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0. Introduction.

In this paper, we give a construction of the JSJ splitting of a one-ended hyperbolic
group (in the sense of Gromov [Gr]), using the local cut point structure of the boundary.
In particular, this gives the quasiisometry invariance of the splitting, as well the annulus
theorem for hyperbolic groups. The canonical nature of the splitting is also immediate
from this approach.

The notion of a JSJ splitting, in this context, was introduced by Sela [Se], who con-
structed such splittings for all (torsion free) hyperbolic groups. They take their name from
the analogy with the characteristic submanifold construction for irreducible 3-manifolds
described by Jaco and Shalen [JaS] and Johannson [Jo] (developing a theory outlined
earlier by Waldhausen). The JSJ splitting gives a description of the set of all possible
splittings of the group over two-ended subgroups, and thus tells us about the structure of
the outer automorphism group.

We shall take as hypothesis here, the fact that the boundary is locally connected,
i.e. a “Peano continuum”. This is now known to be the case for all one-ended hyperbolic
groups, from the results of [Bol,Bo2,L,Sw,Bo5|, as we shall discuss shortly. This uses the
fact that local connectedness is implied by the non-existence of a global cut point [BeM].

A generalisation of the JSJ splitting to finitely presented groups has been given by
Rips and Sela [RS]. The methods of [Se] and [RS] are founded on the theory of actions
on R-trees. They consider only splittings over infinite cycic groups. It seems that their
methods run into problems if one wants to consider, for example, splittings over infinite
dihedral groups (see [MNS]).

A more general approach to this has recently been described by Dunwoody and Sageev
[DuSa| using tracks on 2-complexes. Fujiwara and Papasoglu have obtained similar results
using actions on products of trees [FuP]. These methods work in a more general context
than those of this paper. (They deal with splittings of finitely presented groups over
“slender” subgroups.) However, one looses some information about the splitting. For
example, it is not known if the splitting is quasiisometry invariant in this generality. The
annulus theorem would appear to generalise, though this does not follow immediately. A
proof of the latter has recently been claimed in [DuSw] for finitely generated groups. (We
shall return to this point later.) We shall see that for hyperbolic groups, all these results
can be unified in one approach.

As we have suggested, deriving the spitting from an analysis of the boundary enables
us to conclude that certain topological properties of the boundary are reflected in the
structure of the group. For example, we see that the splitting is non-trivial if and only if
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the boundary has a local cut point (see Theorem 6.2). In fact, much information about
the splitting can be read off immediately, without any knowledge of how the group acts on
the boundary. In the course of the analysis, we shall also give an elementary proof that the
boundary has no global cut point in the case where it is assumed to be locally connected
(Proposition 5.4), without reference to the papers cited earlier. This is a converse to the
result of Bestvina and Mess [BeM].

Our formulation of the JSJ splitting differs slightly from the Sela’s original, though in
the case of torsion free groups, it amounts to the same thing. Of course, for our result to
apply to one-ended hyperbolic groups in general, we need the somewhat non-trivial fact
that the boundary is necessarily locally connected. We suspect that many of the ideas of
this paper can also be applied to relatively hyperbolic groups, a matter we aim to pursue in
the future. Indeed, most of the analysis proceeds in a general dynamical context, without
any specific geometric input.

In general, the boundary, OI', of a hyperbolic group, I', is a compact metrisable
topological space, on which I' acts as a discrete convergence group without parabolics, in
the sense described in [GeM1]. Now, OI' is connected (i.e. a continuum) if and only if T is
one-ended. By Stallings’s theorem [St], this, in turn, happens if and only if I' is not finite
or virtually cyclic (i.e. two-ended) and does not split over a finite subgroup. In this paper
we shall also assume that I is a Peano continuum. As noted above, this is equivalent to
saying that OT has no global cut point. In [Bol,Bo2| this was shown to be the case if T
does not split over any two-ended subgroup. (An alternative argument can be given via
Levitt’s generalisation of [Bo2] in [L].) This was generalised to strongly accessible groups
in [Bo3]. Swarup showed how to adapt these arguments to deal with the general case [Sw].
This can be placed in a more general dynamical context [Bo5|. (It remains open as to
whether every hyperbolic group must be strongly accessible.)

A “local cut point” can be defined as a point z € 9I" such that OI' \ {x} has more
than one end. Putting the results of this paper together with those of [Bol,Bo2| mentioned
above, we deduce that a hyperbolic group has a local or global cut point in its boundary if
and only if it either splits over a two-ended subgroup or is a “virtual semitriangle group” as
defined below. In particular, we see that this property is quasiisometry invariant (provided
we rule out cocompact fuchsian groups). Another consequence is the “annulus theorem”
of Scott and Swarup [ScS] (stated in the torsion-free case), namely that a (non-fuchsian)
hyperbolic group, I', splits over a two-ended subgroup if and only if there is some two-
ended subgroup, G < T, such that the pair (I', G) has more than one end. As mentioned
earlier, this has recently been generalised to finitely generated groups by Dunwoody and
Swenson [DuSw]|. (We also remark that a different algebraic adaptation of such 3-manifold
results, in the form on a torus theorem for 3-dimensional Poincaré duality groups, had
been obtained earlier by Kropholler — see [K] and the references therein.)

Note that fuchsian groups play a special role in this theory. By a fuchsian group we
mean a non-elementary finitely generated group which acts properly discontinuously on the
hyperbolic plane. We do not assume that the action is faithful, only that its kernel is finite.
This kernel is canonically determined as the unique maximal finite normal subgroup, and
so the quotient 2-orbifold is also canonically determined. The group action is cocompact if
and only if the 2-orbifold is closed, or, equivalently, if the group is a virtual (closed) surface
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group. In this case, the ideal boundary of the group is a circle. Such a group splits over
a two-ended group if and only if the 2-orbifold is neither a sphere with three cone points
nor a triangle with mirrors. This is what we mean by a “virtual semitriangle group”. (A
semitriangle group is the orbifold fundamental group of a sphere with three cone points.)

By a bounded fuchsian group, we mean a non-elementary fuchsian group which is
convex cocompact but not cocompact. Thus, the convex core of the quotient is a compact
orbifold with non-empty boundary consisting of a disjoint union of compact 1-orbifolds
(circles or intervals with mirrors). In this case, the ideal boundary of the group is cantor
set with a natural cyclic order. The peripheral subgroups are the maximal two-ended
subgroups which project to the fundamental groups of the boundary 1-orbifolds. The
conjugacy classes of peripheral subgroups are thus in bijective correspondence with the
boundary components.

The essential features of the JSJ splitting can be summarised as follows. Our formu-
lation differs slightly from that given in [Se], though the result is more or less equivalent
(at least in the torsion-free case). These matters will be elaborated on in Section 6.

Theorem 0.1 : Suppose thatI' is a one-ended hyperbolic group, which is not a cocompact
fuchsian group. Suppose that 0" is locally connected (or has no global cut point). Then
there is a canonical splitting of I' as a finite graph of groups such that each edge group is
two-ended, and each vertex group is of one of the following three types:

(1) a two-ended subgroup,
(2) a maximal “hanging fuchsian” subgroup, or

(3) a non-elementary quasiconvex subgroup not of type (2).

These types are mutually exclusive, and no two vertices of the same type are adjacent.
Every vertex group is a full quasiconvex subgroup. Moreover, the edge groups that connect
to any given vertex group of type (2) are precisely the peripheral subgroups of that group.

Finally, if G < T is a two-ended subgroup such that (I', G) has more than one end,
then G can be conjugated into one of the edge groups, or one of the vertex groups of type

(1) or (2).

A “hanging fuchsian” subgroup, G, of I', is a virtually free quasiconvex subgroup
together with a collection of “peripheral” two-ended subgroups, which arise from an iso-
morphism of G with a bounded fuchsian group. For a more careful description, see Section
6. (Thus a hanging fuchsian group coincides with what Sela calls a “quadratically hanging”
subgroup in the case where I' is torsion-free.) By a “full” (quasiconvex) group, we mean
one which is not a finite index subgroup of any strictly larger subgroup of I'.

Since the splitting is canonical, it is respected by any automorphism of I'. ;From
this once can deduce that a finite index subgroup of the outer automorphism group is
generated by “Dehn twists” about the edges, and 2-orbifold mapping classes arising form
the hanging fuchsian subgroups. Thus it is virtually a direct product of a free abelian
group and finitely many 2-orbifold mapping class groups [Se].

In the course of the analysis, we also get topological information about the boundary.
It turns out that every local cut point plays a role in the JSJ splitting. More precisely, each
local cut point lies in the limit set of (a conjugate of) a vertex group of type (1) or (2). It
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follows that the valency of any point (i.e. the number of ends of 9I'\ {z}) is always finite.
In fact the maximum value of the valency of any point equals the maximal number of ends
of a pair (I', G), as G ranges over all two-ended subgroups. This maximum is always finite.

The proof we give here proceeds by studying the topology of the boundary. In our
analysis, the circle arises as a special case. This case has been analysed by Tukia [T1],
except for certain exceptional cases which were subsequently dealt with independently by
Gabai [Ga] and Casson and Jungreis [CJ]. In such a case, the group is a cocompact fuchsian
group. In fact, Tukia’s result is more general that this. For example it applies to the case
of cyclically ordered cantor sets — a fact we shall use in order to describe the hanging
fuchsian subgroups.

Most of the results given above can be arrived at without explicit reference to hyper-
bolic groups. Instead, we work with a uniform convergence group action on a metrisable
Peano continuum. Such groups are necessarily hyperbolic [Bo6], but for most of the anal-
ysis we shall not need any geometric input. Apart from the reference to Tukia’s work
mentioned above, all the arguments are fairly elementary topology. There is one final
point at which we need to refer back to hyperbolic groups — in order to verify that hang-
ing fuchsian subgroups are indeed finitely generated (as required by the definition). In
some ways, it would be nice to produce an argument which avoided this.

We have already observed that our splitting is canonical — it arises naturally out
of the action of I" on OI'. Indeed, correctly formulated, it is unique. This uniqueness is
best described in terms of the action of I' on a simplicial tree ¥. This is done formally in
Section 6. We note that the tree X arises purely out of the topology of OI'. The action of
I on OI" then induces an action on X.

The structure of the paper is roughly as follows. In Section 1, we give a brief account
of how splittings of groups are reflected in the topology of the boundary. In Section 2,
we describe certain abstract “order” structures which are meant to capture something
the arrangement of local cut points in a (Peano) continuum. In Section 3, we carry out
this analysis for a Peano continuum. In Section 4, we give a summary of some general
results about convergence groups. In Section 5, we derive the JSJ splitting for a “uniform”
convergence group acting on a metrisable Peano continuum (i.e. an action which is properly
discontinuous and cocompact on the space of distinct triples). Finally, in Section 6, we
give a summary of the results applied specifically to the case of a hyperbolic group.

1. Quasiconvex splittings of hyperbolic groups.

In this section, we recall some basic facts about hyperbolic groups in order to es-
tablish some terminology and notation. We also describe how splittings over quasiconvex
subgroups are reflected in the topology of the boundary. It will be the aim of the rest of
the paper to examine the converse implications in the case of splittings over two-ended
subgroups.

Many of the statements given here concerning quasiconvex splittings appear to be

“folklore”, though I have found no explicit reference. These results are also needed for
[Bo3|.
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Let T' be a hyperbolic group, and X its Cayley graph (or any graph with a discrete
cocompact I'-action). Let V(X)) be the vertex set of X. We give X a I'-invariant path
metric, d, by assigning to each edge a length of 1. Thus 0I' = 0X. Now, I' acts properly
discontinuously and cocompactly on the space of distinct triples in X (see Section 4). In
particular, it acts as a convergence group without parabolics in the sense of Gehring and
Martin [GeM1].

Any infinite order element, ~, in I' is “loxodromic”. In particular, fix(y) = {z €
OI' | vz = x} consists of precisely two points. Moreover, () acts properly discontinuously
and cocompactly on OI' \ fix(y). Let G(y) = {g € ' | gfix(vy) = fix(v)}. Then (y) has
finite index in G(7v). In fact, G(v) is the unique maximal virtually cyclic subgroup of T
containing . Two loxodromics have a common fixed point if and only if they lie in a
common virtually cyclic subgroup (and hence have both fixed points in common).

For brevity, we shall use the term “loxodromic” in preference to “infinite order ele-
ment”, and (in view of Stallings’s theorem) we use “two-ended group” for “virtually cyclic
group”.

Given a loxodromic v € I', we write {(y) = min{d(z,vx) | x € X} for the translation
length of ~y. Thus, [(v) is a conjugacy invariant. There are only finitely many conjugacy
classes of elements of translation length (at most) any given number. (A more natural and
interesting conjugacy invariant is the “stable length” as defined by Gromov [Gr], but the
simpler definition above will serve for our purposes.)

A subgroup G < T'is quasiconvez if the G-orbit of some (and hence any) point of X is
quasiconvex in X. Equivalently, G is quasiconvex if and only if there is some G-invariant
quasiconvex subset Q C X such that Q/G is compact (i.e. a finite graph). Thus, G is
itself a hyperbolic group, and the “limit set” AG C 9I' may be naturally (and hence G-
equivariantly) identified with 0G. Every two-ended subgroup is quasiconvex, with limit
set consisting of two points.

If G < T is quasiconvex, then the setwise stabiliser of AG is precisely the commensura-
tor, Comm(G), of G in I'. In this case, G has finite index in Comm(G). In fact, Comm(G)
is the unique maximal subgroup of I' which contains G as a subgroup of finite index. We
say that G is full if G = Comm(G). (Note that, for any quasiconvex group, G, the group
Comm(G) is full quasiconvex.)

If G,H < T are both quasiconvex, then so is G N H (see [Sho]). It follows that
A(GNH)=AGNAH. In particular, if AGNAH # (), then G N H contains a loxodromic.

Suppose G < T' is quasiconvex, and v € G is loxodromic. All I'-conjugates of v in G
have the same translation length, and hence fall into finitely many G-conjugacy classes.
Put another way, only finitely many conjugates of G in I' can contain a given loxodromic
— or a given two-ended group. Putting this together with the observation of the previous
paragraph, and the fact that distinct maximal two-ended subgroups cannot have a common
fixed point, we obtain:

Lemma 1.1 : Suppose G C T is quasiconvex, and x € OI'. Then there are at most
finitely many conjugates, G’ of G in T such that x € AG'. &
We now go on to describe splittings of I' over quasiconvex subgroups.
Suppose that ¥ is a simplicial tree with vertex set V(X) and edge set E(X). Suppose

5



Cut points and canonical splittings

that T' acts simplicially on ¥. We can suppose that I' acts minimally (i.e. there is no
proper [-invariant subtree). Also, by subdividing the edges if necessary, we can suppose
that there are no edge inversions. Given v € V(X) and e € E(X), we write I'(e) and I'(v)
respectively for the vertex and edge stabilisers. If e € E(X) has endpoints v, w € V(X),
then I'(e) = I'(v) N I'(w).

We shall assume that the quotient graph, ¥ /T" is finite. Thus, I' is the fundamental
group of a finite graph of groups (see for example [DiD]). We shall be interested in the
case where I' is hyperbolic, and each edge stabiliser is quasiconvex.

In such a case, we can construct a I'-equivariant map ¢ : X — ¥ by choosing
arbitrarily the image, ¢(v), for each v in a (finite) I'-transversal of V' (X'). This determines
|V (X). Each edge of X is then mapped linearly onto a geodesic segment in . Since the
action on X is minimal, ¢ in necessarily surjective. On the level of quotients, this map is
finite to one, except where it might collapse a finite subgraph of X/I" to a point.

Given e € E(X), let m(e) be the midpoint of e. Let Q(e) = ¢~ 1(m(e)). Thus, Q(e)/T
is compact and non-empty, and so Q(e) is quasiconvex.

Given v € V(X), let E(v) C E(X) be the set of edges incident on v. Let S(v) C ¥ be
the connected subset of ¥ consisting of v together with the segments of each e € E(v) lying
between v and m(e). Thus 9S(v) = {m(e) | e € E(v)}. Let Q(v) = ¢~ 1S(v). Thus, Q(v)
is I'(v)-invariant, and Q(v)/I'(v) is compact. Note that if e € E(v), then Q(e) C Q(v).
Suppose v, w € V(3). If v, w are not adjacent, then Q(v) N Q(w) = 0, whereas if v and w
are the endpoints of some edge e € E(X), the Q(v) N Q(w) = Q(e). Since ¢ is surjective,
the collection {Q(v)|v € V(X)} gives a locally finite cover of X.

Suppose [ is a geodesic segment in X with both endpoints in Q(e) for some e € E(X).
Since Q(e) is quasiconvex, [ remains a bounded distance from Q(e). In particular, its
projection to ¥ under ¢ has bounded diameter. Since there are finitely many conjugacy
classes of edge stabilisers, this bound can be taken to be uniform.

Now suppose that o C X is a geodesic segment connecting two points of Q(v) for
some v € V(X). Since ¥ is a tree, we see that each component of a which lies outside Q(v)
is of the type described in the previous paragraph, i.e. it connects two points of Q(e) for
some e € E(v), and thus remains within a bounded distance of Q(e). Now, Q(e) C Q(v)
and so we deduce that a remains a bounded distance from Q(v). If follows that Q(v)
is quasiconvex. Since Q(v)/I'(v) is compact, we see that I'(v) is quasiconvex. We have
shown:

Proposition 1.2 : Suppose that a hyperbolic group I" splits as a finite graph of groups
with each edge group quasiconvex. Then each vertex group is quasiconvex. &

In certain circumstances, we can also say that the vertex stabilisers are full quasiconvex
subgroups. Suppose v € V(X), and I'(v) < H < T, with [H : I'(v)] < co. Then, the H-
orbit, Hv of v is finite. Thus, Hv has a well defined geometrical centre, a € ¥. Now, a
is H-invariant, and is either a vertex or the midpoint of an edge. By connecting v by and
arc to a, we see that either [H : T'(v)] = 2 and H is the stabiliser of an edge incident to
v, so that there is an edge inversion (a possibility we have been disallowing), or there is
a vertex, w, adjacent to v with I'(v) < I'(w) and [['(w),'(v)] < co. Thus, if we can also
rule out the latter possibility in any particular situation, we can conclude that all vertex
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stabilisers are full.

We can associate to ¥ and “ideal boundary”, 9%, which we can think of as cofinality
classes of geodesic rays in 3. (We are only interested in 9% as a set, though it turns out
that ¥ UOX can be given a natural topology as a dendrite — see [Bol] for some discussion
of this.)

Now suppose that « is a geodesic ray in X. We have observed that ¢ o a can only
double back on itself over bounded distances. Thus, either ¢ o o converges in some ideal
point in 0%, or else it eventually remains within a bounded distance of some v € V(X). In
the latter case, we see that a must converge on some limit point in AI'(v).

Now, suppose « and 8 are geodesic rays in X with ¢ o« and ¢ o § both unbounded in
3. Then ¢oa and ¢of converge on the same ideal point in 9% if and only if @ and 8 remain
a bounded distance apart. The “if” bit is fairly trivial. For the “only if” bit, note that «
and 8 both pass in turn through a sequence of quasiconvex sets, Q(v1), Q(v2), Q(vs), .. .,
where (v;);en is a sequence of vertices of 3 converging on the ideal point of 9¥. By the
local finiteness of {Q(v) | v € V(X)}, we see that d(a,Q(v;)) — oo, where a is any fixed
point of X. Since the Q(v;) are uniformly quasiconvex, it’s a simple geometric exercise to
show that o and S remain a bounded distance apart — and thus converge to the same
point of OI". We have essentially shown:

Proposition 1.3 : The set OI' \ UveV(E) AT'(v) can be naturally identified with 0X. <

Note that if e € E(X) has endpoints v,w € V(X), then I'(e) = T'(v) N T'(w) so
AT'(e) = AT'(v) NAl'(w). Also, by Lemma 1.1, we know that only finitely many of the sets
AT'(v) for v € V(X) can meet any given point of 9T

Of particular interest to us is the case where I' has one end, so that OI' is connected,
and where each of the edge stabilisers is two-ended.

Let e € E(X), so that A'(e) consists of two points. Now, m(e) splits ¥ U 0¥ into
two components ¥; U 0%; and Yo U 9%y, If v € V(X1) and w € V(X5), then either
AT (v) N AT (w) = 0, or there is some loxodromic v € I'(v) NT'(w) = I'(e). It follows that
in this case, AI'(v) N AT'(w) = AI'(e). Note that there are only finitely many v € V(%) for
which Al'(e) C AT'(v). We see that we get a natural partition of OI' \ Al'(e) as Uy Ul U,
where

Ui=05u (J AT(v)\AT(e).

By similar arguments to those already given, it’s not hard to see that that the sets U; and
U, are open in OI'. (This is most easily seen by observing that ¢~ 1%; is a quasiconvex
subset of X, by a similar argument to Proposition 1.2. Moreover, U; U AT'(e) is precisely
the ideal boundary of this set, and hence closed in 0X.) In particular, OT' \ AT'(e) is
disconnected. This in turn implies that X /T'(e) has more than one end, in other words,
the pair (I',I'(e)) has more than one end. This is an instance of a much more general fact
that if a finitely generated group splits over a finitely generated subgroup, then the pair
has more than one end.

So far, we have not made any assumption of local connectedness, though in that case,
one can say more.
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Suppose that OI' has no global cut point, so that O is a Peano continuum [BeM]. If
x,y € 0T, then OI' \ {z,y} has finitely many components, the closure of each containing
both z and y. If G < T is two-ended, set e(G) to be the number of components of OI'\ AG.
If v € T is loxodromic, set e(y) = e((y)). Note that some power, 4™, of ~ fixes setwise
each component of OI" \ fix(vy) (where n < e(y)!). Thus, (0" \ fix(v))/(y™) has precisely
e(y) = e(y™) components. But these components are in bijective correspondence with the
the ends of X/(y™) and so, by definition, the pair (I, (4")) has precisely e(y) ends. It
follows that we could alternatively define e(G) as the maximum number of ends of a pair
(I, G') where G’ ranges over the finite index subgroups of G.

Now, a consequence of our construction will be that if G < T is a two-ended subgroup
with e(G) > 2, then G can be conjugated into a vertex group of type (1) or (2) in the
JSJ splitting. In particular, if there exists such a subgroup, then the splitting will be
non-trivial. This gives the result of Scott and Swarup [ScS] referred to in the introduction.
Another consequence is that there are only finitely many conjugacy classes of maximal
two-ended subgroups G of I" such that e(G) > 3.

2. Order structures.

In this section, we summarise two kinds of structure we use to describe the arrange-
ment of local cut points in a (Peano) continuum.

The first structure is what we call a pretree. This consists of a set, T', together with
a ternary “betweenness” relation, denoted zyz for x,y,z € T. We speak of y as lying
strictly) “between” x and z. The relation should satisfy the following axioms:

(
(TO0) If zyz, then x # z.

(T1) The relations zyz and zzy can never hold simultaneously.
(T2) The relation xyz holds if and only if zyx holds.

(T3)

T3) If xyz holds and w # y, then either xyw or wyz holds.

These axioms appear in a paper by Ward [W]. They are studied in some detail in [AN]
and [Bol|. They describe very general structures, in that most other treelike structures
can be viewed as special cases of pretrees.

One can show that any finite subset, F', of a pretree can be embedded in a finite
simplicial tree, 7, in such a way that zyz holds in F' if and only if y separates x from z
in 7. In fact, one could take this as an alternative definition of a pretree. It also gives a
simple means of verifying many statements about pretrees.

Given z,y € T, we write (z,y) = {z € T | zzy} and [z,y] = {z,y} U (x,y). We refer
to such sets as intervals. We see that such an interval carries a natural linear order (given
an order on the pair {z,y}). If z,y,z € T, then [z,y] N [y, z] N [z, ] contains at most one
point. If such a point exists, we refer to it as the median of (z,y,z), and denote it by
med(z,y, z). If T is such that every three points have a median, then we refer to it as a
median pretree.

We say that a pretree is discrete if [x,y] is finite for all z,y € T. A discrete median
pretree is the same as a Z-tree (except that the axioms of a Z-tree are usually given in
terms of the closed intervals, [z, y], rather than the betweenness relation — see, for example
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[Sha]). It can thus be realised as the vertex set of a simplicial tree, where “betweenness”
is interpreted in the obvious way.

Every pretree can be embedded in a median pretree (see [AN] or [Bol]). Of more
significance here, is the fact that every discrete pretree, T, can be embedded in discrete
median pretree, ©. A simple way to describe such an embedding is as follows. A “star”,
F,in T is a maximal “null and full” subset of T". In other words, F satisfies the following.
Firstly, there is no relation of the form xyz where y € T and =,z € F (F is “null and
full”), and secondly, if z € T'\ F', there exist y, z € F' with zyz (maximality). We can take
© to be the disjoint union of T', together with the set of all stars in 7' containing at least
3 elements. One can show that © admits a natural structure of a median pretree, which
induced the original pretree structure on 7. (For more details, see [Bol]).

An example of a pretree is given by any connected hausdorff topological space, M,
where the relation zyz is interpreted to mean that y separates x from z in M (i.e. we can
write M \ {y} = U LV, where U 5 z and V > z are open subsets of M). Proofs are given
in [W], [Bol] and [Bo4]. In particular, we derive the well-known fact that if x,y € M,
then the set, [z, y], of points separating z from y, together with {z, y}, has a natural linear
order.

More generally, we can speak of a “linearly ordered subset” of M; in other words, a
subset, L C M with a linear order, <, such that if x,y,2 € L, then zyz if and only if
r<y<zorz<y<x Thus, any interval is such a set. For future reference, we note
that if z < y < z < w, then {x, z} separates y from w in M. Also, M \ {y, z} has at least
3 components.

So far, we have not made use of compactness or local connectedness. In this special
case, we can say more [HY]:

Lemma 2.1 : Suppose M is a Peano continuum, and x,y € M. Then [z,y] is a closed
subset of M. Moreover, the subspace topology on [x,y| agrees with the order topology.

¢

As a corollary, we note that the closure of a linearly ordered set of cut points in a
Peano continuum is also linearly ordered.

(We remark that another advantage of working with Peano continua is that it allows
us to deal with components of open subsets, whereas, for an arbitrary continuum, it is
more appropriate to work with quasicomponents — for a locally connected space, these
notions coincide [HY].)

The other type of “order structure” in which we are interested is, in some sense,
at the opposite extreme to that of a pretree, namely a cyclic order. This is a familiar
notion. It can be defined as a set, A, together with a 4-ary relation, denoted d(z, vy, z, w)
for x,y, z,w € A with the following property. If F' C A is any finite subset, then we can
embed F in the circle S, such that if z,y,2,w € F, then §(x,vy, z, w) holds if and only
if z and z lie in different components of S\ {y,w}. It’s not hard to write down explicit
axioms for ¢, though we won’t bother here. (Note that it would be enough to assume
our finite set, F', has at most 5 elements.) When dealing with cyclic orders we implicitly
assume that card(A) > 4.
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Every cyclic order carries a natural order topology. A base for the open sets is given
by the collection of sets of the form {x € A | §(a, b, ¢, x)} where a, b, c are any three distinct
points of A. We say that A is separable if it has a countable dense subset. Any compact
separable cyclically ordered set can be embedded as a closed subset of the circle.

We say that two points x,y € A are adjacent if there do not exist points z,w € A
such that é(z, z,y,w). A jump in A is an unordered pair of adjacent points. Let J(A) be
the set of all jumps. Note that two jumps can only intersect in an isolated point. Note also
that A is a cantor set, if and only if it is compact, separable, contains no isolated points
and |JJ(A) is dense in A.

Suppose now that M is a continuum, and that ¢ C M. Given z,y,z,w € o, write
d(z,y, z,w) if y and w are separated by {x, z}. We say that o is a cyclically separating set
if the relation § is a cyclic order on o.

Lemma 2.2 :  Suppose that M is a Peano continuum, and ¢ C M is a cyclically
separating set. Then so is its topological closure, 5. Moreover, the subspace topology on
a (or on o) agrees with the cyclic order topology.

Proof : We can effectively reduce this to the case of linear orders. Choose any a € o, and
let M (a) be the space obtained by adjoining the space of ends to M \ {a}. Thus M(a) is a
Peano continuum, and o \ {a} is a linearly ordered set of cut points in M (a). We can now
apply Lemma 2.1, and the subsequent observation to this set. The result can be deduced
by first splitting o into two subintervals, and using the above to deal separately with the
closures of each.

(One could alternatively go back to first principles and adapt the arguments of [HY]
to this situation.) o

Suppose now that M is a Peano continuum with no global cut point. Given distinct
points z,y € M, let U(x,y) be the set of components of M \ {x,y}. Thus, U(z,y) is finite,
and each element U € U(z,y) is open and connected with OU = {z,y}.

Suppose A C M is a closed cyclically separating set. Let U(A) be the set of compo-
nents of M\ A. Suppose 0 = {z,y} € J(A) is a jump. We have cardU(z,y) > 2. Moreover,
there is some U € U(z,y) such that A CU = U U {z,y}. Let Ua(0) = U(z,y) \ {U}.

Lemma 2.3 : U(A) = |pe ya)Ua(0).

Proof : Suppose U € U(A). Since M has no global cut point, QU has at least two
elements. Suppose z,y € OU C A. Now, we must have {z,y} € J(A) (for if z,w € A with
d(z, z,y,w), we would have U U{z,y} C M \ {z,w} giving the contradiction that = and y
lie in the same component of M \ {z,w}). Let § = {z,y}. Since x,y € OU were arbitrary,
and it is impossible for three distinct elements of A to be mutually adjacent, we see that
oU = {z,y}, and so U € U(z,y). Now UNA = (), and so U € Ua(#). We have shown
that U(A) € Upeya)Ual(0).

Conversely, suppose 6 € J(A) and U € Ua(f). Since U N A =) and U is connected,
we must have U C V for some V € U(A). Thus, V € Ua(0') for some 0" € J(A). Since

10



Cut points and canonical splittings

UNA =0, we have 90U C 9V. Thus § = 9U = 9V =0', and so U =V € U(A) as
required.

Finally, to the see that we have a disjoint union, note that in U € Ua (6), then OU = 0.

<

We define II be the space of distinct unordered pairs in M. Thus, II takes its topology
by identifying it as M x M minus the diagonal, quotiented out by the involution which
swaps the entries in a pair.

Note that if A is a cyclically separating set, then J(A) C II. A simple consequence
of Lemma 2.2 is:

Lemma 2.4 : J(A) is a discrete subset of II. &

3. The structure of local cut points.

Throughout this section, (except where otherwise stated), M will be a Peano contin-
uum with no global cut points. We discuss the structure of local cut points in M. We also
introduce the notion of an “annulus” which will be used throughout the rest of the paper.

Suppose x € M. We define the valency of x, denoted by val(z) € N U {oo0}, to be
the number of ends of the locally compact space M \ {x}. We say that z is a local cut
point if val(z) > 2. Given n € N U {oo}, we write M(n) = {x € M | val(z) = n} and
M(n+) = {x € M | val(x) > n}. We shall be particularly interested in the subsets M (2)
and M (3+). (In the case in which we are really interested, it turns out that M (co) = 0,
so it doesn’t much matter whether or not we include this in M (3+).)

Given z,y € M, we defined, in Section 2, U(z,y) to be the set of components of
M\{z,y}. We write N(z,y) = cardU(z,y) € N. Note that N(z,y) < min{val(z), val(y)}.
We define a relation ~ on M(2), by x ~ y if and only if either z =y or N(z,y) = 2. Note
that if z ~ y and x # y, then x and y are both local cut points.

The following construction will be useful in deducing a few basic properties of this
relation. Suppose that F' C M is a finite set. Let C(F) be the set of components of M \ F.
Thus C(F) is finite. If U € C(F), we say that U is adjacent to x € F if x € U. We can
thus define the bipartite graph G = G(F') with vertex set V(G) = Vu(G) U V1(G), where
Vo(G) = F and V1(G) = C(F). We define edge set E(G) by joining = € Vy(G) to u € V1(G)
if they are adjacent in the sense already defined.

We make the following observations. Firstly, G is a connected bipartite graph. If
x € F =Vy(G), then deg(z) < val(z), where deg(z) is the degree of x in G. No point of
Vo(G) can separate G (otherwise it would be a global cut point for M). It follows that each
vertex of V1 (G) has degree at least 2.

Lemma 3.1 : The relation ~ is an equivalence relation on M (2).

Proof : It is clear that ~ is reflexive and symmetric. So, suppose that z ~ y and x ~ z.
We claim that y ~ z. We can assume that z,y, z are all distinct. Let F' = {x,y, z}, and
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let G = G(F') be the graph described above. Thus, deg(z) < 2, and the sets {z,y} and
{z, z} both separate G.

Suppose there is some vertex u € V4 (G) connected to each element of F. Since {z,y}
separates, there must be some component, Cy, of G\ {z,y} with 0Cy = {z,y}. Similarly,
there is another component, Co, with 0Cy = {z, z}. Also the component, C3, containing
u has 0C3 = {z,y, z}. These components are all distinct, so we get the contradiction that
deg(z) > 3.

We conclude that every vertex in V;(G) has degree 2. Now since z is not a global
cut point, there must be a vertex u € V;(G) adjacent to both y and z. Similarly, there
is a vertex v adjacent to both z and z, and a vertex w adjacent to both x and y. Thus,
rvzuywz is a circuit in G. Since x cannot be connected to u, we see that {y, z} separates
G, and so y ~ z as required. &

(We remark that we have only really used that fact that = € M(2).)
Lemma 3.2 : Ifo C M (2) is a ~-equivalence class, then o is a cyclically separating set.

Proof : Suppose F' C ¢ is finite. Let G = G(F'). Thus, each vertex of V{(G) has degree at
most 2.

Suppose, for contradiction, that some u € V;(G) has degree at least 3. Thus, u is
adjacent to the a subset of vertices W C V(G) with card(W') > 3. Since any pair, z,y, of
distinct elements of W separates G, we see that there must be at least one component, C,
of G\ W, with 0C = {z,y}. But, since card(W) > 3, this contradicts the fact that the
degree of each vertex of W is at most 2.

We deduce that every vertex of G has degree at most 2. Since G connected, it must
be either an arc or a circle. But since no point of V;(G) separates, it cannot be an arc,
and is thus a circle. Now the separation properties of F' = V(G) are the same in G as in
M. We deduce that o is cyclically separating. &

Lemma 3.3 : Suppose that z,y, z,w € M(2). Suppose that z ~ w and that z and w lie
in distinct components of M \ {z,y}. Then, x ~y ~ z ~ w.

Proof : Let F = {z,y,z,w}, and G = G(F). Since {z,y} separates z and w, there can
be no vertex of V4 (G) adjacent to both z and w. Suppose that there is some u € V;(G) of
degree at least 3. Then deg(u) = 3, and, without loss of generality, u is adjacent to the
points z, y and z. Since G is connected, there must be another vertex v € V;(G) adjacent
to w, and either x or y, say x. Since v is not adjacent to z, it must be adjacent to y. Since
deg(y) < 2, and z and w are non-separating, this must account for all of G. But now,
G\ {z,w} is connected, contradicting the hypothesis that z ~ w.

We thus conclude that every vertex of G has degree at most 2. But now, as in the
proof of Lemma 3.2, we deduce that G is a circle. In particular, x ~ y ~ z ~ w. &
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Lemma 3.4 : Suppose that Uy, U, Us are disjoint open connected subsets of M. Suppose
that x;,y; € U; N M(2), for i = 1,2,3. Suppose that x1 ~ xo ~ x3 and y; ~ Yz ~ ys3.
Then, x1 ~ y1 ~ Xa ~ Yo ~ T3 ~ Y3.

Proof : We can suppose that x; # y; for each i. Since z1,x2,x3 € M(2), we see that
M \ {z1,x2, 23} has precisely three components, each adjacent to two of the x;. Let
W1, Wy, W3 be these components, with z; ¢ W;. Now {z;} U W5 U W3 is a connected
component of M \ {x2,x3}, and U; is a connected subset of M \ {x2,x3}. Thus, U; C
{z1} UWy UWs5. Since y; € Uy \ {1}, we see that y; € Wy UW;3. Similarly, yo € W3 U W,
and y3 € W13 U W5, Now, without loss of generality, we can suppose that y; € Ws. Since
y2 € W3 U W7, we see that y; and yo lie in different components of M \ {z1,z3}. Also,
by hypothesis, y; ~ y2. Thus, applying Lemma 3.4 to the set {x1,x3,y1,y2}, we see that
x1 ~ x3 ~ Y1 ~ y2. The result now follows from Lemma 3.1. &

As an immediate corollary, we get:

Lemma 3.5 : Ifo,7 C M(2) are ~-classes, with card(6 N 7) > 3, then o = 7. &

Corollary 3.6 : Ifo and 7 are ~-classes with ¢ = T, then 0 = T.

Proof : If ¢ is finite, then 0 = & = 7 = 7. Otherwise, apply Lemma 3.5. &

Lemma 3.7 : Ifo is a ~-class, then 6 \ 0 C M (3+).

Proof : If o were finite, then ¢ = &, so we can assume that ¢ is infinite. Choose any
distinct a,b,c € 0. Suppose z € 7 \ 0. By Lemma 2.2, ¢ is cyclically separating, so,
without loss of generality, {a,x} separates b from c. In particular, N(a,z) > 2. But if
val(x) = 2, then a ~ z, and so we get x € 0. We must therefore have val(z) > 3. &

Another relation on M we shall be considering is defined as follows. Given x,y € M,
we write z &~ y if z # y and N(z,y) = val(z) = val(y) > 3. (Recall that N(z,y) is the
number of components of M \ {z,y}. The relation can thus be interpreted as asserting
that this number is as large as possible given the valency of z or of y.)

Lemma 3.8 : Ifzx~y and x = z, then y = z.

Proof : Let n = val(x). Suppose that y # z, so that x, y and z are all distinct. Now there
are n components of M \ {z,y}, only one of which contains the point z. The rest are all
components of M \ {x,y, z}. Thus there are (at least) n — 1 components of M \ {z,y, z}
adjacent to x and y but not to z. Similarly, there are at least n — 1 such components
adjacent to x and z but not to y. Thus, n = val(z) > 2(n — 1) > n since n > 3. This
contradiction shows that y = z. &

In other words, some subset of M (3+) is partitioned into pairs of the form {z, y} where
x ~ y. We refer to such a pair as a ~-pair. For a general Peano continuum, the relation
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~ would appear unnaturally restrictive. However, in the special case which interests us in
Section 5, we shall see that this partition accounts for all of M (3+).

Before going on to discuss these relations further, we introduce a notion that will be
used throughout the rest of this paper. For this definition, and the immediately ensuing
discussion, we do not require that M has no global cut point.

Definition : An annulus, A, consists of an ordered pair, (A=, A"), of disjoint closed
connected subsets of M, such that if U is a component of M\ (A~ UA™), then UN A~ # ()
and UN A" #0.

We write R(A) = M\ (A~ UA™). We write U(A) for the set of components of R(A).
Thus, each element of U(A) is an open connected subset of M, and U(A) is finite. We
write N(A) = cardU(A).

The clause about the closure of each component of R(A) meeting both A~ and A*
is largely for convenience. It is easy to arrange this. Suppose that B = (B~,B™T) is
any ordered pair of disjoint closed connected subsets of M. Let U(B) be the set of all
components of M \ (B~ UB*). Let U*(B) = {U € U(B) | UN B* # () and U N BT = 0},
and let U%(B) = {U e U(B) | UN B~ # 0 and U N BT # §}. Thus U(B) = U°(B) U
U= (B)uU(B). Let AT = BT UJUT(B). Then, it’s not hard to see that A = (4=, AT)
is an annulus with U(A) = U"(B). We shall write A = B’ for this construction.

Note that if A is an annulus, then M \ A~ and M \ A" are both connected open
subsets of M.

Given two annuli A and B, we write A < B to mean that M = int AT Uint B~. Thus,
if A< B, wehave A~ Cint B~ and BT Cint AT. It’s easily seen that the relation < is a
partial order on the set of all annuli in M.

Given any closed set K C M and annulus A, we write K < A to mean that K C
int AT, and A < K to mean that K C int AT. For x € M we define z < A and A <z
respectively to mean {z} < A and A < {z}. Note that if A and B are annuli, then A < B
is equivalent to (M \ int A") < B.

We can think of the relation < as describing “nesting” of annuli. There is another
relation of interest, namely <, which can be thought of as describing inclusion of annuli.

Given annuli, A and B, we write A < B to mean that B~ Cint A~ and BT Cint AT,
or in other words, B~ < A < BT. Note that R(A) C R(B). Clearly < is also a partial
order.

Lemma 3.9 : Suppose A, B are annuli with A < B. Then there is a natural surjective
map f:U(A) — U(B) such that U C f(U) for all U € U(A).

Proof : We have R(A) C R(B). If U € U(A), then U is a connected subset of R(A) and
thus of R(B). It thus lies in some element of U(B) which we set to be f(U).

To see that f is surjective, suppose V € U(B). Now V meets both B~ an Bt and
so V meets both A~ and AT. Thus V N R(A) # 0 (otherwise VN AT and V N A~ would
partition V' into two closed subsets). It follows that V' meets some component, U, of R(A).
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Thus U UV is a connected subset of R(B) and so U UV = V. In other words U C V so
fu)y=v. O

Corollary 3.10 : If A < B, then N(A) > N(B). &

So far, none of our discussion of annuli has assumed that there is no global cut point.
For the rest of this section, however, we shall reinstate this hypothesis.

Note that, in this case, any pair, (x,y), of distinct points of M is an annulus. (To be
more precise, we should write ({z}, {y}), though we shall not bother about this distinction).
In this case, the notation U(x,y) and N(x,y) agrees with that previously defined.

Lemma 3.11 : Suppose x € M(n), where n < oo, and F' C M \ {z} is compact. Then,
there is an annulus, (K, x), (or more properly (K,{z})) with F < (K, z) and N(K,x) = n.

Proof : By definition, M \ {z} has n ends. So, given any compact set F' C M \ {z},
we can find another compact set, F” C M, with F' C int F’ and such that M \ (F' U {z})
has precisely n unbounded components. Let K be the union of F’ together with all the
bounded components of M \ F’ (i.e. (K,x) = (F',z)"). O

By a similar argument, we obtain:

Lemma 3.12 : Ifz € M(o0), and FF'C M \ {z} is compact, then there is some annulus
(K,x) with F < (K, x), and N(K,x) arbitrarily large. &

Lemma 3.13 : Suppose A is an annulus. Suppose (K;,z;) for i = 1,...,p are annuli
with A < (K;,x;) and N (K;,z;) > 3 for all i. If the points x; are all distinct, then p < n™,
where n = N (A).

Proof : For each i, we get a surjective map f; : U(A) — U(K;,x;) as described by
Lemma 3.7. Such a map gives rise to a partition of ¢(A) into disjoint non-empty subsets
— given by the preimages of elements of U (K, x;).

Suppose that for a given ¢, the sets Uy, Us,Us € U(A) lie in distinct elements of
this partition, so that f(Uy), f(Us) and f(Us) are all distinct. Choose any y; € Uy,
y2 € Us and y3 € Us. Thus, z; separates each distinct pair from {y1,y2,y3} in M \ F;
and hence in M \ A~. (Recall that M \ F; and M \ A~ are connected.) In other words,
x; = med(y1, y2,y3) in the pretree structure on M \ A~ as described in Section 2.

Suppose that for some i # j, the maps f; and f; give rise to same partition of U(A).
Then, we could choose the same sets Uy, Uy, Us and points yi,y2,y3 for each. Thus, in
M\ A~, we get that x; = med(y1,y2,y3) = x;, contradicting the hypothesis that the z;
are all distinct.

It follows that each of the partitions are different. Since there are less than n™ parti-
tions of an n-set, the result follows. &

Of course, one could do a lot better than n™. We only really care that this number is
finite. A similar argument yields:
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Lemma 3.14 : Suppose that A is an annulus. Suppose (K;,z;) fori € 1,...,p are annuli
with A < (K;,x;) and N(K;,x;) > 2 for all i. If z; o¢ x; for all i, then p < n".

Proof : As with Lemma 3.13. This time, if p > n"™, we obtain y1,y> € M and i # j such
that both x; and z; separate y; from y in M \ A™. It follows that z; ~ x;. &

We can now draw some conclusions from these observations. Let II be the space
of unordered pairs of distinct points in M, as described at the end of Section 2. Let
[1(3+) C II be the subset of ~-pairs, i.e. pairs {z,y} such that = ~ y.

Lemma 3.15 : II(3+) is a discrete subset of 11.

Proof : Suppose {x,y} € II. Let U, V be disjoint connected open neighbourhoods of = and
y. Let A= (U,V) be the corresponding annulus. Now if (z,w) € (U x V) NII(3+), then
we can think of (z,w) as an annulus with A < (z,w) and N(z,w) > 3. By Lemma 3.13
and Lemma 3.8, there can only be many such pairs (z,w). In other words, (U x V)NII(3+)
is finite. Now, any compact subset, K C II can be covered by finitely many sets of the
form U x V, and so K NII(3+) is finite. In other words, II(3+) is discrete. &

Let II(2) C II be the set of pairs, {z,y} such that z,y € M(2) and z ~ y and = # y.
We can define the equivalence relation ~ on II(2) by {z,y} ~ {2',¢y'} if x ~ 2’ ~y ~ y/.
As with Lemma 3.15, using Lemma 3.14 in place of Lemma 3.13, we obtain:

Lemma 3.16 : Any compact subset of Il can meet only finitely many ~-classes in I1(2).

¢

Put another way, it’s impossible for an infinite set of distinct ~-classes to accumulate
at two distinct points of M. Clearly, this also applies to closures of ~-classes.

Given z,y € M, and ¢ € II, we write z(y to mean that x and y lie in different
components of M \ (. We say that a subset P of Il accumulates at some point a € M if
for every neighbourhood, U, of a, there are infinitely many ( € P with ( C U.

Lemma 3.17 :  Suppose a,b € M are distinct. Suppose that P C I1(2) UII(3+) is such
that a(b for a all ( € P, and that if (,n € P N1I(2) with ( ~ n, then { = 1. Then either
P is finite, or it accumulates at a or at b (or both).

Proof : By Lemmas 3.15 and 3.16, if the conclusion fails, then P must accumulate at
some point ¢ € M \ {a,b}. Now, M \ {c} is connected, locally connected and compact and
so admits an exhaustion by compact connected sets. Thus, there is an open neighbourhood
U > ¢ such that M \ U is connected and contains both a and b. Now if ( € P, with { C U,
we would have a(b. But a,b € M\ U C M \ ¢, giving a contradiction. &

The next objective is to construct a discrete pretree, T, based on the structure of
local cut points. In the case where there is a convergence group action (Section 5), this
construction will give rise to a simplicial tree 3 which describes the JSJ splitting.

Let 77 = II(3+) be the set of ~-pairs in M (3+), and let 7o = M(2)/~ be the set of
~-classes in M(2). Let T =T} U Ty. Note that if {,n € T are distinct, then ¢ N n = 0.
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Lemma 3.18 : Suppose (,n € T are distinct. Suppose that a,b € ( are distinct, and
that U € U(a,b). IfnNU #0, thenn C U.

Proof : If the result fails, then there are points z,y € n separated in M by {a,b}. It
follows that n € Ty, so that x,y € M(2). (For if n = {z,y} € T3, then there would be
some V € U(x,y) with a,b ¢ U, so V =V U {z,y} would connect x to y in M \ {a,b}.)
If ¢ € Ty, then a,b,z,y € M(2), and so, by Lemma 3.3, we get that a ~ b ~ x ~ y. This
gives the contradiction that ( = 1. We are thus reduced to the case where ¢ = {a,b} € T7.
Now, N(z,y) = 2, so we can let U(z,y) = {W1, Wa}. Since {a,b} separates x and y, the
points a and b cannot lie in the same component of M \ {z,y}. Thus, we can assume that
a € Wy and b € Ws. But N(a,b) > 3, so there is some component, C' € U(a,b), with
z,y ¢ C. Thus, C = CU{a,b} C M\ {z,y}. But now C UW; UWs, is a connected subset
of M\ {z,y}. We thus arrive at a contradiction. O

Given n € T and x,y € M, we write xny if there are distinct points a, b € n such that
x and y are separated in M by {a,b}. Given (,n,0 € T, we write (nf if (3= € {)(Jy €
0)(xny). In view of Lemma 3.18, this is the same as saying that there are distinct a,b € n
and distinct U,V € U(a,b) such that ( CU and § C V.

Lemma 3.19 : With the ternary relation thus defined, T' is a pretree.

Proof : Properties (T0) and (T1) are immediate. Property (T3) is also elementary.
Suppose (nf and £ # n. We can find a,b € n and U,V € U(a,b) such that ¢ C U and
0 C V. Choose any x € £. If x ¢ U then (nf, and if x ¢ V then 6n¢.

To deduce (T2), suppose, for contradiction, that (nf and (6n. We can find a,b € n
such that ¢ and 6 are subsets of distinct elements of U(a, b), and we can find ¢, d € 6 such
that ¢ and 7 are subsets of distinct elements of U(c,d). Let U be the element of U(a,b)
containing ¢, and let V be the element of U(c,d) containing 7. In particular, a,b € V.
Now, U = U U {a, b} is connected. Also ¢,d ¢ U, so U C M \ {c,d}. We see that U C V.
In particular, ¢ C V, contradicting the fact that {c,d} separates ¢ from n 2 {a, b}. O

Proposition 3.20 : T is a discrete pretree.

Proof : Given Lemma 3.19, it remains to verify that if (,n € T are distinct, then the
pretree interval [(, 7] is finite.

Choose distinct a,b € ¢ and ¢,d € n. Let U,, U, U. and Uy be disjoint open
neighbourhoods of a, b, ¢ and d respectively. Suppose (07, so that there is a pair of
distinct points x,y € 6 such that {x,y} separates { from 7. In particular, {z,y} separates
both a and b from both ¢ and d. Now, clearly {x,y} cannot be a subset of both U, and
Uy, nor a subset of both U. and U,;. Applying Lemma 3.17, we see that there are only
finitely many possibilities for {x,y} up the the relation ~. Thus, there are only finitely
many possibilities for 6. &

From the discussion in Section 2, we see that T' can be embedded as a subset of the
set of vertices in a simplicial tree. (Note that any singleton ~-class will be a terminal
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vertex in this tree. In the next section we rule out the possibility of such singletons in the
case of discrete group actions — Corollary 5.15)

In summary, we have shown that the two kinds of subsets of M, namely ~-classes in
M (2) and ~-pairs in M (3+), together can be embedded in a natural way in a simplicial
tree. In the case that interests us (Section 5), we shall see that these subsets account for
all local cut points in M.

4. Convergence groups.

In this section, we describe some general properties of convergence groups which we
shall be using in the next section. Some general references are [GeM1,T1,T2 Fr,Bo4].

The notion of a convergence group was defined by Gehring and Martin [GeM1] in
the context of groups acting on topological spheres. Most of the basic theory generalises
without problems to compact hausdorff spaces (or at least to compact metrisable spaces)
— see, for example [T2]. Here, we shall be principally interested in what we shall call

“uniform convergence groups” — see, for example, [Bo4].
It is shown in [Bo6] that, in fact, uniform convergence groups are precisely hyperbolic
groups acting on their boundaries. We shall not refer to that result here — the extra

geometric information does not seem to help much in this context.

Let M be a compact hausdorff space. Let ®(M) be the space of distinct (ordered)
triples in M, i.e. M x M x M minus the large diagonal. Note that ®(M) is locally compact
hausdorff. Suppose that a group, I', acts by homeomorphism on M. We get an induced
action on ®(M). The group, I, is said to be a convergence group on M if the action on
®(M) is properly discontinuous.

If M is metrisable, this is equivalent to the following hypothesis, which was the original
definition in [GeM1], and is the most frequently used formulation of convergence group.
Suppose that (7, )neN is a sequence of distinct elements of I'. Then, there is a subsequence
(7:): and points A, u € M such that the maps ~v;|(M \ {\}) converge locally uniformly to
. (Note that it follows that ~; '|(M \ {u}) converge locally uniformly to \.) In this
hypothesis, we allow for the possibility that A = u. The equivalence of these definition
for actions on spheres is proven in [GeM2]. Their argument would seem to generalise
unchanged to Peano continua. A general proof is given in [Bo4]. (In fact we don’t need
to assume that M is metrisable, provided we reformulate the Gehring-Martin definition in
terms of nets rather than sequences.)

One can classify the elements of I" into elliptic (finite order), parabolic (infinite order
with a single fixed point) and lozodromic (infinite order with two fixed points). If v € T is
loxodromic, we can write its fixed point set, fix(y) = {fix"(v), fix"(y)}, where fix () and
fix ™ (7) are, respectively, the repelling and attracting fixed points. In this case, the cyclic
group, () acts properly discontinuously and cocompactly on M \ fix(y). The discussion
of loxodromics in Section 1 applies equally well to this more general situation.

Note that if K C M is closed with card(K) > 2 and fixed setwise by a loxodromic -y,
then fix(y) C K. We also have [T2]:
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Lemma 4.1 : Suppose K C M is closed and ~v € T is such that yK C int K, then ~ is
loxodromic, with fix*(y) € int K and fix () € M \ K. &

We say that a subgroup of I' is elementary if it is finite or two-ended.

It is common to allow, in the definition of an elementary group, any group which fixes
a point of M. Such a group must either be a torsion group, or else contain a parabolic
element. However, neither of these possibilities can arise in the case of interest to us.
(Parabolic elements are ruled out by Lemma 4.4. It is also well known that torsion sub-
groups cannot occur in hyperbolic groups — see, for example, [GhH]. In any case, all
groups which we claim to be non-elementary will be seen to contain a loxodromic element,
and so cannot be torsion groups.)

The following is a trivial observation:

Lemma 4.2 : Suppose G < T' is non-elementary, and K C M is a non-empty closed
G-invariant subset. Then G acts as a convergence group on K. &

We shall be mainly dealing with a restricted class of convergence groups. For this, it’s
convenient to assume that M is a perfect compact hausdorff space. (Recall that “perfect”
means “having no isolated points.)

Definition : We say that I' acts as a uniform convergence group on M if it acts properly
discontinuous and cocompactly on the space of distinct triples, ®(M).

It follows easily that there is compact subset, &9 C ®(M), such that ®(M) = [JI'®o.
Direct dynamical proofs of the following three lemmas can be found in [Bo4].

Lemma 4.3 : The action of a uniform convergence group is minimal (i.e. there is no
proper nonempty closed invariant subset). &
Lemma 4.4 : A uniform convergence group has no parabolic elements. &

Lemma 4.5 : If ' acts as a uniform convergence group on a Peano continuum, then I'
is finitely generated and one-ended. &

In particular I' does not split over any finite subgroup in this case.

It’s well known that a hyperbolic group acts as a uniform convergence group on its
boundary (a proof is given in [Bo4]). The converse is given in [Bo6]. For a non-elementary
hyperbolic group I', the results stated above can be deduced by direct geometric arguments.
Note that OI" is perfect and metrisable. The fact that I' acts as a convergence group on
OT" by the Gehring-Martin definition is shown directly in [T2] and [F]. There are several
arguments to show that I' has no parabolics (see for example [GhH]). Also, it’s easy to see
that OI' is connected if and only if I' is one-ended (again, see for example [GhH]).

Returning to our set-up of a group I', acting on a perfect compact hausdorff space,
M, we formulate a notion of quasiconvexity for subgroups in dynamical terms.
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Given a closed subset A C M, we define ®p(A) = {(z,y,2) € (M) | z,y € A}
Thus, ®pr(A) is a closed subset of ®(M).

Elementary (i.e. finite or two-ended) subgroups of I' are always deemed to be quasi-
convex. Otherwise:

Definition : A non-elementary subgroup, G < I, is quasiconvex if there is a non-empty
closed perfect G-invariant set A C M such that ®5;(A)/G is compact.

(In fact, the assumption that A is perfect is redundant — it is a consequence of the
definition given that M is perfect. However, we shall only apply it in cases where we
already know A to be perfect.)

For most purposes in this section, we only explicitly use an apparently weaker property,
namely that ®(A)/G is compact, where ®(A) = {(z,y,2) € ®(M) | z,y, z € A} is the space
of distinct ordered triples in A. In fact, this turns out to be equivalent to quasiconvexity
(see [Bod]).

Note that if G is quasiconvex, then G acts as a uniform convergence group on A. In
particular, from Lemma 4.3, we see:

Lemma 4.6 : The set A is the unique minimal non-empty closed G-invariant subset of
M. ¢

In particular, A is uniquely determined by G. We refer to it as the limit set of G,
and write A = AG. In the case where G is two-ended, we set AG to be the fixed point
set of any loxodromic in G. (This definition agrees with the standard one for convergence
groups.)

Note that G has finite index in the setwise stabiliser of A (since the setwise stabiliser
acts properly discontinuously on ®(A) and ®(A)/G is compact).

Before continuing, we make few remarks about two-ended subgroups which will be
relevant to the subsequent discussion.

Note that if G is any two-ended group, then the end-preserving subgroup is a normal
subgroup of index at most 2 in G. It can be defined purely group theoretically in terms of
the action of G on its Cayley graph. Also, any infinite order element g € GG determines an
ordering on the pair of ends of G, according to which end any given forward orbit tends.
We can refer to this as the “direction of translation” of g. It’s well known that a 2-ended
groups acts properly discontinuously and isometrically on the real line (see for example
[DiD]). It’s not hard to see that the end-preserving subgroup of G and the direction of
translations of elements are respected by such a representation. Note that a subgroup, G,
of a convergence group I, is two-ended if and only if it preserves setwise an unordered pair
of distinct points, {x,y} C M. In this case, the pointwise stabiliser of z and of y is precisely
the end-preserving subgroup of G. Moreover, if v € G is loxodromic, then y = fix™ (v) if
and only of v translates in the direction of y in the intrinsic group-theoretical sense.

As mentioned in the introduction, we have a special interest in convergence groups
acting on circles. Such actions have been completely analysed by Tukia [T1] and the
subsequent papers of Gabai [Ga] and Casson and Jungreis [CJ]. It turns out that, up to
topological conjugacy, such a group can be represented by a group acting isometrically
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and properly discontinuously on the hyperbolic plane, H2, where we are considering the
induced action on the ideal circle, 9H?. We state explicitly two special cases of this.
Firstly:

Theorem 4.7 : [T1,Ga,CJ] Suppose that I' is a acts as a uniform convergence group on
circle, S*. Then, there is a properly discontinuous cocompact isometric action of I' on H2,
and a I'-equivariant homeomorphism of S' to OH?. &

We refer to such a group as a cocompact “fuchsian group”. Group theoretically, this
is the same as saying that I' is a virtual surface group. There is a slight distinction between
our formulation and that given in the references cited, in that we are not assuming the
action to be effective. However the distinction is essentially trivial, since the kernel of
such an action can be simply characterised as the unique maximal finite normal subgroup.
(Note that the fact that I is finitely generated is easy to see in this case, since its quotient
by the kernel of the action is the orbifold fundamental group of the compact 3-orbifold
o(51)/T)

The following result follows from Tukia’s original paper [T1]:

Theorem 4.8 : Suppose that A is a cyclically ordered cantor set, and that ' acts as
a minimal discrete convergence group (without parabolics) on A, preserving the cyclic
order. Then, there is a properly discontinuous action of I' on H? (without parabolics),
and a cyclic-order-preserving I'-equivariant homeomorphism from A onto the limit set of
the T'-action on OH?2.

Proof : In the terminology of [T1], the action of T is of the “second kind”. Thus, in view
of Theorem 6B(f) of that paper, it suffices to show that that the action of I" on A extends
to a convergence action on the circle, S*.

As in Section 3, let J(A) the set of jumps in A, which in this case are all disjoint.
Suppose 6 € J(A). Note that if v € " were loxodromic with fix(y) N6 # 0, then in fact
fix(7) = 6. (Otherwise there would be (v)-orbits of points converging on each element of
0 from either side, showing that 6 could not be a jump.) We also see that the setwise
stabiliser of a jump is either finite or two-ended.

Now, we can certainly find a cyclic order-preserving embedding of A in S!. The jumps
of A are then in bijective correspondence with the complementary open intervals of S\ A.

Let 0 = {x,y} € J(A), and let G be the setwise stabiliser of §. Let I C S! be
the complementary open interval with 0I = {z,y}. We want to define an action of G
on I. Suppose, first, that G is two-ended. Now as discussed earlier in this section, G
admits a properly discontinuous isometric action on the real line. Now there is a natural
correspondence between the ends of the real line and the ends of GG, and thus, in turn, with
the pair {x,y}, which are the ends of the interval I. We now take any homeomorphism of
I with the real line respecting this identification of ends. We thus conjugate the action of
G under this homeomorphism, to give and action if G on I. The case where G is finite is
simpler. In this case, we just take any homeomorphism of I with the real line. We define
the action of I' € G on the real line by setting g to be the identity if g fixes x and y, and
to be reflection in the origin if g swaps = and y.
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We now perform this construction for one jump in each I'-orbit. To extend over a
given ['-orbit of jumps, we conjugate by appropriate elements of I'.

This extends the action over S'. It’s now a simple exercise to verify that this is a
convergence action. O

(In fact, the construction of the extension to S! probably isn’t really necessary — one
should be able to adapt the arguments of [T1] directly to this case though I've not worked
through the details.)

Note that we have not assumed that I" is finitely generated. In this special case, we
obtain:

Proposition 4.9 : With the hypotheses of Theorem 4.8, if, in addition, I" is finitely
generated without parabolics, then I' is conjugate to a bounded fuchsian group. &

Here “bounded” means convex cocompact but not cocompact, as described in the
introduction. Note that the peripheral subgroups are precisely the stabilisers of jumps. In
particular, each such stabiliser is two-ended, and there are finitely many conjugacy classes
of such.

5. Convergence actions on Peano continua.

In this section we continue in a similar vein to Section 3, but now introducing conver-
gence actions into the picture.

Let M be a metrisable Peano continuum, and let & = ®(M) be the space of distinct
triples in M. Let I be a group acting as a uniform convergence group on M, i.e. acting
properly discontinuously and cocompactly on ®. (One can probably avoid the metrisabil-
ity assumption, but this would raise technical complications we don’t really want to be
bothered with here.) We shall shortly see (Proposition 5.4) that M has no global cut point,
so from that point on, we can bring the results of Section 3 into play.

By Lemma 4.4, we know that I' is finitely generated and one-ended. We shall not

use the finite generation result explicitly here, only the fact that I' does not split over any
finite subgroup. The fact that I' is countable is used for Lemma 5.31.
Lemma 5.1 : There are finite collections, (U;)"_;, (Vi)r_; and (W;)Y_; of open connected
sets U;, Vi, W; € M such that U; N\ V; =V, " W; = W, NU; =0 for all i € {1,...,p}, and
such that if x,y,z € M are all distinct, then is some v € I' and i € {1,...,p} such that
vyr € U;, vy € V; and vz € W;.

Proof : Let &y C & be compact with & = [JI'®y. Given any (x,y,z) € Pg, we can
certainly find open connected sets U > x, V > y and W > z whose closures are all disjoint.
We now cover @ with finitely many sets of the form U x V x W. &
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Lemma 5.2 : There are finite collections (U;)j_; and (O;)j_, of open connected subsets
of M such that U; N O; = () for all i, and such that if K C M is closed and x € M \ K,
then there is some v € I' and i € {1,...,p} such that yx € U; and vK C O;.

Proof : Let U;,V;, W, be as described by Lemma 5.1. Let O; be an open connected set
such that V; C O; and O; N U; = 0.

Choose any y € M \ {z} and choose a sequence of points z, € M \ {z,y} with
zn — x. Now, applying Lemma 5.1, we can find a sequence (7,)nen of elements of T’
such that v,2 € Ui(n), 7y € Vi) and vp2n, € Wiy, for some i(n) € {1,...,p}. Passing
to a subsequence, we can suppose that i(n) is constant, equal to k say, and that the -,
are all distinct. Passing to a further subsequence, we can suppose that v,z — a € U,
Yy — b €V and v,2, — ¢ € W. Note that a,b, c are all distinct. Suppose that for all
n €N, v,K Z Ok. Then we can find w,, € K such y,w, € M \ Ok.

We now apply the convergence property to (7,)nen. Passing to a subsequence, we
can find points A\, u € M such that ~,|(M \ {A}) converges uniformly to p. Now since
Ynx — a and v,y — b, we see that p must equal a or b.

Suppose that p = a. Since v,y /4 a, we must have A = y. Since z,, — z, the points
z, remain in a compact subset of M \ {y}. Thus, 7,2, — a contradicting the fact that
YnZn — C # a.

Suppose that g = b. Since y,x /4 b, we must have A = z. Now, w,, € K C M \ {z},
and K is compact. Thus, y,w, — b. Now b € Uy and v, w, € M\ O. But Uy and M \ Oy,
are disjoint closed sets, so we again get a contradiction.

In conclusion, we deduce that there must be some n € N such that v, K C Op. Also
Ynx € Uy as required. &

In the last section, we described a process associating an annulus (B~, BT)’ to any
pair of disjoint closed subsets, B~ and BY, of M. Given i € {1,...,p}, set A; = (0;,U;)".
Thus, O; C A7 and U; C A;". This gives a finite collection of annuli, (4;)%_,. The basic
property of this collection may be expressed as follows:

Lemma 5.3 : Suppose K C M is closed, and x € M \ K. Then, there is some v C T’
and i € {1,...,p} such that K < vA; < x.
Proof : This follows immediately from Lemma 5.2 (with v replacing v~ 1). &

We now get one of the principal results:
Proposition 5.4 : M has no global cut point.

Proof : Suppose z € M is a global cut point. Choose any y,z € M separated by =x.
Applying Lemma 5.3, with K = {y, z}, we get an annulus A = vA;, with K < A < z. But
now, y,z € A~ which is connected, and x ¢ A~, contradicting the fact that = separates y
from z. %

We are now in the situation described in Section 3. We thus have the definition
of valency of a point, the sets M(n) and M(n+), and the relations, ~ and ~ etc. We

23



Cut points and canonical splittings

immediately have the following result.
Let N = max{N(A4;) |1 <i<p}.

Proposition 5.5 : Ifz € M, then val(z) < N.

Proof : Suppose val(z) > N. By Lemma 3.11 and Lemma 3.12, there is an annulus (K, x)
with N(K,z) > N. But now, Lemma 5.3 gives us some i € {1,...,p} and some v € T
such that yA4; < (K,z). By Corollary 3.10, we get N(A;) = N(yA4;) > N(K,z) > N,
contradicting the definition of N. &

In particular, we see that M (oc0) = 0.

Now, exactly as in Section 1, if G < T is a two-ended subgroup, we define e(G) to be
the number of components of M \ AG. Similarly, if v € I is loxodromic, set e(y) = e((7)).
Thus, e(y) = N(z,y), where {z,y} = fix(y) = A(G).

Lemma 5.6 : Ify € I' is loxodromic with fix(A) = {z,y}, then val(x) = val(y) =
N(z,y) = e(7)-

Proof : Asin Section 1, after raising v to some power, if necessary, we can suppose that ~y
fixes each component U € U(zx,y). Now, U/() is compact. (It is a connected component
of (M \ fix(vy))/(7)). Since (v) is two-ended, it follows that U has precisely two ends. Since
U = U U {x,y} is compact, we see that these ends are compactified by the points = and
y. Thus, M\ {z} = J{U U{y} | U € U(x,y)} has precisely N(z,y) = cardU(z,y) ends.
Thus val(z) = N(z,y) = e(vy). Similarly for y. &

Corollary 5.7 : Ife(y) > 3 and fix(y) = {z,y}, then v = y. &

We shall see (Proposition 5.13), that there is a converse to Corollary 5.7.

We are assuming that I' acts cocompactly on the space of distinct triples, so it certainly
acts cocompactly (though not properly discontinuously) on the space of distinct unordered
pairs, IT. (In other words, there is a compact set Iy C II such that IT = |JI'Tly.)

Recall that II(3+) C II is the set of ~-pairs. Clearly this is I-invariant. Lemma 3.15
tells us that this is discrete, and so:

Lemma 5.8 : II(3+)/T is finite. O
Putting this together with Corollary 5.7, we obtain:

Proposition 5.9 :  There are finitely many conjugacy classes of maximal two-ended
subgroups G < T' for which e¢(G) > 3. &

The same argument, using Lemma 3.16 in place of Lemma 3.15, will enable us to
establish that there are only finitely many I'-orbits of ~-classes in M (2). For this to work,
however, we will first need to establish that there are no singleton ~-classes. This will form
part of a more substantial analysis later on. We first need to make a few more general
observations.
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(From Lemma 4.1, we note:

Lemma 5.10 : Suppose that A is an annulus, and v € T' with A < vA. Then, v is
loxodromic, and fix ™ () < A and A < fix" (v). &

Extending Lemma 5.3, we get the following nesting property of annuli:

Lemma 5.11 :  Suppose K C M is closed, and x € M \ K. Then, there is some
i€{l,...,p}, and a sequence of elements (y,)neN Such that

K<"}/0A7;<’)/1Ai<’)/2147;<"'<x.

Proof : Lemma 5.3 gives us 79 € I' and i(0) € {1,...,p} such that K < yyA4;) < z. We
now apply Lemma 5.3 again, with M \ 7 int A:EO) replacing K. This gives v; and i(1) such
that M\ vy int AZO) < 7141y < x. But the first relation is equivalent to oAy < v14i(1)-
We now continue inductively. On passing to a subsequence, we can suppose that i(n) is
constant. &

Lemma 5.12 : Every point of M (3+) is the fixed point of some loxodromic in T.

Proof : Suppose z € M(3+), so 3 < val(x) < co. Lemma 3.11 gives an annulus (K, )
with N(K,z) > 3. Lemma 5.11 now gives us some i € {1,...,p} and a sequence, (V,)neN
of elements of I" with K < v9A4; < 11A; < -+ < z. For each n, we have v, 4; < (K, x), and
so A; < (v, K, v, tz). Applying Lemma 3.13, we can find m < n € N with v, 1z = 4, lx.
Let v = v,7,,! so that vz = 2. Now v, 4; < YnA; = Y(ymA;i), so by Lemma 5.10, v is
loxodromic. &

Proposition 5.13 : Suppose x,y € M. Then x = y if and only if there is a loxodromic
~v € I" with e(y) > 3 and fix(y) = {z,y}. Moreover M (3+) is a disjoint union of such
RZ-pairs.

Proof : By Corollary 5.7, if v € T' is loxodromic and e(y) > 3, then fix(v) is a ~-pair.
Suppose x € M (3+), then Lemma 5.12 gives us such a v with z € fix(v). By Lemma 3.8,
if x = y, it follows that fix(vy) = {z, y}. &

Lemma 5.14 : Every isolated point of a ~-class in M (2) is the fixed point of a loxodromic
inI'.

Proof : Suppose 0 C M(2) is a ~-class. To say that x € o is isolated means that there
is an open set U C M such that cNU = {x}. Let F = M \ U. By Lemma 3.11, there
is an annulus (K, z) with F < (K,z) and N(K,z) = 2. We now argue as in the proof
of Lemma 5.12, using Lemma 3.14 in place of Lemma 3.13, to obtain v,,,7, € I' with
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F < ymA; < va4; < x and vtz ~ v, 'z, Let v = v,7,,}, so that z ~ vz, and 7~ is
loxodromic. Now, v, A4; < x, so 7,A; = V(vmA;) < vxr. Thus K < v,4; < vz, and so
vyr € M\ K =U. Since x ~ vz and 0 NU = {z}, we deduce that yz = =. &

Corollary 5.15 : Ifo is a ~-class in M(2) which contains an isolated point, then there
is a loxodromic v € I' such that fix(vy) = o.

Proof : Let x € o be an isolated point of . By Lemma 5.14, x is fixed by some loxodromic
v € T. We can suppose that = = fix* (7). Let y = fix_ (7). By Lemma 5.6, N(x,%) = 2 and
y € M(2), and so x ~ y. In other words, fix(y) C . Suppose there is some z € o \ fix(y).
Then 4"z € o for all n. But "2 — x, contradicting the assumption that z is isolated in
o. We deduce that o = fix(v). O

In particular, we see immediately that there are no singleton ~-classes. As a conse-
quence, we deduce:

Lemma 5.16 : There are finitely many I'-orbits of ~-classes in M (2).

Proof : As in the proof of Lemma 5.8, using Lemma 3.16 in place of Lemma 3.15. &

Definition : We shall say that a subset A C M is a necklace if it is the closure of a
~-class, o, in M(2), and card(A) > 3.

Note that by Corollary 3.6, A determines ¢ uniquely. We write 0 = o(A). By Lemma 2.2,
A is a cyclically separating set, and by Corollary 5.15, A is perfect.
We shall later describe necklaces as the limit sets of the “MHF” subgroups of I'. The
first objective will be to show that the setwise stabiliser of A in I' is quasiconvex.
Suppose &y C & is compact. Lemma 3.16 and the subsequent remarks tell us that
the set of necklaces, A, such that ®o N ®5(A) # 0 is finite.

Proposition 5.17 : Suppose A is a necklace, and (Q < I' is the setwise stabiliser of A.
Then, @ is quasiconvex, and A is the limit set of Q.

Proof : Since A is perfect, it’s enough to show that ®,,(A)/Q is compact.

Let &y C ® be a compact set such that & = [ JT'®g. Let {11 A,...,vmA} wherey; € T
be the set of I'-images of A such that ®¢ N ®p(v;A) # 0. This is a finite set, as noted
above. Let ¥ = J;-, ’yi_lfI)o. Thus, ¥ C & is compact.

Suppose p € ®,;(A). Now, there is some vy € I such that yp € &g. Now vp € O (vA)
and so g N Ppr(yA) # (). Thus, YA = ;A for some i € {1,...,m}, and so vy~ 1v; € Q.
Now, p € v 1@y = (v ')y, '@y € JQU. This shows that 5 (A) C |JQP, and so
O (A)/Q C (UQY)/Q. Since ®ps(A) is a closed subset of @, it follows that ®5/(A)/Q

¢

is compact, as claimed.

Note that the cyclic order on a necklace, A, is defined purely in terms of the topology
on M, and is thus Q-invariant. In particular, the set of jumps, J(A), is @Q-invariant.
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Proposition 5.18 : If M is not homeomorphic to a circle, then every necklace in M is
a cantor set.

Proof : Let A C M be a necklace. Since M is metrisable and hence separable, then so is
A.

If J(A) = (), then A is a compact separable cyclically ordered set with no jumps.
Thus A is homeomorphic to a circle. By Lemma 2.3, we see that U(A) = 0, and so
M\ A =JU(A) =0. Thus, M = A is itself a circle.

Suppose that J(A) # (. Let A’ be the closure of | JJ(A). Thus, A’ is a non-empty
closed subset of A. Since it is canonically defined, it must be invariant under the setwise
stabiliser of A. Applying Proposition 5.17 and Lemma 4.6, we see that A’ = A. In other
words, |JJ(A) is dense in A. Since A is separable and perfect, it follows that it must be
a cantor set. &

Note that by Theorem 4.7, we see that if M is homeomorphic to a circle, then I' is a
cocompact fuchsian group. Moreover, the action of I' on M is topologically conjugate to
the action of the fuchsian group in OH?2.

JFrom now on, we shall assume that M is not homeomorphic to a circle.

Definition : A subgroup, Q < I' is an MHF subgroup if it is the setwise stabiliser of a
necklace A C M. A peripheral subgroup of ) is the stabiliser, in @), of a jump of A.

Thus, an MHF subgroup, @, is quasiconvex, and its limit set A = AQ is a cantor
set. Peripheral subgroups are either finite or two-ended. In fact, by Theorem 4.8, we see
that @ is conjugate to a fuchsian group, and the peripheral subgroups have their usual
meaning. We make no explicit use of this fact in this section. We do not yet know that
MHF subgroups are finitely generated.

The term “MHF” is meant to be an abbreviation of “maximal hanging fuchsian”.
This is essentially what is called a “maximal quadratically hanging” subgroup in Sela’s
terminology, as discussed in the introduction. In Section 6, we show, under the assumption
that M is the boundary of a hyperbolic group, that MHF subgroups are finitely generated,
and hence bounded fuchsian groups. In this case, the terminology agrees with the notion
of “maximal hanging fuchsian” as described in the introduction.

Let’s make a few more observations about MHF subgroups in general.

Lemma 5.19 : Suppose @) is an MHF subgroup, and A = A(Q). Then J(A)/Q is finite.

Proof : Recall that I' acts cocompactly on the space, II, of unordered pairs in M, i.e.
there is a compact set IIy C II such that IT = [JT'Tly. Using Lemma 3.16, we see that
only finitely many I'-images, 1A, ..., 7mA, of A meet IIy. By Lemma 2.4, for each 4, the
set J; = J(A)N ’yi_lﬂo is finite. Now, we see easily, that the set |J;-, J; gives a finite
transversal to the Q-action on J(A). &

We see immediately that:
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Corollary 5.20 : An MHF subgroup, (), has finitely many @Q-conjugacy classes of
peripheral subgroups. &

Recall that a necklace, A, it the closure of a unique ~-class, denoted o(A).

Lemma 5.21 : Suppose that Q C T is an MHF subgroup. Then A\ o(A) = (J Jo(4A),
where Jo(A) is some Q-invariant subset of J(A). Moreover, if G is the peripheral subgroup
corresponding to some jump in Jo(A), then G is two-ended, and e(G) > 3.

Proof : Suppose x € A\o(A). By Lemma 3.7, val(x) > 3. Thus, by Lemma 5.12, there is
a loxodromic vy € T', with x € fix(y). Let y be the other fixed point of 7. Thus, by Lemma
5.6, N(z,y) = val(y) = e(y) = val(z) > 3. Since val(y) > 2, we have that y ¢ c(A).

Now, we can assume that y = fix"(y). Now, if the necklaces y*A for n > N were
all distinct, they would accumulate at both x and y violating Lemma 3.16. We must
therefore have YA = ~"™A for some m # n. Thus, replacing v by v"~™ we can suppose
that YA = A, and so 7 € ). We conclude that y € A. Now since N(zx,y) > 2, we see that
no pair of points of M, and so in particular of o(A), can separate = from y. Thus, {z,y}
is a jump of A. Note that {z,y} C A\ o(A).

We now let Jy(A) to be the set of jumps arising in this way. O

Corollary 5.22 :  Suppose that QQ and Q' are distinct MHF' subgroups of I". Let
A =A(Q) and A" = A(Q'). Then, either ANA" =, or ANA" € Jo(A)N Jp(A'). In the
former case, Q N Q' is finite. In the latter case, Q N Q' is two-ended, and of finite index in
peripheral subgroups of both Q and Q'. Moreover, e(Q N Q') > 3.

Proof : Note that by Lemma 3.5, card(ANA’) < 2. If ANA’" = (), then QNQ" is
finite. (Otherwise, we would easily arrive at a contradiction, on applying the convergence
hypothesis to a sequence of elements in Q N Q".)

Now, o(A) No(A’) = 0. Thus, if z € AN A’ then without loss of generality = €
A\ o(A). Thus, by Lemma 5.21, we see that val(z) > 3. It follows that z also lies in
A"\ o(A"). Again, by Lemma 5.21, we see that = € fix(y) N fix(y’), where v € @ and
~" € Q' are loxodromics. Since they share a common fixed point, v and 4’ lie in a common
two-ended subgroup of I'. It follows easily that they have a common power, g € Q N Q'.
Now, fix(g) € Jo(A) N Jo(A"), so fix(g) € ANA’. Since card(ANA") < 2, we see that
fix(g) = ANA’. &

At the end of Section 3, we described how to put a pretree structure on the set,
T, consisting of all ~-pairs and ~-classes. We saw (Proposition 3.20) that 7" is in fact
a discrete pretree, and so embeds naturally in a discrete median pretree, ©, using the
construction outlined in Section 2. We can identify © as the vertex set of a simplicial tree,
Y. We shall write £ = E(X) for the set of edges of .

It is natural to partition 7T into two subsets as follows. We write Oy C T for the
set consisting of all infinite ~-classes, and write ©; = T \ ©2. Thus, O consists of all
~-pairs and ~-pairs. (By the latter we mean a ~-class consisting of two points.) We write
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O3 = ©\T. Thus ©® = © U O3 U O3z. We shall sometimes speak of this as defining a
“3-colouring” of the vertex set.

JFrom the construction of © from 7', it’s not hard to see that every vertex of ©3 has
degree at least 3 in 3, and that no two vertices of ©3 are adjacent. (In fact, we shall see
later that no two adjacent vertices of ® have the same colour, so that this is indeed a
3-colouring in the usual sense).

Since the construction of ¥ is canonical, we see that I" acts simplicially on 3, preserving
the 3-colouring. Given 6 € © and e € E, we write I'(6) and I'(e) for the vertex and edge
stabilisers respectively. Thus, if § € ©1, then I'(0) is a two-ended subgroup, and if § € O,
then I'(0) is an MHF subgroup.

Reinterpreting Lemma 5.8 and 5.16, we get:

Lemma 5.23 : (0, UO,)/T" is finite. &

We shall see in fact that ¥ has finite quotient under I'. To be able to speak of the
quotient graph we need to know that there are no edge inversions, which will follow when
we have established the claim that adjacent vertices have different colours. We shall also
see that all edge stabilisers are elementary, and thus two-ended given that I' does not split
over a finite subgroup.

Given 6 € O, let Ey C E be the set of edges incident on #. We can define an
equivalence relation, ~, on © \ {0} by writing ¢ ~ 7 if and only if not (fn. Thus, there is
a natural bijection between Ey and (0©\ {6})/~. In fact, since no vertex of O3 is terminal,
we see that T = ©1 U Oy must intersect every ~-class in © \ {#}. We can thus restrict the
relation ~ to 7'\ {6}. In this way we get a natural bijection between Ey and (T'\ {6})/~.

Given a pair of distinct points, 0 = {z,y} C M, we write U(0) =U(z,y).

Lemma 5.24 : If 0 € Oy, then there is natural bijection between Eg and U(6).

Proof : By Lemma 3.18, if ( € T'\ {6}, then ¢ C U for some U € U(f). Since the action of
I' on M is minimal, we see that each such U must contain some such (. By the definition
of the pretree structure on 7', we see that ( ~ n if and only if they lie in the same element

U. &

Lemma 5.25 : Suppose that o € ©5. Let A be the necklace &. Then, there is a natural
bijection between E, and J(A).

Proof : Suppose ¢ € T\{c}. Using Lemma 5.21, we see that either (NA = or ¢ € Jy(A).
If (NA = {), then there is some U € U(A) with ¢ € U. (For if ¢ intersected two components
of M \ A, then it would be separated by some pair of points of o, contradicting Lemma
3.18.) Now by Lemma 2.3, there is a unique 6 € J(A) such that U € Ua(#). We can thus
define amap h : T\{o} — J(A) so that either h(¢) = ¢ € Jo(A),or h({) C U € Un(h(C))-
It follows easily from the minimality of the action of I' on M and Lemma 3.18 that A is
surjective. We claim that h(¢) = h(n) if and only if { ~ n.

Firstly, suppose h(() # h(n). If (,n ¢ Jo(A), then they lie in different components
of M \ A and are thus separated by some pair of points of o. Thus { % 1. Similarly, if
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¢ € Jo(A), so h(¢) = ¢, we can suppose that n ¢ Jo(A). Thus, ( C U where U € Ua(0)
and 0 € J(A) and 0 # (. Again, we see that ¢ % 7.

Conversely, suppose that h(¢) = h(n) = 0, say. We distinguish two cases.

If 0 € J(A)\ Jo(A), then 6 C o, and so cardU(0) = 2. Thus, U (0) consists of a
single element, U. Since (,n # 0, we have (,n C U, and so they are not separated by any
pair of points of . Thus ¢ ~n.

Finally, suppose that 6 € Jy(A). Thus § C A\ o. Let K = 0 U|JUa(0), so that
K is closed and connected. Also M \ K is the component of M \ 6 which contains o. In
particular, K No = (). By the definition of h, we have (,n C K, and so again we see that

¢ =1 ¢
We immediately get:

Lemma 5.26 : If 0 € Oy, then Ey is finite. If § € O4, then Ey/T'(0) is finite.

Proof : If 0 € Oy, then U(6) is finite, so we apply Lemma 5.24. If § € ©2, then 6 is an
MHF subgroup. In this case, Lemma 5.19 tells us that J(A)/I'(9) is finite. &

Since we don’t yet know that there are no edge inversions, we define I'y(e) to be the
“directed edge stabiliser” of an edge e. In other words, I'g(e) = I'({) NI'(n), where {,n € O
are the endpoints of e. Thus, I'g(e) has index at most 2 in I'(e).

Suppose 6 € ©1. Now I'(0) is two-ended, and e(I'(#)) = cardU(0) = card Ey. In other
words, e(I'(#)) equals the degree of 6 in X. If e € Ey, then I'g(e) has finite index in I'(6)
and is thus a two-ended group.

Suppose o € O4, so that I'(¢) is an MHF group. If e € E,, then I'g(e) is the stabiliser
of a jump of & = A(T'g(e)). In other words, I'g(e) is a peripheral subgroup of I'(¢), and
is thus elementary. Since I' doesn’t split over any finite subgroup, it follows that I'(e) is
two-ended. (Note that, from the construction of ¥, every edge, e, lies in an arc connecting
two points of ©1 UB5. We know corresponding vertex groups to be infinite, so if I'(e) were
finite, we would obtain a non-trivial splitting.)

Now every edge e € E is incident on some vertex of ©; U O,5. It follows that I'g(e)
and hence I'(e) is elementary.

We next want to show that no two adjacent vertices have the same colour. We have
already noted that this is true of Oj.

Suppose that (,n € © are the endpoints of some edge e € E. Now, I'y(e) = I'({)NI'(n)
is of finite index in both ¢ and 7. But these groups are both two-ended with limit sets ¢
and n respectively. We get the contradiction that ¢ = 7, showing that this situation is not
possible.

Suppose now that o,0’ C Oy are the endpoints of the edge e € E. Let A = A(T'(0))
and A" = A(T'(¢”)). Since T'y(e) = I'(6) NT'(0”) is two-ended, we see, by Corollary 5.22,
that 0 = ANA" € J(A)NJ(A'). Now, e(I'y(e)) > 3, and so 6 € ©;. But now, we have
oo’ contradicting the assumption that o and ¢’ are adjacent.

We have shown that no two points of ©; and no two points of O, are adjacent. Thus,
the partition, ©® = 01 LI ©5 LI O3 is indeed a 3-colouring in the usual sense. It follows that
there are no edge inversions, i.e. I'g(e) = I'(e) for all e € E. We can thus construct the
quotient graph ¥ /T". Clearly 3/T" is connected.
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Now we can identify the vertex set, V(X/T"), of ¥/T" with ©/I". Thus V(X/T") =
W1 U Wy U W3 gives a 3-colouring of ¥ /T", where W; = ©,/T". By Lemma 5.23, W; U W5
is finite. By Lemma 5.26, each vertex of W; U W5 has finite degree in ¥ /I'. Also every
vertex of W3 is adjacent of a vertex of W7 N W;. We conclude that /T is finite.

Note that no vertex of ¥ is terminal (has degree 1). Since ¥ /I is finite, we see easily
that the action of I on ¥ is minimal (i.e. there is no proper invariant subtree).

There a couple more observations we can make concerning the structure of the vertex
groups.

Lemma 5.27 : If 0 € O3, then I'(0) is non-elementary.

Proof : Suppose, for contradiction, that I'(#) is elementary. We know that 6 has degree
at least 3 in ¥. Since I'(¢) contains each incident edge group, we see that it contains a
loxodromic element, and is therefore two-ended. If ( € ©; is adjacent to 6, then, since the
edge group, I'(¢) N I'(#) is two ended, we see that I'(#) and I'(¢) are commensurable, and
so we see that ( = A(I'(¢)) = A(I'(#)). It follows that at most one vertex of ©; can be
adjacent to 6. We can thus find two distinct vertices, o,7 € O5 adjacent to 6. But now,
I'(#) is commensurable with peripheral subgroups of I'(¢) and I'(7). Applying Corollary
5.22, we see that n = A(I'(¢)) NA(I'(7)) € ©4, and the the betweenness relation on7 holds.
We thus get the contradiction that § = n € ©;. We conclude that I'(#) is non-elementary
as claimed. &

It’s also clear that I'(#) cannot be an MHF subgroup. (If it were, it would be equal
to I'(0") for some 0" € ©,. If e is any edge in the arc connecting 0 to ', then we get the
contradiction that I'(e) = I'(#) is not two-ended.)

Note that it follows from Lemma 5.27 that ©; is precisely the set of vertices of ¥ of
finite degree.

Also, if e,¢’ € FE and I'(e) and I'(¢’) are commensurable, then AT'(e) = AT'(¢/) is a
~-pair or a ~-pair, and so I'(e),I'(e’) C I'() for some 0 € O©; incident on e and €’

Finally, note that if # € ©1 is adjacent to some vertex, o € ©5, then it follows from
Lemma 5.21 that e(I'(e)) > 3, where e is the connecting edge. Since I'(f) is commensurable
with I'(e), we see that e(I'(f)) = e(I'(e)) > 3. On the other hand, if e € E(X) connects a
vertex in ©y to a vertex in ©g, then I'(e) is maximal two-ended and e(I'(e)) = 2.

We want to summarise these properties in group theoretical terms, with a view to
describing the uniqueness of the splitting in Section 6. We will get a slightly cleaner
statment if we, somewhat artificially, insert a vertex of degree 2 at the midpoint of each
edge of ¥ which has one endpoint in ©5 and the other in ©3. With these extra vertices,
we can partition V(X) as Vi(X) U Va(X) U V3(X), where V5(X) = ©9, V5(2) = O3, and
V1(X) consists of the set ©; together with the set of new degree-2 vertices we have just
introduced.

Summarising the above discussion, we have:

Theorem 5.28 : I' acts minimally and simplicially on Y. without edge-inversions and
with finite quotient ¥ /T". The edge stabilisers are all two-ended subgroups. The action of

31



Cut points and canonical splittings

[ preserves the 3-colouring, (V1 (%), Va(X), V3(X)), of the vertex set of . No two vertices
of V1(X) are adjacent, and no two vertices of V5(X) U V3(X) are adjacent.

If v € V1(X), then the vertex stabiliser, I'(v), is a maximal two-ended subgroup of T,
and e(I'(v)) equals the degree of v in ¥.. This degree is finite and at least 2. If the degree
equals 2, then at least one of the incident vertices lies in V3(X).

If v € Vo(X), then I'(v) is an MHF subgroup of I'. If e € E(X) is incident on v, then
I'(e) < T'(v) is a peripheral subgroup of I'(v).

If v € V3(X), then I'(v) is non-elementary (and not a torsion group) and is not an
MHF subgroup. &

We also note that any pair of commensurable edge stabilisers lie inside a common
incident vertex stabiliser, I'(v) for v € V1 (X).

The term “MHF subgroup”, as we have defined it, makes reference to our particular
construction. We shall give an algebraic reinterpretation of this term in Section 6.

Clearly this construction has been canonical. It is describes a “maximal” splitting
over two-ended subgroups. There are various ways to describe this maximality. Below we
give a topological and a group theoretical formulation.

Proposition 5.29 : Every local cut point of M lies in the limit set of some vertex
stabiliser, I'(v), where v € V1 (X) U Va(X).

Proof : This follows since M (2) is a union of ~-classes and M (3+) is a union of ~-pairs.
The set of local cut points is, by definition, M (2) U M (3+). &

Proposition 5.30 : Suppose G < T is a two-ended group with e(G) > 2. Then G < I'(v)
for some v € V1 (X) U Va(X).

Proof : If e(G) > 3, then A(G) is a ~-pair 0§ € Oy, and so G < I'(f). If e(G) = 2, then
either A(G) is a ~-pair 0 € O so again G < T'(0), or else A(G) is a subset of some infinite
~-class o0 € Oq. In the latter case, o is G-invariant, and so G < I'(o). &

Now, since I' is countable and II(3+)/I" is finite (Lemma 5.8), it follows that M (3+)
is countable. Using this, we deduce:

Proposition 5.31 : Suppose A C M is a closed perfect cyclically separating set. Then,
A lies in the limit set of I'(v) for some v € V5(X).

Proof : In other words, we claim that A lies in some necklace. Now, A C M (2) UM (3+),
and since A is perfect, it is locally uncountable. Thus, A N M(2) is dense in A. But if
z,y € ANDM(2), then z ~ y. Thus, AN M(2) C o for some ~-class 0. Thus A C 7,
which, by definition, is a necklace. &

Note that another way of expressing the maximality of the splitting is to say that no
vertex group of the form I'(v) for v € V5(X) splits over a two-ended subgroup relative the
incident edge groups (i.e. in such a way that the incident edge groups are conjugate into
one of the vertex groups in the supposed splitting of I'(v)).

32



Cut points and canonical splittings

6. Conclusion.

In this section, we reintroduce some geometry, and give a summary of our results in
the context in which we are really interested, namely when I'" is a hyperbolic group in the
sense of Gromov [Gr|. For an exposition of such groups, see, for example, [GhH].

Dunwooody’s accessibility theorem for finitely presented groups [Du] tells us that any
hyperbolic group can be split as a finite graph of groups where the edge groups are all
finite, and where all the vertex groups are all finite or one-ended. Note that the vertex
groups are all quasiconvex (see Proposition 2.1) and hence themselves hyperbolic. This
can be thought of as analogous to the splitting of a 3-manifold into irreducible components
along 2-spheres. Here we are concerned with the second stage of splitting, which is over
two-ended subgroups. This is analogous to the characteristic submanifold construction for
irreducible 3-manifolds described in [JaS] and [Jo] following ideas of Waldhausen.

Suppose, then, that I' is a one-ended hyperbolic group, so that OI' is a continuum. In
this case, Bestvina and Mess [BeM] conjectured that OT" has no global cut point and showed
that this implies that 0T is locally connected. The converse is given by Proposition 5.4.
As discussed in the introduction, this is now known for all one-ended hyperbolic groups,
though we shall not explicitly use this fact here.

If OT' does contain a global cut point, then the set of all global cut points has the
structure of a pretree (Section 2). jFrom this information, one can construct an equivariant
quotient of OT" which is a non-trivial dendrite [Bol]. (The equivalence relation on OT' can
be defined by deeming two points to be not equivalent if there exists a set of cut points
points individually separating them which is order isomorphic to the rational numbers
in the natural linear order.) The group I' acts as a convergence group on this dendrite,
and one can adapt the Rips machinery for R-trees to this context to show that I' splits
over a two-ended subgroup [Bo2]. (One can give an alternative argument using Levitt’s
generalisation of [Bo2] in [L].) One can continue along these lines to rule out this possibility
altogether [Sw| (see also [Bo5]).

We shall now assume that there is no global cut point, so that OI' is a metrisable
Peano continuum. Now, I' acts as a uniform convergence group on 9I', so we can quote
the results of the last section. In particular, assuming that I" is not a cocompact fuchsian
group, we get a splitting of I" as a finite graph of groups, ¥ /T", as described by Theorem
5.28.

Now, all the edge groups in this splitting are two-ended and hence quasiconvex. It
follows, by Proposition 1.2, that all the vertex groups are also quasiconvex, in the usual
geometric sense as described in Section 1.

In fact, it’s not hard to see that the notion of quasiconvexity defined in Section 4 agrees
with the usual geometric notion in the case of a hyperbolic group acting on its boundary.
We thus get two reasons why MHF subgroups are quasiconvex — either using Proposition
1.2 as above, of directly from Proposition 5.17. In particular, MHF subgroups are finitely
generated in this case. By Proposition 4.9, we see that an MHF group is conjugate to
a bounded fuchsian group by a conjugacy that sends incident edge groups to peripheral
subgroups. Recall that a “bounded fuchsian group”, as described in the introduction,
is a non-elementary finitely generated group that acts properly discontinuously without
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parabolics on H?, and such that the quotient, H?/T" is not compact. We do not assume
that the action is effective — only that the kernel is finite. Note that such an action is nec-
essarily “convex cocompact”, i.e. geometrically finite without parabolics. Thus, formally,
a bounded fuchsian group consists of a virtually free group with a preferred collection of
peripheral subgroups.

We next define the notion of a “hanging fuchsian” subgroup. In the torsion free case,
this coincides with what Sela calls a “quadratically hanging” subgroup.

Definition : A subgroup, Q < I', is a hanging fuchsian subgroup if it occurs as the
vertex group of a finite splitting of I', in such a way that ) admits an isomorphism with a
bounded fuchsian group so that the incident edge groups in the splitting are precisely the
peripheral subgroups of Q.

Without loss of generality, we can assume that every other vertex group of the splitting
is adjacent to (). In this case every edge group in the splitting is two-ended. Thus, by
Proposition 1.2, every vertex group is quasiconvex. In particular, this shows that every
hanging fuchsian subgroup is quasiconvex.

JFrom the discussion of the boundary given in Section 1, it’s not hard to see that the
limit set, A(Q), of @ is a perfect cyclically separating set. Thus, by Proposition 5.31, we
see that A(Q) C A(T'(v)) for some v € V5(X). Since I'(v) is the setwise stabiliser of T'(v),
we see that @@ < I'(v). We conclude:

Proposition 6.1 : FEvery hanging fuchsian subgroup of I' is quasiconvex, and lies inside
one of the MHF subgroups of the JSJ splitting. O

We have already noted that an MHF subgroup is a bounded fuchsian group, and
hence itself hanging fuchsian. This justifies the terminology — the MHF subgroups of I"
are precisely the maximal hanging fuchsian subgroups.

We have observed that our splitting is canonical in that it arises explicitly from the
action of I on JI'. In fact, the uniqueness of the splitting can be characterised in purely
group theoretical terms. To describe exactly how this works, we digress for a moment to
consider precisely what we mean by a splitting of an arbitrary group,

Usually a group splitting is described in terms of a presentation of a group as the
fundamental group of a graph of groups. However, to describe uniqueness in these terms is
a little clumsy. Formally it is more convenient to view a splitting as an additional structure
associated to the group satisfying certain axioms. These can be laid out explicitly as
follows. (Our formulation rules out the possibility of an edge group being equal to the two
incident vertex groups, but this situation never arises with JSJ splittings.)

Suppose I' is any group. We view a splitting of I' as consisting of a collection, V, of
subgroups of I', together with a symmetric binary relation on V satisfying the following
conditions. Firstly, V is closed under conjugacy, and each element of V is equal to its
normaliser in I". This defines an action of I' on V, such that the stabiliser of any G € V is
equal to G itself. We suppose that the binary relation on V is I'-invariant. Moreover, if we
view V as the vertex set of a graph, X, with this adjacency relation, then we assume that
> is a simplicial tree. Thus, I' acts simplicially on I'. We go on to assume that there are
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no edge inversions and that X /I" is finite, giving us a graph of groups in the usual sense.

In the case where I is a one-ended hyperbolic group (with locally connected boundary),
we have constructed such a splitting as described in Section 5. We can extract from our
the construction those algebraic features which determine its uniqueness. (Of course,
our construction has been entirely canonical throughout, so this is of interest primarily
in relating our construction to others that have appeared elsewhere.) Firstly, ¥ admits
vertex 3-colouring (V4 (X), Va(X), V5(X)), satisfying the conclusion of Theorem 5.28. In this
context, we should interpret the term “MHF subgroup” as a maximal hanging fuchsian
subgroup as formulated in this section. Moreover, this splitting is maximal in the sense
described by Proposition 5.30. Recall, in particular, from the conclusion of Theorem 5.28,
that every edge group I'(e) is a finite index subgroup of an incident vertex group of the
form I'(v) for v € V4 (X). Moreover e(I'(e)) = e(I'(v)) equals the degree of v in ¥. Other
properties of the splitting can be deduced from this assumption; for example, the fact
that any pair of commensurable edge groups are subgroups of a common incident vertex
group of this type. Bringing the conclusion of Proposition 5.30 into play, one can go on
to derive the fact that no vertex group of V3(X) splits over a two-ended subgroup relative
to its incident edge groups. Moreover, every hanging fuchsian group lies inside a vertex
group of V5(3). Thus, every maximal hanging fuchsian group occurs as such a vertex
group. Finally we note that the adjacency relation in the tree, X, is determined by the
observation that v is adjacent to w if and only if I'(v) NT'(w) is infinite and {v, w} NV (X2)
has exactly one element. (We shall not give proofs of these observations — we already
knew all these things about our particular splitting, so, if we wish, we could simply add
them to our list of requirements.) We now have enough information to see easily that our
splitting is unique. We leave the details of these assertions as an exercise.

We should note that our formulation of the JSJ splitting differs slightly from that in
[Se]. Apart from questions of torsion, the main difference is due to the fact that some of
our vertex groups of type (1) are omitted from Sela’s splitting. This has two consequences
we remark upon. Firstly, in Sela’s account, edge groups incident on MHF groups are
only assumed to be of finite index in peripheral subgroups (and not equal to peripheral
subgroups as here). Secondly, Sela’s splitting is only canonical up to certain “sliding
operations” whereas ours is unique.

Note that since it is canonical, any outer automorphism must respect this splitting.
Thus, there is a finite index subgroup of Out(I') which fixes each vertex in the graph of
groups. One can modify the arguments of [P] to show that each vertex group, G, of type
(3) is rigid relative to the incident edge groups (i.e. the subgroup Out(G) preserving the
conjugacy classes of these edge groups is finite). Thus, with a bit more work, one arrives
at Sela’s result (given in the torsion-free case) that Out(I") is virtually a direct product
of infinite cyclic groups and orbifold mapping class groups. With these techniques at our
disposal, it should not be hard, for example, to give a precise description of when Out(T") is
infinite, though we shall not pursue this question here. (See [MNS] for further discussion.)

There are also a few topological consequences to our construction. ;From Proposition
5.29, every local cut point plays a role in the splitting. In particular, the existence of a
local cut point implies that the splitting is non-trivial. We conclude:
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Theorem 6.2 : Suppose I is a one-ended hyperbolic group which is not a cocompact
fuchsian group. Then T" splits over a two-ended subgroup if and only if OI" has a local cut
point.

In particular, we see that, modulo fuchsian groups, this property is quasiisometry invariant.
(In fact, to see this, we only need that the existence of a global cut point would give rise
to a splitting [Bol,Bo2].)

For completeness, we note that a cocompact fuchsian group splits over a two-ended
subgroup if and only if it is not a virtual semitriangle group, as discussed in the introduc-
tion. (A “semitriangle group” has a presentation of the form (a,b | a? = b7 = (ab)” = 1),
where p, q,r € N satisfy p~ 1 + ¢ 1 +r7t < 1.)
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