in S(a, ) an essential annulus whose
“width” is bounded below in terms of (genus(S),|P|) and hence also (genus(X), |II|). In
fact, this is an immediate consequence of Lemma 5.1 of [MM1]. However, their proof uses
a limiting argument, and so does not give an explicit constant. We therefore offer another
proof below.

The argument will work for a large class of metric, though to avoid technicalities, we
assume that S is a singular riemannian surface, i.e. it has a metric p which is riemannian
away from a finite set of cone points. Let P C S be a finite set (which need have no
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relation to the set of cone points). Suppose A C S\ P is a closed embedded annulus, with
boundary curves y; and 2. We define width(A) = p(v1,72). (Intrinsic distance in A would
serve equally well for our purposes.) We say that A is essential if it is not null-homotopic
in S\ P.

By a trivial region in S we mean an open disc containing at most one point of P.

Lemma 5.1 : Suppose that p is a singular riemannian metric on an orientable closed
surface, S, with area(S) = 1. Let P C S be finite. If S is a 2-sphere, we suppose that
|P| > 5. Suppose there is a homeomorphism f : [0,00) — [0,00) such that area D <
f(length(0D)) for any trivial region D. Then there is an essential annulus in S\ P, whose
width is bounded below by a positive constant n > 0, which depends only on genus(5),
|P| and f.

Proof : First note that it is enough to show that there are two essential curves «, (3
in S\ P with p(a,3) > no, where ny > 0 depends only on genus(S), |P| and f. In
this case, let m = 3 genus(S) + |P| — 2, and set n = ng/m. Take a distance decreasing
map, g : S — [0,1m0] with g(a) = 0 and g(8) = ng. For each i = 0,...,m, we can
suppose, after small perturbation, that P N g~1(in) = 0. We can thus find an essential
simple closed curve, v;, in g~!(in) € S\ P. Since these curves are disjoint, at least two,
say 7; and 7; are homotopic, and hence bound an essential annulus, A C S\ P. Now
width(A) = p(vi,7v;) > 1, and so the result follows.

We need to find the curves a and 3. To this end, we define a spine to be an embedded
graph o C S\ P such that each component of S\ o is a trivial region. In other words, 71(S'\
P) is supported on o. Note that any spine has length at least n; = f~(1/max{1,|P|}).
This follows since, after deleting certain edges if necessary, we can assume that either each
component of S\ P meets P, or else P = ) and S\ ¢ is connected. Thus, at least one such
component has area at least 1/ max{1,|P|}.

Now, let 19 > 0 be chosen as described below, and let « C S\ P be an essential simple
closed curve whose length is within 7y of the infimum of all possible such lengths. Let N
be the closed np-neighbourhood of «. We can find a set, {f1,...,5,}, of disjoint arcs in
S\ P, each of length at most 21y and each meeting « precisely in its endpoints, such that
the image of w1 (N \ P) in 71 (S \ P) is supported on ¢ = o U 1 U --- U (3,,. Moreover we
can suppose that n < genus(S) + |P|. Now if all the components of S\ N were trivial
regions, then (S \ P) would be supported on o. In other words, o is a spine, and so
length(a) > length(o) —2nng > n1 —2nny > 10010, provided we choose ng < 11 /(1004 2n).
If o does not separate S, then at least one of the (3; connects opposite sides of a.. If o does
separate, then (given our clause regarding |P| in the hypotheses) we must have at least
one (3; on one side of o and at least two on the other. In either case, it is easy to find an
essential curve (whose image lies in o) of length at most length(«) — 2n9. This contradicts
the choice of a. We deduce that at least one component, R, of S\ N is non-trivial. We
take (8 to be any essential curve in R\ P. Thus d(«, 3) > 19 as required. O

Corollary 5.2 : Suppose that S is a singular euclidean surface of unit area, and that
P C S contains all singular points of cone angle strictly less than 2mw. Suppose that each
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cone angle is at least m. Then S \ P contains an essential annulus of width at least 7,
where n > 0 depends only on genus(S) and |P].

Proof : The case where S is a 2-sphere and |P| = 4 is easily dealt with explicitly.
Otherwise apply Lemma 5.1, taking f(t) = %mﬁQ, for example. O

(Note that any trivial region is a euclidean disc possibly quotiented by a rotation
through 7. The form [t — $mt?] thus follows from the isoperimetric inequality [t — m¢%] in
the plane. Of course, it is fairly easy to obtain some quadratic bound, which would suffice
for our purposes.)

To prove Lemma 4.1, we will need the following observation. By a core curve of an
annulus, we mean any curve in A homotopic to a boundary curve.

Lemma 5.3 : If A is an annulus in a singular riemannian surface, then we can find a
core curve vy in A satisfying length(vy) width(A) < 1.

Proof : This is an immediate consequence of the Besicovitch Lemma (or coarea formula)
see for example [Gr2]. o

In fact it is fairly easy to give some upper bound on length(vy) width(A), which will
suffice for our purposes.

Proof of Lemma 4.1 : Let o, € WMX with d(a,3) > 2. Let S = S(«, 3) be the
singular euclidean surface, and P C S, be as constructed above. Let A C S\ P be an
essential annulus of width at least n > 0 as given by Corollary 5.2. Let R = v/2/n.

First consider the case where o U (3 fills (3, 1II), so that ¥ = S and IT = P. Let  be
the homotopy class of a core curve of A. We claim that m(§) < R.

To see this, first note that by Lemma 5.3, we can realise d so that (¥ (5)n < 17(8) width(A) <Jj
1, and so I(6) < I1(§) < 1/n < R. Moreover, suppose that v € X. Allowing ourselves to
homotop 7 so that it touches II, we can assume that + is realised as an efficient curve. Thus,
() = I1 (). Now each essential intersection of v and & contributes at least width(A) > n
to (F(y). Thus IP(y) > ni(y,6), and so I(y) = I/ (y) > IP(y)/v2 > i(y,6)/R. Thus,
% < R (noting that if [(§) = 0, then i(v,d) = 0, and we have declared that 0/0 = 0).
Since this applies to any v € X, it follows that m(d) < R as claimed.

It remains to comment on the case where av U 3 does not fill (X,II). Since A C S\ P,
ms(A) is an annulus in N, which is the injective image of an annulus, B = mg'mg(A), in X.
Let ¢ be a core curve for A, so that § = 7y '75(e) is a core curve for B. Again, m(5) < R.
To see this, note that any v € X can be realised in 3 so that 7y is the image under 7g
of a set {y1,...,7} of efficient paths, with I(y) = >, I/(v;). Moreover, each essential
intersection of v with § gives us a crossing of some «; with B. The proof thus proceeds as
in the previous case. %
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6. Some refinements.

In this section, we comment on a few further consequences of our arguments.

Firstly, we consider the matter of bounding the hyperbolicity constant. Recall that we
have defined the complezity of the surface, (X,1I), as C = C(X,II) = 3 genus(X) + |II| — 4.
(This is also the dimension of the curve complex.) We claim:

Proposition 6.1 : There is a function k : N — N with k(n) = O(logn), so that the
graph of curves, G((X,11)), is k(C(X,1I))-hyperbolic, provided C(%,1I) > 0.

It is not clear what is the best estimate. Indeed, it is conceivable that one may be
able to take k constant.

To prove Proposition 6.1, we need to examine various critical points in the argument
when we derive new constants from old.

We first note that the constant 7 of Lemma 5.1 satisfies 1/n = O(C’S/ %), provided
that f(t) = O(t?), where Cyp = C(S, P). To see this, note that 1/f71(1/z) = O(\/x),
and so the constant 7; of the proof satisfies 1/m; = 0(|P|Y/?) = 0(03/2). Thus 1/ng =
(100+2 genus(S) +2|P|) /m = O(C2'?), and so 1/n = (3genus(S) + |P|—2) /no = O(C2/?)
as claimed. In Lemma 5.2, we have f quadratic in ¢, and so the constant 7 here is also
0(005/ %). (One can probably improve on 0(005/ %), but one can certainly not do better
than O(Cy), so after taking logarithms, this will not be critical to our argument.) In the
“generic” case of Lemma 4.1, we have (X, II) = (5, P). In general we have C(.S, P) bounded
above by a linear function of C'(3,IT). We conclude that the constant, R, of Lemma 4.1 is
o(C/?).

As described after Lemma 4.3, we can replace the bound 2Rr + 2 of Lemma 4.2 by
one which is O(log(Rr)). This bound is used in the proofs of Lemmas 4.3 and 4.12, where
r = R and r = 2R respectively. We thus get D = O(log R) = O(log C'). We have thus
verified the hypotheses of Proposition 3.1 with K = O(D) = O(log C).

Now the hyperbolicity constant, k, obtained by Proposition 3.1 is linear in K. To see
this, first note that the function [n — 3nlog, n| that controls the area is fixed independently
of (X,1II). The multiplicative constant of quasigeodecity in Lemma 3.3 is linear in K. Also
the proof of Lemma 3.5, the Hausdorff distances between the relevant paths is also O(K).
Thus, if we use the homological characterisation of the isoperimetric inequality where mesh
is defined in terms of diameters rather than lengths, as in Section 7, it is not hard to see
that we get M = O(K). Thus, Propostion 7.1 gives k = O(M) = O(K) = O(logC) as
required.

This proves Proposition 6.1.

Next we give a description of geodesics in G up to bounded Hausdorff distance in terms
of intersection numbers. Since we know that G is hyperbolic, any two geodesics between
o, € X remain a bounded distance apart. Thus, the choice of geodesic, [a, 3] will not
matter.

Given «, f € X with d(«, 5) > 2 and @ > 0, write

Golo, B) ={y € X | i(e,7)i(8,7) < Qi(a, B)}.

19



Hyperbolicity of the curve complex

Proposition 6.2 : There is a constant ¢ € N, depending only on C(X,1I) such
that if Q > q there is some h > 0 such that if o, € X with d(a,3) > 2, then
HausDist([«, 5], Go(o, B)) < h.

As with Proposition 6.1, the argument will show that, in fact, ¢ = O(C®/2?) and
k= O(log C +log Q).

Proof : Set ¢ = R? where R is constant of Lemma 4.1, which defines A,5. By Proposition
3.1, HausDist([«, 5], Aag) is bounded. We thus need to bound HausDist(Ays, Gg(a, 5)).
Suppose v € Ayp. Thus v € Lag(t) for some t € [—o00,00]. If t = —oc0 or t = o0,
then i(c,y) = 0 or i(5,v) =0, and so v € Gg(a, §). If t € R, let v = k(a, ) — t and let
a; = e ‘aand B3, = e ¥B. Thus, i(ay,v) < R and i(B,,7) < R, and so i(a, ) < Re' and
i(8,7) < Re“. Thus i(a,7)i(3,7) < R%e!™ = R%i(a, B) < Qi(a, 3) and so v € Gg(a, 3).
Conversely, suppose v € Gg(«, ). Again, if i(a,vy) = 0 or i(5,7) = 0, then v € Ayp.
Otherwise, let ¢ = 7,3(y) € R, and let u = 73,(y) € R. Thus t + u = r(a, ).
Now Z'(Oétﬁ) = i(ﬁu,'y)' Thu87 i(at77)2 = i(at,V)i(ﬁuvv) = 6_(t+u)i(a>7)i(ﬁa7) =
(e, 1)i(8,7)/i(0,B) < Q. Thus, i(7) = max{iar,7),i(F)} < V@, and s0 7 €
Logs(t,v/Q). Applying Lemma 4.2, we see that 7 is a bounded distance from an element
of Las(t) C Ayp as required. &

It is apparent from the proof of Proposition 6.2 that the “approximate order” of points
near [«, 3] is determined by the ratio i(3,7)/i(«, ). This can be made more precise using
Proposition 6.3 below.

First note that if ¢,¢/ € R, then Log(t') C Las(t, Rel™*'1). In particular, by Lemma
4.2, diam(Lapg(t) U Lag(t’')) is bounded in terms of |t —¢/|.

Proposition 6.3 : Given (Q > 0, there is some h > 0 such that if «, 3,v,0 € X with
i(e, 0)i(B,7) < Qi(B,6)i(cv, ), then d([ev, 7], [8,6]) < h.

Proof : We deal with the case where no two of «, 3,7, are equal or adjacent, and leave
the remaining trivial cases as an exercise.

Write 7(7) = Tag(7y) and 7(8) = 745(8). Thus 7(8) — 7(v) = 3(k(a,8) + K(3,7) —
k(B3,9) — k(a,v)) < logQ. Let € = ¢(a, 3,0) € Lag(7(d)). Now € is a centre for «, 3,0,
and so d(e, [3,6]) is bounded. Also HausDist([a, 7], Aa~y) is bounded. We therefore need
to bound d(e, Ag ).

If 7(0) < 7(7), then by Lemma 4.5, € is a bounded distance from A, (7(d)) € Ay as
required.

If 7(6) > 7(v), then |7(0) — 7(y)| < log@. Thus, from our earlier observation,
diam(Lag(7(7)) U Lag(7(0))) is bounded. But ¢(«, 5,7) € Aap(t(y)) € Ay and so
again the result follows. O

Note that since G is hyperbolic, if «, 3,7, € X, then the largest two of the three quan-
tities d(a, B) +d(v,6), d(c,v)+d(B3,5) and d(c, §) +d(3,7) have difference bounded above
in absolute value. Moreover, if d(a,d) + d(B,7) < d(5,0) + d(«,7), then d([a, 7], [5,6])
is bounded. Thus Proposition 6.3 can be thought of as an analogous statement with d
replaced by k.
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7. The isoperimetric inequality.

We give a formulation of the isoperimetric inequality for a graph in terms of homology,
that is easier to apply than the usual one given in Section 3. This can be readily deduced
from results in the literature, though I know of no explicit reference.

Let G be a connected graph with a positive length assigned to each edge. We write
d for the resulting path metric. By a loop, v, in G we mean a closed path. We write [v]
for its homology class in H1(G;Z3). We write length(y) and diam(y) for its length and
diameter respectively.

Proposition 7.1 : Suppose there is some M > 0 and a function g : N — N, with
g(n) = o(n?) as n — oo such that if v is any loop in G then there are loops V1, ..,%n
in G with [y] = [n] + -+ [w] in Hi1(G;Zs), with diam(v;) < M for all i, and with
n < g(length(v)). Then G is hyperbolic with hyperbolicity constant depending only on M
and g.

Note that, in fact, the function g determines a constant A > 0 such that for any
M > 0, the hyperbolicity constant is bounded by AM. This can be seen immediately, by
scaling the metric by a factor of 1/M and applying the result with M = 1, and rescaling
back.

We remark that there are number of refinements of Proposition 7.1 (with the same
proof). For example it is enough that limsup,, .. (g(n)/n?) be less than some fixed suffi-
ciently small positive number (which we shall not determined here). Moreover, instead of
bounding the diameters of each ~; and controlling n, it would be enough to demand that
S (diam(v;))? is bounded above by a subquadratic function of length(y).

Various proofs that a subquadratic inequality implies hyperbolicity can be found in
[Grl,CDP,0,P,Bo2]. To check that our formulation works, we need to verify that it sat-
isfies the following “rectangle” or “coarea” inequality (cf. [Bo2]). This is a version of the
Besicovitch Lemma, and we reinterpret the proof given for riemannian metrics in [Gr2].

Lemma 7.2 : Suppose that v = a1 U ag U ag Uy is a loop in a graph G expressed as a
concatenation of four paths ay, as, ag, ay. Let dy = d(ag, ay) and dy = d(aq, ag). Suppose
we have loops 71, ...,vn, with [y] = [v1] + -+ [yn]. Then dyidy < 23", (diam(y;))?.

Proof : Let R be the rectangle R = [0,d1] x [0,d2] with euclidean metric, p. Thus
OR = 81 U so U sz U sy, where S1 = [O,dl] X {0}, So = {0} X [O,dg], S3 = [O,dl] X {dg},
sy = {d1} x [0,dz]. Given a vertex z of G, write 71 (x) = min{dy,d(z,az)} and ma(x) =
min{dy, d(z,a1)}. Let w(x) = (mi(z),m2(z)) € R. We extend 7 to a continuous map
7 : G — R by sending each edge to a geodesic segment. Thus, p(n(x), 7(y)) < v2d(x,y)
for all z,y € G. Also, m maps each «; into s;. It follows that o~ represents the non-trivial
element of H,(OR;Zs). For each i, diam(7w o +;) < v/2diam ~;, and so it bounds a singular
2-cell, o;, of diameter at most v/2diam~;. Now the formal sum of the o; is a singular
2-cycle representing an element of Hy(R,0R;Zs). Under the boundary isomorphism to
H,(0R;Zs), this gets mapped to [ro~] and is thus non-trivial. It follows that the images
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of the o; cover R. We deduce that dids = area(R) <2  (diam(v;))?, as required. ¢

In the application to Lemma 7.1, the right-hand side is bounded by 2M?n, so the
result follows.
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