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0. Introduction.

In [G], Gromov describes the notion of a “§-hyperbolic” (or what we shall call “almost-
hyperbolic”) path-metric space. With one simple axiom, (essentially property H1 described
here,) he is able to capture a remarkable number of the global properties of a “negatively
curved” space, or more specifically, a simply-connected Riemannian manifold, all of whose
sectional curvatures are less than some negative constant.

In his paper, Gromov is primarily concerned with developing the properties of a “hy-
perbolic group”, i.e. one with an almost-hyperbolic Cayley graph. In other words he
deals primarily with almost-hyperbolic spaces which admit cocompact groups of isome-
tries. However, the group structure is largely irrelevant to understanding the global geom-
etry of these spaces. The aim of the present paper is to give a more detailed exposition
of Gromov’s criterion purely in the context of path-metric spaces. Of course much of
Gromov’s paper will not be touched upon here. Other expositions of Gromov’s work are
[ABCDFLMSS], [BGHHSST] and [CDP].

One of the main aims of this paper is to show the equivalence of a number of different
characterisations of almost-hyperbolicity. This will be achieved in the first six chapters.
We shall not always take the most direct route in this, but get involved in discussions
of spanning trees, convexity, isoperimetric inequalities and pseudoisometries etc. All the
arguments of this paper are elementary. In particular, we make no use of Riemannian
geometry, except by way of example.

The structure of this paper, in outline, is as follows. Chapter 1 describes the main
terms and conventions we will be using. In Chapter 2, we discuss in more detail our main
definitions of almost hyperbolicity, H1-H5. In chapter 3, we describe the “treelike” na-
ture of almost-hyperbolic spaces, and show the equivalence of the first two definitions. In
Chapter 4, we define “almost-convex” sets, and develop a few of their properties. We give
proofs of Hi=-H4 and H1=-H5. We also show that almost-hyperbolicity is a pseudoisomet-
ric invariant. It is this fact that allows one to define the notion of an almost- hyperbolic
group. Chapter 5 is devoted to developing a notion of “area” that seems appropriate to
the context of path-metric spaces. That H3=-H4 follows easily from this. In Chapter 6, we
give the remaining proofs, H4=-H2 and H5=H3. Chapter 7 explores further the treelike
nature of almost-hyperbolic space. In Chapter 8, we give a proof that the property of
almost-hyperbolicity “propagates”, that is, a path-metric space which is simply connected
(in some sense) and almost-hyperbolic on a large scale is globally almost-hyperbolic.

This work was initiated by a series of seminars given at Warwick, and I am indebted
to the other participants {in particular, David Epstein, Oliver Goodman, Greg McShane,
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Caroline Series) for their contribution. The first six chapters were completed at Warwick
with the support of an S.E.R.C. fellowship. The version here is a slightly modified form of
my Warwick preprint (August 1989). The remainder of the paper was produced at LH.E.S.
under a Royal Society European Exchange Fellowship.




CHAPTER 1 : Definitions.

1.1. Geodesic spaces.

Let (S,d) be a metric space. To say that d is a path meiric means that, given any
two points X,Y € & and ¢ > 0, there is a rectifiable path joining X and Y of length at
most d(X,Y) + e. We then call (8,d) a path-metric space. Such spaces seem to be the
natural context in which to speak of almost-hyperbolicity. However, to save ourselves a
few unnecessary complications, we shall usually make an additional assumption.

Definition : A geodesic space is a complete, locally-compact path metric space.

It is an exercise to show that any closed uniform ball {X € §|d(X,Y) < r} in a
geodesic space (S, d) is compact. The following are easy consequences.

(1) If X,Y € S, then there is at least one path from X to Y of length equal to d(X,Y).
Such a path is called a geodesic.

(2) If X € §, and Q C S is any non-empty closed set, then there is some ¥ € Q with
d(X,Y) = d(X,Q), where d(X,Q) = infzeqd(X,Z). We shall write projo(X) = {Y €
Q1d(X,Y) =d(X,Q)}. EachsuchY is called a projection of X to Q.

Given any closed set Q C 8, we shall write @ for its topological interior, and 8Q = Q\Q
for its topological boundary. We may check that if X ¢ @, then projoX C 8Q. If r > 0,
we write N.(Q) = {X € §|d(X,Q) < r} for the uniform r-neighbourhood of Q. Note
that Npio(Q) = N.(N,(Q)). We write N,(Q) for the topological interior of N.(Q), and

8N-(Q) = Ne(Q)\N(Q). Thus
{X € 8|d(X,Q) <r} C N.(Q)

and

ONA(Q) C {X € 5| d(X,Q) =r}.

Any closed subset of a geodesic space will itself be a geodesic space in the induced path-
metric, provided that we allow for the possibility that two points be an infinite distance
apart if they cannot br joined by a rectifiable path. Given a closed subset @ of (S,d), we
shall write dy g for the induced path-metric on S \ Q. More generally, we shall write dr.q
for the induced path-metric on S\N,(Q).

Given two points X,Y in a geodesic space (S, d), we shall use [X,Y] to denote some
choice of geodesic from X to Y. We shall only be using this notation in the case where
(S,d) is almost-hyperbolic. For such spaces, any two geodesics with the same endpoints
remain a bounded distance apart. Once this has been established, we can afford to be a
little careless in the use of this notation. For example, we will speak as though [X, Y] were
a well-defined object, even though it implies making a choice.

The above discussion applies only when (S, d) is a geodesic space. However all the
results of this paper may be interpreted for general path-metric spaces, with simple mod-
ification. For example, we could interpret a “geodesic” from X to Y as a rectifiable
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path of length at most d(X,Y) + 1, or projg(X) as the set of points ¥ in @ satisfying
d(X,Y) < d(X,Q)+1, and so on. Working with such things, however, would only confuse
the exposition.

1.2. Almost-hyperbolicity.

We are now in a position to define the notion of almost-hyperbolicity. We give five
definitions: H1-H5. For ease of reference, we collect together these definitions below. We
shall discuss them in more detail in Chapter 2.

Let (S, d) be a geodesic space. Let ki, h; € [0, 00).

Definition 1 : (S,d) is ky-H1 if:
Given any four points X,Y, Z,W € S, at least one of XY : ZW, XZ:YWor XW:YZ
holds, where AB : CD is the statement that

d(A, B) + d(C, D) < max(d(4,0) + d(B, D), d(4,D) + d(B,C)) + ki
< min(d(4,C) + d(B, D),d(4, D) + d(B,C)) + 2k..

Definition 2 : (S,d) is kp-H2 if the following holds:
Suppose X1, X2, X3 € S. Suppose ¢; is any geodesic joining X; to X;41 (taking subscripts
mod 3). Then,

Nkz(al) N Nkz(az) N Nkz(as) % Q).

Definition 3 : (S,d) is (ks, hs)-H3 if the following holds:
Suppose that & is a path-metric on the circle §%, and that v : (St,0) — (8,d) is a
distance non-increasing map. Then, there exist,

(i) a cellulation P of the unit disc D,
(ii} a path-metric p on the 1-skeleton I of P,
(iii) a distance non-increasing map f : (Z,p) — (5,d), and
(iv) a distance non-increasing map Jf : (8D, psp) — (S*,0), where ppp is the path-
metric on 8D induced from p,
such that,
(i) 10D =70 8f,
(i) 8f has topological degree 1, and
(iii) we have
> (p(8e)) < ka((S*) + hs)

cECz(P)

where Cy(P) is the set of 2-cells of P, p(dc) is the p-length of the boundary dc¢ of ¢, and
o(S*) is the total o-length of S*.
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Definition 4 : (8,d) is (k4, he)-H4 if:
Given any geodesic segment oo C 8, and X,Y € 9N, («), we have

iy ,a(X,Y) 2 3d(X,Y) — hy,
where dy, o is the induced path-metric on § \ Ny, ().

Definition 5 : (8,d) is (ks, hs)-H5 if the following holds:

Given any A,X,Y € &, with d(4,X) = d(4,Y) and d(X,Y) > ks, then d, 4(X,Y) >
d(X,Y) + hs, where r = d(4,X) = d(A,Y), and d, 4 is the induced path-metric on
S\ N.(4).

We shall show that these definitions are equivalent in the following effective sense.
Given 7,7 € {1,2,3,4,5}, and k € [0,00) LI [0,00)?, there is some k' € {0,00) 1[0, c0)? such
that if (S, d) is k-H(3), then it is k'-H(j).

The cycle of proofs will be:

~ 1
: »
iy
R Vy
43
We include H1 = H2, H1 = H3, and H1 = H4, since they are much more direct than
following the cycle.

Definition : We say that (S, d) is almost-hyperbolic if it is k-H(7) for some k and 4.

We shall call the constants ky, ks, k3, hs, ks, hs, ks, hs, appearing in the definitions, pa-
rameters of hyperbolicity. Note that all can be imagined as having the physical dimensions
of length. Also, all except h5 have the property that increasing them would weaken the def-
inition. In fact, the quantities —1/k2, ~1/k2, —1/(max(ks, h3))? and —1/(max(ks, hs))?,
can be thought of as a measure of the upper bound of the curvature, seen on a large scale.
This can be made more precise for negatively curved Riemannian manifolds. (A space of
“infinite negative curvature” is a metric tree, see Chapter 3.)

There is also a sense in which the parameters measure the “coarseness” of a space,
where coarseness may be due to local concentrations of positive curvature, or to topological
holes, etc. This is only an intuitive picture, and we make no attempt to formally isolate
these notions. (It is possible to give a more clumsy version of H5 which fits into this
scheme, see Chapter 2.)

1.3. Pseundoisometries.

From the definition H3, it is immediate that the notion of almost-hyperbolicity is
invariant under bilipschitz equivalence. However, the notion of bilipschitz equivalence is is
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too strong for these kinds of spaces. It demands, for example that the spaces under consid-
eration be homeomorphic, which is an unnatural constraint. We would like, for example,
that an almost hyperbolic space admitting a properly-discontinuous, cocompact isometry
group, should be equivalent to the Cayley graph of that group. A more appropriate notion,
therefore, is that of a “pseudoisometry” (elsewhere known as a “coarse quasiisometry”).

Definition : Let (S,d) and (S',d’) be path-metric spaces, and Ay > 1, A, > 0. A
(A1, Az )-pseudoisometry between S and &' is a relation R C § x §' such that

Y(z € S)3I=' € S') zRz'
Y(z' € $')3(z € §) zRa'

and if zRz' and yRy', then

1 ] ] 4
X;(d(w$y) - AZ) <d (m » Y )
< Md(z,y) + As.

We say that a relation is a pseudoisometry if it is a (A1, A2)-psendoisometry for some
A; and X,;. Pseudoisometry is thus an equivalence relation on path-metric spaces.

We shall show (Proposition 4.10) that almost-hyperbolicity is invariant under pseu-
doisometry.

Note that if we take two finite generating sets for the same group, then the corre-
sponding Cayley graphs are pseudoisometric. It therefore makes sense to define a finitely-
generated group as being almost-hyperbolic if its Cayley graph is almost hyperbolic, irre-
spective of the choice of generators. We see in fact that a group is almost hyperbolic if
and only if it acts as a properly discontinuous cocompact isometry group on some almost
hyperbolic space.

Another point to note is that any path-metric (S, d) space is (1+ ¢, 2)-pseudoisometric
to a 1-complex in which each edge has length 1. The construction is as follows. For § > 0
sufficiently small, we take a maximal packing P of § by disjoint §-balls. We form a metric
1-complex, (G, p) by taking the vertices to correspond to the balls of P, and joining two
vertices by an edge of length 1, if the centres of the corresponding balls are distant at most
1in 8. We define R C § x @ by (z,y) € R if and only if, for some vertex v of G, we have
d(z,p(v)) < 26 and p(y,v) < %, where p(v) € S is the centre of the ball corresponding to .
We may check that this is a (1 + ¢, 2)-pseudoisometry for e = O(6). Since this construction
applies to any path-metric space, we see that we see that our entire discussion of almost-
hyperbolicity can, in principle, be given a purely combinatorial formulation.

1.4. Convention on inequalities.

We end this chapter by introducing a convention that will streamline our manipulation
of inequalities, and, we hope, make our arguments conceptually simpler.
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Suppose K > 0, and =,y € R. we shall write z ~ y to mean that |z — y| < K, and
z <g y to mean that z < y+ K. Thus,

T YU E= XDy B

and
=Kk YKk 2= 3 2 2.

Whenever we use this notation, X will be a funcion only of the parameters of hyper-
bolicity.

Usually, we shall drop the subscripts K, and behave as though the relations ~ and
= were transitive. Thus, one should think of the constants involved as increasing with
each application of the transitive law in an argument. We may always explicitly relate
the constants produced at the end to the constants introduced at the beginning. Usually,
however, keeping track in this way would only confuse the argument.

Given points X, Y in a path-metric space (S, d), we shall write X ~ Y to mean that
d(X,Y) ~ 0. Again, we shall act as though ~ were an equivalence relation.

* In some places {mainly Chapter 3) we shall abbreviate d(X,Y) to XY




CHAPTER 2 : Five definitions of almost-hyperbolicity.

We discuss in more detail the definitions of Section 1.2.

2.1. Definition 1.

With the conventions introduced in Section 1.4, we may rewrite Definition 1 in the
following way. Given any four points X,Y, 2, W € S, we may partition them into two sets
of two elements, without loss of generality {{X,Y},{Z,W}}, so that

UX,Y) +d(Z,W) < d(X,Z) +d(Y,W) = d(Y,Z) + d(X, W).

We shall write XY : ZW for this pair of inequalities. This definition is just a rephrasing
of the central one given in [G].

Lemma 2.1.1, below, tells us that this hypothesis is equivalent to saying that the dis-
tances between X, Y, Z, W may be read off approximately (i.e. up to an additive constant)
along a tree with a length assigned to each edge (Figure 2a).

X w

N
SN

Z

Y

Figure 2a.

Note that there are three combinatorial possibilities for the tree, corresponding to the
three possible partitions of {X,Y,Z,W}.

From this point of view, the axiom is analogous to the triangle inequalities of a metric
space. Consider three points X,Y, Z in a metric space (S,d). The triangle inequalities tell
us that we can find three non-negative numbers z,y, z such that

dX,Y)=z+y
dY,Z)=y+=
dZ,X)=z+z,
namely z = %(d(Z LX) +d(X,Y)—-d(Y,Z )) etc. In other words, the distances between X,

Y and Z may be read off (precisely) from a tree with edges of length 2, y and z. We shall
write (XY Z) «— zyz to mean this (Figure 2b).
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Figure 2b.

Lemma 2.1.1 : Let X,Y,Z,W be four points in a metric space (S,d). Then, we have
XY : ZW, that is

dX,Y)+d(Z,W)=d(X,2) +d(Y, W) ~d(Y,Z) + dX,W),
if and only if there exist non-negative numbers ¢,y, z,w, u such that
dX,)Y)~e+y
dZ,W)~zt+w
AX,W)y~z+u+w
dY,Z)~y+utz
dX,Z)~et+utz
dY, W)~ y+u+tw

(Figure 2¢)

Figure 2c.

Proof : (<) is trivial. We prove (=).
Suppose we have XY : ZW, We find trees (XY Z) «— zya and (YZW) «— bzw as
described above. (Figure 2d.)
Thus,
dY,Z)=y+a=0b+z
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Figure 2d.

Now,

dX,Z)+dY,W) = dX,Y) +d(Z,W)
(e+a)+(w+b) = (z+y)+(z+w) .
atb=ytz

But,
2a+ty)=(a+y)+(d+2)
= 2(y + 2).
Therefore,

a >z,

Let u = max{e — 2,0). Then u~ a — 2z ="b-y. Now,

d(X, W) ~ d(X,Z)+ d(Y, W) —d(Y,Z)
— (2 +a)+(w+b) ~ (s +)
=z+(a—2z)+w
=z+u+w

We shall write
XY : ZW «— (zy)u(zw)

to express the situation described in Lemma 2.1.1. In fact, Lemma 3.1.7 tells us that, if
(8,d) is almost-hyperbolic, then such a tree may be realised as a union of geodesic arcs
in §. (Though we may have to allow for a larger error of approximation than is obtained
above.) If these geodesics are [X, A), [Y, 4], {4, B, [B,Z], [B , W] of lengths respectively

x,,u, z,w, then we shall write
(XY)AB(ZW) — (zy)u(zw).

In fact, this result may be extended to give spanning trees for any finite sets of points
(see Section 3.3). Arguing further along these lines, one may show that any 0-H1 space
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is a metric tree, i.e. a path metric space which contains no topologically embedded circle
(Section 3.4).

Finally, note that if we already know that the space (S,d) is H1, then the statement
XY : ZW becomes equivalent to d(X,Z) + d(Y,W) >~ d(Y, Z) + d(X,W).

2.2. Definition 2.

This is probably the conceptually simplest definition of almost-hyperbolicity. Given
any triangle in S, there is some point which lies within a bounded distance from all three
edges. Such a point will be called a centre for the triangle. Lemma 3.1.5 shows that in
an almost-hyperbolic space, any two centres for the same triangle are a bounded distance
apart.

It should be stressed that in this definition, a “triangle” is taken to mean a set of three
points, together with geodesic edges joining them. However, once it is known that a given
space is almost-hyperbolic, it makes sense to speak of a centre of three points, without
making an explicit choice of edges.

2.3. Definition 3.

This is the “isoperimetric inequality”. Intuitively, it says that any closed curve (or
loop) in our space “bounds a disc of area” at most a certain linear function of the curve’s
length. The main technical problem is in formulating what we mean by “bounding a disc”
and “area” in an arbitrary path-metric space. The definition given in Section 1.2 gives
one possibility, though the quantity representing the area in this case is perhaps more
naturally termed “energy”. We shall describe a few variations on these basic definitions
below. Some will be more appropriate to certain contexts, for example when considering
the Cayley graphs of almost-hyperbolic groups.

However we choose to define these terms, the essential property which we require of
thern may be summarised as follows.

Let (S, d) be a path-metric space. We define a loop in S as a distance non-increasing
map v : (S§,0) — (8, d), where o is a path-metric on the circle § !, Suppose we represent
$1 as the union of four closed intervals, L1, L, Ls, L4, cyclically ordered, and intersecting
only in their boundaries. Let o; = v|L;. We write v = a3 U ap U o3 U oy for this, and we
call a; U s Uz Uy a rectangle in S. We shall want the following.

Rectangle Principle. (2.3.1) :

There are universal constants K, and K, such that the following holds.

Suppose that (S,d) is a path-metric space, and ¥ = ay U ag U az U a4 is a rectangle
in 8. Let dy = d{a1,a3) and d; = d(az,@4). If v “bounds a disc of area” A in S, then

A > Kidyds — Ky(dy + dp +1).




The constants Ky and K will depend only on the definition of area we choose. Chapter
5 is devoted to a discussion of these matters.

We now give the definitions we shall use in this paper.

Let G be any finite graph. To save on words, we shall identify G (thought of combi-
natorially) with its realisation as a topological 1-complex. We write Co(@) for the set of
vertices of @, and C1(G) for the set of edges of G. Any path metric on G is determined, up
to isotopy (rel Co(@)), by a map C;(G) —> (0, 00). Any path-metric p, in turn determines
a natural parameterisation on each edge, and thus a measure on G. Given any closed sub-
set Gy C G, we shall write p{Gy) for the measure of G, which we shall refer to as the
p-length, or just length of Go. (Note that the length p(e) of an edge e € C1(G) may be
greater than the distance between its endpoints.) We shall write pg, for the path-metric
induced on Gy from p. Thus pg,(z,y) > p(z,y) for all z,y € Gy.

Let D be the closed (unit) disc in R?.

Definition : A cellulation, P, of the disc D, is a presentation of D as a CW-complex,
such that each 0-cell meets at least three 1-cells, and the boundary, d¢, of any 2-cell, c, 1s
an embedded circle.

Note that the conditions imply that the endpoints of each 1-cell are distinct.

We write Z(P) for the 1-skeleton of P, and C;(P) for the set of i-cells of P, i = 0,1, 2.
(Thus Co(P) = Co(E(P)) and C1(P) = Cy(Z(P)).) We shall use A(P) = |C3(P)] to
denote the number of 2-cells of P.

We are also interested in the following special case of a cellulation.

Definition : A triangulation, P, of the disc D, is a presentation of the disc as a simplicial
complex.

Thus any two triangles of P meet along an edge, or at a vertex, or not at all.
In this case, we shall write Ar(P) = |C1(P)| for the number of 1-cells of P. L.emma 5.6
tells us that we can always subdivide a cellulation P to give a triangulation P' satisfying

A(P') < 54A(P).

Definition : A metric cellulation (triangulation), (P, p) is a cellulation (triangulation),
P, of the disc D, together with a path-metric p on the 1-skeleton Z(P) of P.

Given any metric cellulation (P, p), we define the mesh of (P, p) as

m(Pyp) = g,fgg,)(p(ac))-

We define the energy as

I(P,p)= ) (p(8c)).

CGGQ(P)
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We see that -
I(P, p) < A(P)m(P, p)*.

In the special case where P is a triangulation, we may define

mr(P,p) = Gﬂgf-gcp)(p(e))
Ir(Pp)= 3, (b(e).

eEO’1(P)

Again,
Ir(P; p) < Ap(P)mr(P, p)*.

Comparing these formulations for the same metric triangulation, we get

mr < m < Imr
Ar <3A < 3Ag
Ip < I<6lr.

The last of these follow from the inequalities 22 +3* + 22 < (z +y +2)* < 3(2® + ¢ +22),
for z,y,z > 0.
Now, let (S,d) be any path-metric space.

Definition : A cellular (simplicial) net, (P, p, f), is a metric cellulation (triangulation),
(P, p), of the disc D, together with a distance non-increasing map f : (X(P),p) — (8,d).

Recall that a loop, (7, ¢), is a distance non-increasing map -y : (§!,0) — (S,d). We
refer to o(5) as the length of .

Definition : A net (P,p, f) is said to bound a loop (v,0), if f|8D factors through
a distance non-increasing map 8f : (8D, psp) — (S, 0) of topological degree 1, i.e.
floD = ~vo 8f.

One may mow give four versions of H3 as follows.

We may say that any loop (7,o), bounds a cellular (simplicial) net, (P, p, f), whose
energy I(P, p) (Ir(P, p)) is at most a certain linear function of ¢($*). This gives definitions
H3ce (H3te). :

. Alternatively, we may say that any loop (7, o) bounds a cellular (simplicial) net whose
mesh m(P, p) (mr(P, p)) is bounded by some fixed parameter, and for which the area A(P)
(A7(P)) is at most a certain linear function of c(§1). This gives definitions H3ca (H3ta).

Of these, the apparently weakest is H3ce, which we took as our main definition, and
the apparently strongest is H3ta. That all these definitions amount to the same thing,
should be apparent from the logical structure of Chapter 6. We prove, in fact, that H1 =
H3ta and that H3ce = H4.

The formulations H3ca and H3ta seem best suited for combinatorial situations, for
example where S is the Cayley graph of some finitely presented group. In this case, a loop
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is a word in the generators and their inverses, representing the trivial element. The area
of a net bounding this loop is a measure of the number of applications of the relations we
need to reduce this word to the trivial word.

The definition H3ta also makes the invariance of almost-hyperbolicity under pseudoi-
sometries most apparent. Unfortunately, the details of the proof are a little messy, and
instead, we give a different argument in Chapter 4 (Proposition 4.10).

Note that any metric on the 0-skeleton Cy(P) of a cellulation P, determines (up to
isotopy) a path-metric on the 1-skeleton $(P). A metric cellulation (P, p) arises in this
way precisely when the length of each edge equals the distance between its endpoints. If
moreover, P is a triangulation, and the triangle inequalities for the three vertices of any
triangle in C(P) are strict, then (P, p) determines a singular-euclidean structure on the
disc D, by gluing together euclidean triangles in the obvious way. This allows us to relate
the energy Ir(P, p) of such a triangulation to energy as defined in differential geometry as
follows.

Recall that the energy of a map ¢ between two Riemannian manifolds is defined as

5 [ e (DY (DG

where dy is the volume element of domain, and the derivative D¢ is expressed in terms
of orthonormal coordinates. In dimension 2, this quantity depends only on the conformal
structure of the domain. Now, suppose we have a euclidean triangle A, with sides of
length a,b,c. We may imagine A as the image of an equilateral triangle under an affine
map. Simple trigonometry shows that the energy of this map equals ;%;(az + 5% + &2).
We may think of a triangulation of the disc D as determining a conformal structure on
D, by taking each triangle to be euclidean-equilateral of the same size. Suppose now, we
have a path-metric p on X(P) which happens to satisfy strict triangle inequalities for each
triangle in C,(P). This determines a singular euclidean structure on the disc, as described
above. The energy of the identity map is then equal to ;173-(1'1!(}’, p) — B), where B is the

boundary correction 1 .{(p(e))? | ¢ € C1(P),e C 8D}
Finally, we remark that Lemmas 6.1.2, and 6.1.4 provide another version of H3.

2.4. Definition 4.

This criterion is a simple consequence of the isoperimetric inequality and rectangle
principle (see Proposition 5.12}, and is a weak form of the pseudogeodesic property (Propo-
sition 4.9).

2.5. Definition 5.
This may be thought of as expressing, in a weak sense, the fact that spheres, on a

large scale, have extrinsic curvatures bounded away from 0. Compare with the statement
that in a negatively curved Riemannian manifold, all of whose sectional curvatures are
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bounded away from 0, we have that all the principle curvatures of spheres are bounded
away from 0.

In Chapter 6, we shall see that we may weaken the definition of H5 given in Chapter 1,
by choosing only those X, Y which satisfy ks < d(X,Y) < 2ks+2hs. From Proposition 4.7,
we may also give the stronger formulation, that for some ki, hf, we have that d(X,Y) > ki
implies that hyd, 4(X,Y) > d(X,Y)?. Now, the parameters kf, h} have an interpretation
in terms of the curvature/coarseness of S, as described in Section 1.2.




CHAPTER 3 : Cenires and spanning trees.

In this chapter, we get the subject of almost-hyperbolicity off the ground, by showing
the equivalence of definitions H1 and H2. Recall the notation =, =%, ~ introduced in Section
1.4. Also, in this chapter, we will find it useful to abbreviate d(X, Y) to XY,

3.1. H1 = H2.

Let (S, d) be a ky-H1 geodesic space.

Lemma 3.3.1 : Suppose that X,Y,Z € S, and that o is a geodesic joining X to Y.
Then, there is some A € o such that

XZ~XA+ AZ
YZ~YA+ AZ

(Figure 3a.)

x+a ~yta

X A y

Figure 3a.

Proof: Let XYZ «— zyzsothat XY =z+y, YZ =y+zand ZX =z2+z. Let A€o
be so that X4 =z and AY = y. Let AZ = a. (Figure 3b.)

Now
XZ<XA+AZ
z+z<z+a.
So,
z < a.
But,

XZ+AY =z+y+2
YZ+AY =z+y+=
XY+AZ =z +y+a.
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X+Z V+Z

A

x+y
Figure 3b.

Applying the hypothesis k1-H1 to {X,Y, Z, A}, we see that we must have z ~ a.
¢

Lemma 3.1.2 : There is some constant K (= K(k;)) so that: if a is any geodesic joining
X toY, X,Y € 8, and # is any path from X to Y of length ~ d(X,Y), then 8 C Nk (a).

Proof : Let Z € B be any point, and let A € a be as in Lemma 3.1.1. Then,

XA+ AY = XY ~ length 8

>XZ+2ZY
~(XA+AZ)+ (YA+ AZ)
= XA+ AY +24AZ7.
Thus
AZ ~0,
i.e.
d(Z,[X,Y]) ~0.
¢

In particular, this shows that any two geodesics joining the same pair of points remain a
bounded distance apart.

Lemma 3.1.3 : Suppose X,Y,Z are points of S, and [X,Y], |Y, Z], [Z,X] are any
geodesics joining them. Then, there exists A € & with

d(A,[X,)Y])~0

d(A, 1Y, Z]) = 0

d(A,[Z,X]) ~0.
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Proof : Let A € [X,Y] be as in Lemma 3.1.1 (with ¢ = [X,Y]). Then XA+ AZ ~
XY. Applying Lemma 3.1.2, (with « = [X,Z] and 8 = [X, 4] U [4,Y]), we see that
d(4,[Z, X)) ~ 0. Similarly, d(A, [, Z]) =~ 0.

¢

Corollary 3.1.4, H1 = H2 : Vk; 3k, such that if (S,d) is k1-H1, then it is ky-H2.

In fact, we see that k, is at most a fixed (universal) multiple of k;. This is because
it is derived from k; by a certain number of applications of the transitive law to our
approximate inequalities. In particular, we see that a 0-H1 space is also 0-H2.

Definition : Suppose that (5,d) is k1-H1, and that X,Y,Z € S. We call A € S a centre
of XYZ if d(4,[X,Y]) =0, d(A,]Y, Z]) ~ 0 and d(4,[Z, X]) ~ 0.

In view of Lemma 3.1.2, this definition makes sense, irrespective of the choice of
geodesics [X,Y], [Y, Z] and [Z, X].
Note that we may choose a centre to lie on any one of these three geodesic edges.

Lemma 3.1.5 : Suppose that C and D are both centres for XY Z in §. Then C ~ D.

Proof : Choose C',D' in [X,Y] with C ~ C' and D ~ D'. Without loss of generality, C'
is nearer X. Let z,u,v, e,y be as in Figure 3c.

Z

Figure 3c.

Now, d(C',|X, Z]) ~ 0, and d(D',[X,Z]) ~ 0. So,
XZ~a4+u

and

XZ ~zg4+a40.
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Thus,
u~at v

Similarly.

v~ a+t U
Thus, a ~0. So C' ~ D' and C ~ D,
¢

Lemma 3.1.6 : Given X,Y,Z € S, let A € proj[X,YIZ (i.e. A is a nearest point on
[X,Y] to Z). Then, A is a centre of XY Z.

Proof : Let C be a centre of XY Z on [X,Y]. Without loss of generality, XC < X A. Let
z,b,y, c,a be as in Figure 3d.

Figure 3d.
We have a < ¢, thus
c+bt+y~YZ
<a+ty
<c+y.
Thus,
b~0.

In other words, A ~ C, and so A is a centre.

¢
We stated in Section 2.1, that, in a H1 space, the statement XZ + YW ~ XW +YZ
implies XY 4+ ZW < XZ + YW and thus is equivalent to XY : ZW.
Lemma 3.1.7 : Let X,Y,Z,W € S. Suppose we have
XZ+YW~XW4YZ.
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Then, there exist C,D € S, with

d(C, [.Xl,Xz]) ~ 0 provided {Xl,Xg} # {Z, W}
and
d(D, Y, Ya]) = 0 provided {¥3,¥3} # {X,7},
where X;,Y; € {X, Y, Z,W}, X5 # X; and Y1 # Y.

Moreover, we have

Z]Zz pad Z10' + CD + DZg,
whenever %, € {X,Y} and Z, € {Z,W}.

Proof : Let A, B be centres of XY Z, XYW respectively on [X,Y]. Without loss of
generality, A is nearer X. Let z,a,u,y,b be as in Figure 3e.

Z
xia ~yHu+a
a
X a - Y
y
b
~X+U+b ~y+b
W
Figure 3e.
We have
XZ4+YWXW+YZ
(e4+a)+(y+d)~(z+u+tbd)+(y+uta)
Thus,

o~ 0.,

Thus A ~ B, and so A is a centre for both XY Z and XYW. We take C = A.

Similarly, we find D on [Z, W].

This proves the first part of the lemma.

Now, suppose that Z; € {X,Y} and Z, € {Z,W}. We want to show that 2,2, =~
Z,C + CD + DZ,. Without loss of generality, we can assume that Z; = X and Z, = Z.

3—5




Figure 3f.

Now, there exist C', D' € [X,Z] with C ~ C' and D ~ D'. f XC' < X D', we have
that
XZ=XC"4+CD'+D'Z~XC+CD+ DZ.

Thus, we may suppose that X D' < XC'. Then,
XZ=XC'-C'D'+D'Z~XC—-CD+D2Z.
But, YW <YC+ CD + DW, and so
XZ+YW~XCH+YC+DZ+DW ~ XY +ZW.

We noted, before the statement of the lemma that we must have XZ +YW = XY +ZW,
and so XY+ ZW ~XZ+YW.

Applying the first half of the lemma to this case, we find a point E € S so that
d(E, W1, Wa]) ~ 0, provided that Wy, W, € {X,Y, Z, W} are distinct, and {Wy, WL} #
{X,W?}. Now, C and E are both centres of XY Z, and D and E are both centres of Y ZW.
Applying Lemma 3.1.5, we find that C ~ E ~ D. Thus, CD ~ 0, and so

XZ~XC—-CD+DZ~XC+CD4+D2Z.

¢

Given the points C, D of Lemma 3.1.7, we may construct the “spanning tree”
[X,Cluly,Clu(C,Dju (D, Z]U[D,W],

which we shall write as (XY)CD(ZW). In other words, the notation (XY)CD(ZW) is
intended to define the points C and D. Now, all the distances between the points of
{X,Y,Z,W} may be read off, up to an additive constant, along the tree (c.f. Lemma
2.1.1). In fact, the corresponding geodesics run within a bounded distance of the tree (see
Lemma 3.3.1 or Lemma 4.1). ¥ XC =2,YC =y, CD = u, DZ = z and DW = w, we
shall write

(XY)CD(ZW) «— (zy)ufzw).
(Figure 3f.)




The above discussion may be generalised to define spanning trees for arbitrary finite
sets of points (see Section 3.3). First, however, we give a proof of H2 = HI1.

3.2. H2 = H1.

Let (S, d) be kg—HZ.

Suppose that X,Y,Z € &, and that [X,Y] is some geodesic from X to Y. If we
choose geodesics a and # joining Z to X and Y respectively, then we may find some point
C € [X,Y], with d(C,a) < 2k, and d(C, ) < 2k,. For all we know at the moment, the
position of C on [X, Y] might depend substantially on the choice of @ and 5. However, we
must have

XZ>XC+CZ — 4k,

and
YZ>YC 4 CZ — 4k,.

Given X,Y, Z and [X,Y] as above, we shall call any point Ce [X,Y] a near-projection
of Z to [X,Y] if we have both XZ ~ XC + CZ and YZ =~ Y C + CZ. We shall deduce
property H1 from the existence of such near-projections.

Lemma 3.2.1 : Let X,Y,Z € S and [X,Y] be any geodesic from X toY. Suppose that
A e [X,Y]. Then either
XZ~XA+AZ

or

YZ~YA+ AZ.

Proof : Let C be a near-projection of Z to [X,Y]. Suppose AX < AC. Let z,u,a,v,b
be as in Figure 3g.

Figure 3g.
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Thus v+ b > a. Now, _
XZ~XC+CZ

z~ut+v+b
> uta.

Butz<uta Thusz~u+tea,ie. XZ XA+ AZ.
Similarly, if AX > AC,wehaveYZ YA+ AZ.

<

Lemma 3.2.2 : Given any X,Y,Z,W € S, we have

XY+ ZW 2 max(XW +YZ, XZ +YW).

Proof : Choose any geodesic [Z, W]. Let C be any near-projection of X to [Z, W] (Figure
3h).

~y+Z

Figure 3h.

From Lemma 3.2.1, we have, without loss of generality,

ZY ~CZ 4+ CY.
But,
XW~CX+CW.
Thus,
XW4+YZ~(CX+CW)+(CZ+CY)
= (CX+CY)+(CZ +CW)
> XY + ZW.
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¢
Proposition 3.2.83 : Vk, Jk; such that if (S,d) is ks-H2, it is ky-HI.

Proof : Suppose that (S,d) is H2. Given any X,Y,Z,W € &, we have, without loss of
generality, '

XY + ZW > max(XW +YZ,XZ + YW).

By Lemma 3.2.2,
XY +ZW < max(XW +YZ,XZ +YW).

Thus, without loss of generality,
XZ+YW<L<XW+YZ~XY +2ZW,

ie. XZ:YW. So, (S,d) is H1.
¢

Again k; is at most a certain fixed multiple of k3. In particular, a 0-H2 space is also
0-H1.

3.3. Spanning trees.

Sections 3.3 and 3.4 are intended to make apparent the tree-like properties of almost-
hyperbolic spaces.

In this section, we show that any finite set of points in an almost-hyperbolic space
may be spanned by which allows us to measure distances up to an additive constant. We
shall give a refinement of this result in Chapter 7.

We shall need the following stronger version of Lemma 3.1.2.

Suppose that (S,d) is k;-HI.

Lemma 3.3.1 : YA >0 3H = H{(h,k:) such that the following holds.
If o is any geodesic joining X toY in 8, and B is any path from X toY of length at
most XY + h, then we have both 8 C Ng(a) and a C Nu{(f).

Proof : The statement 8 C Ny(a) is the same as Lemma 3.1.2, except that we are
allowing h to be independent of k. This makes no essential difference to the proof.

The statement o« C Ng(B) is new. There is a simple argument, see the proof of
Proposition 4.9.

&

Proposition 8.3.2 : Vn & N 3K, = K(n,k;) such that the following holds.
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Let V C S be any set of n+ 1 points of S. Then, there is an embedded tree Ty C &
with geodesic edges, so that the distance XY between any two points X,Y € & may be
measured up to K, along the arc (X,Y) in Ty joining X to Y, ie.

XY > lengthB(X,Y) — K...

Proof : The proof is by induction on n. Suppose that V has n + 1 elements, and that
we have constructed Ty. Given C,D € Ty, we write 8{(C, D) for the arc in Ty joining C
to D. For any C,D € Ty, we may find Z,W € V such that 3(C,D) C B(Z,W). Since,
by hypothesis, length3(Z, W) < ZW + K,, we may deduce that also length8(C,D) <
CD+ K,,.

Let X € S be any (n+ Z)th point. We want to span VU {X}. Let A € projp, X (i.e.
A is a nearest point in Ty to X). Let Tyyxy = Tv U [4, X].

Suppose Y € V, we want to measure XY. Let B be a centre for AXY on [4,Y]. Now,
lengthB8(A,Y) < AY + K,,. So, by Lemma 3.3.1, we have d(B, (A,Y)) < H = H(Kn, k).
Now,

XB+BA~XA=d(X,Ty) <d(X,B8(4,Y))< XB+ H.
Thus, BA < H. (The meanings of ~ and < depend on k;, but not on n.) But,

XY ~XB+ BY
= XA+ AY —2H
> (lengthB(A4,Y) — K,,) + AX —2H
= length([X, 4] U B(4,Y)) — (K, + 2H).

We may therefore take K, 1 ~ Ky + 2H(Kp, k1).
o ‘

3.4. Metric trees.

The main purpose of this section is to show that 0-H1 path metric spaces are precisely
what we shall call “metric trees” (elsewhere known as “R-trees”).

Definition : A metric tree is a path-metric space which contains no embedded rectifiable
circle.

(In fact, we shall see that a metric tree can contain no topologically embedded circle.)

Note that we are not making any assumptions of completeness or local-compactness.
However, it is true that in any metric iree, (S,d), any two points may be joined by a
(unique) geodesic. One may see this as follows.
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First note that there is at most one rectifiable arc joining any two distinct points,
X,Y € S. Suppose that o and 8 were two such arcs, with a € 8. Let 8' be the closure of
a component of S\a. Then 8’ meets o in two distinct points Z and W. If o' is the sub-arc
of o lying between Z and W, then o' U S’ is an embedded circle. This contradiction shows
that o C 3. Similarly 8 C a.

Now if 4 is any rectifiable path joining X to Y, then the image of -, being path-
connected, contains an arc 4o with endpoints X and Y. (In this context, 4, may be
obtained by applying Ascoli’s theorem to a sequence of paths from X to Y lying in the
image of v, and whose lengths tend to the infinum for such paths.) Thus 7, is the unique
rectifiable arc from X to Y.

Suppose that 7' is a path from X to ¥ of length at most d(X,Y) + ¢. Again, the
image of 4' contains a rectifiable arc from X to Y which must therefore be 4. Thus
length vy < lengthvy' < d(X,Y) + e. Since € is arbitrary, we have lengthv, = d(X,Y), i.e.
~o 18 a geodesic.

We have shown that any to points in a metric tree are joined by a unique rectifiable
arc which is always a geodesic. (In fact, given that a metric tree contains no topological
circle, we see that every closed arc in a metric tree is a geodesic.)

By a similar argument, we see that if we take any three points in a metric tree (S, d),
then the three geodesics joining them meet in a single point. Thus, (S, d) is 0-H2.

Note that, in our discussion of geodesic spaces so far in this paper, we have made no
use of the assumptions of local compactness or completeness, other than that there should
exist a geodesic between any two points. (We have only used projection to compact sets.)

Proposition 3.4.1 : Suppose that (S,d) is a path-metric space in which any pair of
points are joined by at least one geodesic. Then (S,d) is 0-H1 if and only if it is 0-H2.

Proof : See the remarks after Propositions 3.1.4 and 3.2.3.

@

Suppose that (S, d) is such a space (as described by Proposition 3.4.1), and that V C &
is a finite set of points. Then, the construction of Proposition 3.3.2 gives an embedded tree
Ty C S along which distances are measured precisely, i.e. K(n,0) =0 for all n € N. This
is essentially because everywhere our approximate inequalities may be replaced by precise
inequalities. Moreover, since the construction was inductive, we can take Ty to contain
any previously chosen geodesic [X, Y], with X,Y € V. We leave the reader to check these
statements.

Proposition 3.4.2 : Let (S,d) be a path-metric space. The following are equivalent:
(1) (S, d) is a metric tree,
(2) (S, d) contains no topologically embedded circle,
(3) (S,d) is 0-H1.
Proof : (2) = (1) is trivial.

We argued above that any metric tree is 0-H2, and thus 0-H1 by Proposition 3.4.1.
This proves (1) = (3).
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For (3) = (2), suppose that (S, d) is a 0-H1 path-metric space. We will want to use the
tree construction mentioned above, after Proposition 3.4.1. However, we do not yet know
that every pair of points in S can be joined by a geodesic. We can get around this problem
by taking the metric completion, (S¢,d), of (S,d). It is easily verified that (Sc,d) is also
a 0-H1 path-metric space. (The extension of d to Sc is automatically a path-metric.) We
claim that any pair of points, A, B € S, may be joined by a geodesic in Sg. This may
be seen as follows.

We can assume that A # B. Let [ = d(4,B), and suppose that &, : [0,I] — S¢
are paths satisfying respectively d(az,ay) < [z — y| + 1 and d(B=,By) < |z — y| + 7 for
all z,y € [0,1], and with a(0) = B(0) = A and a(l) = B(l) = B. Given z € [0,1], let
E = az and F = Bz. Thus, d(4,E)<z+n,d(4,F)<z+79,dB,E)<l—-=z+nand
d(B,F) <1—z+ 5. Since S¢ is 0-H1, we must have

d(A, B) + d(E, F) < max(d(4, E) + d(B, F),d(4, F) + d(B, E))
<l+275

Thus, d(az, Bz) < 27.

Now, for each i € N, choose a path ¥ : [0,]] — Sg, with %(0) = A, () = B,
and d{vz,viy) < |e — y| +1/2¢ for all 2,y € [0,{]. Thusif 2 € [0,d], and j > i, then
d(vim,vjz) < 2/2%. Since (Sc,d) is complete, the paths v; converge uniformly to a path
v :[0,d] — S¢. Clearly v must be geodesic. This proves the claim.

Now, suppose (for contradiction) that & C § € S¢ is homeomorphic to a circle.

We need to find two points ¥, Z € T with [Y, Z] € . To do this, we take W1, W, €
S with d(Wy, W) maximal. If [W;,W:] C X, then pick any Wy € Z\{W,,W,]. If
[Wy, Wy] U [W3,W,] C 3, then these three geodesics must cover X, and have disjoint
interiors. Thus, [Wy, W3] 1 [Wy, Ws] 1t [W,, W3] = 0, contradicting the fact that (Sc, d) is
0-H1 and hence 0-H2.

Now, choose C' € [Y,Z]\X, and let € = d(C,X) > 0. Since ¥ is compact, we may
find points X3, X3,..., X, € I, cyclically ordered on X, so that d(X;, X;y1) < e. Wecan
assume that {Y,Z} C {X3,...,X,} = V. We may construct, in S¢, a spanning tree Ty
for V with [Y, Z] € Ty. Thus C € Ty. Now C must must separate Ty, so we may write
Tv\B =T, UTs, with T; openin Ty. Let V; =V NT,. Thus V =ViUV, and V; #£ 8. We
may find D; € V; and D; € V, adjacent on 2. Thus d(D1,Dz) < €. But the path 8 in Ty
from D; to D, passes through C. Thus d{D,, D,) = length8 > 2e.

We have contradicted the existence of .

¢
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CHAPTER 4. Convexity and pseudoisometries.

In this chapter, we define the notion of “almost convexity” for a subset of an almost-
hyperbolic space §. Examples, as we shall see, include “starlike” sets, and uniform neig-
bourhoods of other almost-convex sets. We define projections to almost-convex sets, and
show that, in some sense, projections decrease distance by an exponential factor (Proposi-
tion 4.5). From this, we may deduce the exponential divergence of geodesic rays (Proposi-
tion 4.7), as well as the pseudogeodesic property (Proposition 4.9). We deduce properties
H4 and H5, and conclude with a proof that almost-hyperbolicity is a pseudoisometric

invariant (Proposition 4.10).
Let (S, d) be k;-H1.

Lemina 4.1 :  There is some h = h(ky) such that for all p € N, the following holds.
Suppose v is a path in S, consisting of at most p geodesic segments, which joins X to
Y. Then, [X,Y]| C Nyu(v), where [X,Y] is any geodesic from X to Y.

Proof : Suppose p = 2, and v = [X,Z]U [Z,Y]. Let A be a centre of XY Z on [X,Y].
Choose B € [X,Z] and C € [Y, Z] with B ~ A and C ~ A, (Figure 4a.)

Z
B C
Y
X A
Figure 4a.

Lemma 3.1.2 now gives us a constant k such that [X, 4] C Ni([X, B]) and [4,Y] C
‘ Nh([Ya C]) Thus: [X,Y] - Nh([X: Z] U [‘Zs Y])‘
This also deals with the case p = 1: any two geodesics between the same points stay
a distance at most h apart.
We now use induction on p. Suppose v = [Xo, X1]U---U[X,-1, X,]. From the above,
[ X0, Xp) © N ([Xos Xp—1] U [Xp-1, X,])
- Nh (N(p—-l)h([X07 Xl] U...u [Xp—2,Xp—1]) U [Xp—l) Xp])

< Nph(’)’)°

Let A >0, and let @ C & be a closed set.
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Definition : The set @ C S is A-convez if for all X,Y € @, and all geodesics [X,Y], we
have [X,Y] C NA(Q).

We shall call a set almost-convez if it is A-convex for some A > 0.

Lemma 4.1 provides us with many examples of almost-convex sets. Any set in which
any two points can be joined by a piecewise geodesic path with a bounded number of
geodesic segments is almost-convex. This includes all starlike sets, and any uniform neigh-
bourhood of a geodesic segment. We also have:

Lemma 4.2 : There is some g = Ao(k1) such that if @ C S is A-convex, and r > 0,
then N.(Q) is (Ao + max(l — r,0))-convex.

Proof : Let A\p = 3h, where h comes from Lemma 4.1. Suppose X,Y € N.(Q). Then
there exist W,Z € Q with d(X,Z) < r and d(Y,W) < r. Now, [Z,W] C NA(Q) and
(X, Z]U[Y,W]C N,.(Q). So, by Lemma 4.1,

(X,7]C N3h([X,Z] Uz, wju [W,Y])
C N3h(Nmax(A,r)(Q))
= NAo+ma.x(A—'r,[l) (NT‘(Q))'

&

Recall the definitions of Q, 8Q, projoX and d(r,@) from Section 1.1. Given any
M C S, weshall write projo M = Uy ProjoX. AlsodiamM = sup{d(X, )| X,Y € M}
is the diameter of M.

Suppose that @ C S is A-convex. Then, for any X € &, the quantity diam(projgX)
may be bounded in terms of A and the hyperbolicity parameter, k;. In fact, we may make
the more general statement:

Lemma 4.3 : Suppose that Q C S is A-convex, and M C § satisfies diamM < 2d(@, M),
then diam(projoM) < J + 4}, where J depends only on k.

Proof : Let p = d(Q, M). Suppose X,Y € M, and Z € projoX and W € proj,Y so that
d(X,2) < 2p,d(X,Z) > pand d(Y,W) > p. We want to show that d(Z, W) < 4).

Case (1), XY : ZW.

Let (XY)AB(ZW) be a spanning tree, and let (XY )AB(ZW) e (zy)u(zw). (Fig-
ure 4b. See the discussion after Lemma 3.1.7.)

Now, d(B,[Z,W1}) ~ 0. Thus d(B, Q) < A. Now,

d(X,Z)=d(X,Q) 2 d(X,B)+d(B,Q)
ztutz3(z+u)t+ A

Thus,
z 3 A

4—2




A
u
B
/ X
7, W
Figure 4b.
Similarly,
w = A

Thus,

dZ,W)~z+w <2\

Case (2), XZ : YW.
Let (XZ)CD(YW) «— (zz)u(yw) be a spanning tree (Figure 4c).

Figure 4c.
Similarly as in Case (1), we have d(C,Q) < X and d(D, Q) =X A. Thus,

d(X,2) = d(X,Q) 2 d(X,0) + A

z+z=<z+ A
Thus,
2= A
Similarly,
w=<A




From the hypotheses, we have z + 2z = p, y + w > p and = + y + u < 2p. Thus,

20Fuz(z+z)+(y+w)+u

=(z+ty+u)+(z+w)
=< 2p+ 2.
Thus,
u = 2,
and so,

AX,Zy~wtz+u= A+ A4+ 22 =4

Case (3), XW : Y Z.
Let (XW)FE(Y Z) «— (zw)u(yz) be a spanning tree {Figure 4d).

Y
X /

k]

E —" F
u
Z w
Z W
Figure 4d.
Now,
dX,Z) = d(X,Q) <dX,E) +d(E,Q)
ztutz3z+4+ A
Thus,
wt+z = A
Similarly,
u+w=<A
Thus,

dZW)~z+wtu<(z4+u)+ (w4 u) < 2A
¢

Lemma 4.4 : YA drg = ro(X, k1), Ko = Ko(A, k1) such that the foﬂowmg holds.
Suppose Q C 8 is A-convex, and r > 1. Suppose X,Y € S\N (@), Z € projoX and
W € projoY. Let di = dy 0(Z,W) and dy = d, o(X,Y). Then d; > 3d; — Kp.
(Note that if d; = oo, then clearly d» = 00.)
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Proof : Let )\g be the constant from Lemma 4.2, Let h = J + 4o, where J comes from
Lemma 4.3. Let ry = max(h/2,2) and r; = 3h/2. Let rg = vy + 73. 5
Suppose that r > 7o, and X,Y € S\N,(Q). We join X to Y by a path a in S\N.(Q)
of length d,. Let X = Xy, X1,...,X,, Xp41 =Y be points on « which divide the path into
p segments of length 3k, and a remaining segment of length at most 3k. Thus, ph < d3/3.
Let N = N,,(Q). Since r; > A, by Lemma 4.2, we see that N is Ag-convex.
For each i = 1,...,p, we choose Z; € projyX;. Let Zy be the point of [X, Z] with
d(Zy,Z) = ry, and let Z,4; be the point of [Y, W] with d(Z,41, W) = r;. (Figure 4e.)

X;

N (Q

Figure 4e.

Thus, Z, € projyX and Z,4; € projyY. Now, d(X;, X;y1) < 3k and d(X;,N) >
3h/2. Thus, by Lemma 4.3, dQZi,Zi+1) < J4+4)y = h foreachi = 1,...,p. So, since
ry > h/2, we have [Z;, Z;11] N Q = @ for each i. We can therefore join Z to W by a path

[Z,20] U [Zo, 1]V -+ U [Zp, Zpa ] U [Zpta, W]

in S\ @. Thus,
di < (p-}— l)h + 2r

= ph + (2r, + h)
d
< ?2+(27‘1 + h).

Thus,
d2 Z 3d1 - (21‘1 + h).
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Proposition 4.5 : it VA > 03¢ = ((}, k1), L = L(}, k1) such that the following holds.
Let @ C S be A-convex, and X,Y € S\N.(Q). Let Z € projoX and W € proj,Y.

Set dy = do,o(Z, W) and dy = d, o(X,Y). If r > L and dy > L, then

dz Z ecrdl .

Proof : By Lemma 4.2, there is some )’ so that any uniform neighbourhood of @ is
M-convex. Let rg = ro(N, ky) and Ky = Ko(A', k1) be the constants given by Lemma 4.4.
Let L = max(2rg, Ko) and = 5-log, 2.

. Suppose that X, Y, Z, W,r cll,dz are as in the hypothesis. Let p be the integer part
of (r/ro). Let Z = Zy,%1,%a,...,Z, = X be points on [Z, X| satisfying d(Z;, Z;+1) = ro
fori=0,...,p—2. Let W = Wu, Wy, Wa,...,W, =Y be similar points on [W,Y]. Thus,
Z; € pro_}N(z)X and W; € projy; Y, where N( ) = Nipo(Q). We write p; = dir,,g(Zi, W3).
Thus, di = po and d2 = dr (X, Y) 2 dpr,@(X,Y) = pp, since r 2 prg.

By hypothesis, pg = d; > L > Kj, so by Lemma 4.4,

p1 2 3py — Ko > 2py.
By induction, '
pi > 2pi—1 > 2°po.

Thus,
dy > pp > 2P py = 2%d;.

But p > (r/rp) — 1, so
d 1
ds > (21/’"0)’"__,; = z—ezgrdl.

Now, r > L > 2rg, so {r > log, 2. Thus,

dy > e$7d;.

<&

Suppose that Q is A-convex, and X,Y € 8Q. It is a fairly easy consequence of
Proposition 4.5 (c.f. Proposition 4.5 below), that any shortest path from X toY in & \Q
lies within a bounded distance of @, depending on A.

Another point to note is that we can arrange for the rate of expansion { to be chosen
independently of A:

Proposition 4.6 : Yky 3¢y, Ly such that if Q,A,r, X, Y, Z,W,d,,d, are as in Proposition
4.5, withr > Lo + A and dy > Lo + 2, then

dy > e (dy — 2)).
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Proof : Apply Proposition 4.5 to N»(Q), which by Lemma 4.2 is Ag-convex for fixed
A(} = Ag(k’l).

¢

We make two applications of Proposition 4.5. The first is to the case where @ is a
uniform ball. In this case Proposition 4.5 can be interpreted as the statement that geodesic
rays diverge exponentially (Proposition 4.7). From this we deduce property H5 (Corollary
4.8).

The second application is to the case where Q) is a geodesic segment. From this, we
get the pseudogeodesic property (Proposition 4.9), and a direct proof of H4. We show that
almost-hyperbolicity is a pseudoisometric invariant (Proposition 4.10).

Proposition 4.7 : Vk; 38, M such that the following holds. Suppose 4,X,Y € § with
d(A,X)=d(A,Y)=r. Set d = d(X,Y) and &' = d. o(X,Y). Ifd > M, then d' > &%,

Proof : By Lemma 4.2 (or Lemma 4.1), every ball in § is Ag-convex for Ag = Ag(ky). Let
¢ and L be as in Proposition 4.5 for A = Ag. We can suppose that L > 1. Let M = 3L
and 8 = (/3.

Now, suppose that 4, X,V € § with d(4,X) = d(4,Y)=r,and d = d(X,Y) > M.
By continuity of the distance function, there exist Z € [4,X] and W € [4,Y], with
d(A,Z) = d(A,W) and d(Z,W) = L. Set d(X,Z) = d(Y,W) = 1. Now, 3L = M <
d<L+2l,s0l> L. Let @ = N,_i(A), so that Z € projoX and W € projpY. Also,
do,o(Z,W) > d(Z,W)= L > 1. Now, @ is Ap-convex, so applying Proposition 4.5, we get

d =dp a(X,Y) = d1o(X,Y) > e'dy o(2, W) > €.

Butd< L+4+2[< 5;——1—21. Thusggl, and so d' > $¢/3 > 41.
¢

Corollary 4.8 : Vky, hs dks such that if S is k1-H1, then it is {ks, h5)-H5.

Proof : Given # and hs, we have €% > d + ks for all sufficiently large d.

¢

We now go on to consider pseudogeodesics. We may think of a path v : [0,8] — &
as a distance non-increasing map, with respect to the standard metric, o(z,y) = |z — yl,
on [0,%]. We shall frequently use 4 to denote both the map, and its image in S.

Definition : We call v a (11,75 )-pseudogeodesic, if for all z,y € [0, 1], we have

o(z,y) < vid(yz,vy) +va.

Proposition 4.9 : Vky,v1,v; 31 such that the following holds.
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Suppose v : [0,1]] — S is a (1vq,v2)-pseudogeodesic. Let X = ¥(0), Y = (),
and suppose that [X,Y] is any geodesic joining X to Y. Then, v C Ni([X,Y]) and
[X,Y] < Ni()-

Proof : We will first prove - lies inside a uniform neighbourhood of [X,Y’]. For this, we
intend to apply Proposition 4.5 to the Ap-convex set @ = [X,Y].
Let ¢ and L be the constants given by Proposition 4.5, for A = Ag. Let

I, = max(L, %loge(l +11))
m = max(L,2v1l1 + 1)

b = %(Vl(m +20) + 1)
lo=0L +1.

We claim that v C NZG(LX, Y]). If vy C N, ([X,Y]), we are done. If not, let B be a
component of ¥ lying in S\ N, ([X,Y]). Thus 8 is a (4, v,)-pseudogeodesic joining two
points 4 and B in 8Ny, ([X,Y]). Let C and D be nearest points on [X,Y] to 4 and B
respectively. (Figure 4£.)

Figure 4f.

Set d1 = d(O,D) and dg = dll,[X’y](A,B). Thus dl < dg,[x,y](C,D). NOW,
ds < lengthf < uv1d(4,B) +in
< wy(dy +20) + oy
= 1ydi + (2L + ).
Applying Proposition 4.5, we find that either
dl S L:

or
eSh < dp

< wmdy + (2L +14),
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so that
dy < (eal — Vl)dl < 21 + 1.

Either way,
dl S .

Thus, :
length8 < vi(m + 2l1) + 1
= 2,

and so, 8 C Ny, (N, ([X,Y])) = Ni,([X,Y]) and the claim follows.

It remains to show that [X,Y] lies in a uniform neighbourhood of 7. Let I = 2[p + 1.
We claim that [X,Y] C Ni(7).

To see this, we choose points X = X3, Xs,...,X, =Y on v, so that d(X;, Xi41) <1
for all . Let ¥ € projix y)Xi, so that ¥ = X and ¥, =Y. Now, d(¥;,Yi11) < Lo +
d(X;, Xiv1) + 1o < 20y + 1. We conclude that each point of [X,Y] lies at most a distance
%(2l0 + 1) from some point ¥;. But ¥; € Ny (). Thus, [X,Y] C Nto+§-(Nlo(‘f)) = Ny(«).
¢

A simple corollary of Proposition 4.9 is that Hl = H4. We shall deduce H3 = H4 in
the next chapter.

Our main application of Proposition 4.9 is the following. Recall the definition of
pseudoisometry from Section 1.3.

Proposition 4.10 : Vk, 1, ps 3k’ such that the following holds.
Suppose that (S,d) and (S',d') are (u1,p2)-pseudoisometric geodesic spaces, and
suppose that (S,d) is k-H2, then &' is k'-H2.

Proof : Let R C S x S' be a (3, g2 )-pseudoisometry. Suppose X', Y, Z' € §'. Choose
X,Y,Z € § with XRX', YRY' and ZRZ'. Let A be a centre for XY Z in §. Choose
A' € 8" with ARA'. Let o' be any geodesic in &' joining X' to Y'. We aim to show that
d(A',a') is bounded in terms of k, gy and p,.

Let X' = X3, X1,...,X, =Y"' be points on o' so that d(X, X )=1fori<p-2,
and d'(X,_,,Y') <1. Fori=1,...,p—1, choose X; € § with X;RX!. Let Xy = X and
X, =Y. Thus, d(X;, Xit1) < pa + p2. Let o C S be the piecewise geodesic path

(X0, X1] U [X1, X2] U -+ U[Xp_1, Xp)

from X to Y (parametrised by arc-length).
Suppose that C,D € a. Then, without loss of generality, C € [X;, X;41] and D €
[X;_1,X;] with i < j. Write p for the distance from C to D measured along c. Then,

p < (7 =)+ pe2)

But
(7—4) <d(X,X5)+1

< (md(Xi, X5) + p2) + 1.
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Also,
d(Xi, X;) < d(C, D) + 2 + piz),

and so
p < (p1 + p2) (11 d(C, D) + (2153 + 2p1 2 + 2 + 1))

We see that « is a pseudogeodesic.

Now, Proposition 4.9 gives us a constant [ such that [X,Y] C Ni(a). But 4 is a centre
of XY Z, so there exists B € [X,Y] with d(4,B) < k. Now, B € Ni{a), so there exists
i € {0,1,...,p} such that

d(B,X;) <1+ %(#1 + 2 )
Thus,
d(4,X) S k414 2+ o)
and so,
d(A XD Sk +1+ %(m + p2)) + b2
= k'.

We have shown that d'(4', o) < k.
The same argument applies to any geodesics 8’ from Y’ to Z', and 7' from Z' to X'.
Thus d'(4',8') < k' and d'(4",7") < k'. We conclude that

Np(a') N Ny (8')N N (7') # 0.
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CHAPTER 5. Area.

The purpose of this chapter is to describe a few notions of area appropriate to the
setting of path-metric spaces. We shall begin with a discussion of the notion of degree
for maps of the circle. This will enable us to give a description which is intrinsic to the
disc. This gives a number of different formulations of the “rectangle principle” (5.7, 5.8,
5.11), of which the central one for our purposes is 5.7. We conclude with a proof that the
rectangle principle, together with the isoperimetric inequality imply property H4.

We shall identify the circle S* with R/Z. Let Jy,J2,J3, J4 be the quotients, under the
Z-action, of the intervals J; = [ -2, -i- + ] C R for i =1,2,8,4. Thus, {J1,/2,7s,Ja}
is a covering of S! by four overlapping intervals satisfying J1 N Js =@ and J; N J4 = 0.

Definition : A 4-link, (Fy, Fz, Fs, Fy) is a (cyclically ordered) collection of four closed
subsets Fy, Fy, F3, Fy of §* satisfying i URUFUF, =S, NF; =0 and F,NF, =0.
We shall take subscripts mod 4, so that Fi;.4 = F;.

Definition : A continuous map f : S* —s S? is associated to a 4-link (Fy, Iy, Fs, Fy), if
fF;) C J; for eacht =1,2,3,4.

Lemma 5.1 : Every 4-link has some map f : S* — S associated to it. Moreover, any
two maps associated to the same 4-link are homotopic.

Proof : The second part is immediate: any two maps associated to the same 4-link are
never antipodal, and are thus homotopic (by linear homotopy).

To prove the first part, let (Fy, Fy, F3, F3) be any 4-link. We can find another 4-link,
(G1,G2,Gs,@G4), such that F; C G; for each i, and {G1,G2,G3, G4} is a collection of
general-position 1-manifolds of S? (i.e. each G; is a finite union of intervals, and 8G; N
8G; = 0 if i # j). The sets G; may be obtained by taking a small uniform neighbourhood
of the F; in the standard path-metric on S*.

Now let By; = G;N8G; for i # j, and B = U, ; ;.; Bij = Ui=; 8G;. Note that B;; = 0
if j = ¢+ 2. Thus, the B;; partition B into eight subsets indexed by {(3,7) | i — j is odd}.

Fach complementary region e of §?\ B is a connected component of one of the sets
E; = éi\Uj_# Gjor By = é,-ﬂé'j. If e is bounded by z € B;; and y € By, the possibilities
are as follows:

(1) i =k, § =, and either e C E; or e C Ey;,
(2)i=k,j=1+2,and e C E;,
(3) i=1,j=Fkand e C E;.

A similar discussion applies to the intervals J; on §1. This time, if i ~— j is odd, then
J; N 8J; consists of a single point z;; ( = £(3i + 7) if we take 0 < 4,7 < 3).

We may now define f : 81 — S! by sending each v € B;; to z;;, and mapping
each complimentary region in linearly. From the above discussion, it is easily checked that
f(G;) € J;. Thus f(F;) € J;.

¢




Lemma 5.1 allows us to define the degree deg(F1, F2, F3, Fy) of any 4-link as the
topological degree of any associated map. The following properties are easily deduced.

Proposition 5.2 : Let (Fy, F,, F3, Fy) be any ¢-link on S. Then,

(1) deg(F1, Fy, F, Fy) = deg(Fy, F3, Fy, F1) = —deg(Fu, Fs5, Fy, F1).

(2) If (F{, F;, Fi,F,) is another 4-link with F; C F] for each i, then deg(F1,F;, Fs, Fy) =
deg(F7, Fz,’FésFi)‘

(3) If g : S* — S is any map, then (g7 1 F1,97  F3,9 ' Fs,g ' Fy) is a 4-link, and

deg(g—lFls 9_1F23g_1F399_1F4) = de.gg deg(FlaFZyF3)F4)'

Proof :

(1) Compose an associated map with a rotation or reflection.

(2) Any map associated to (F, Fy, Fi, F}) is also associated to (F1, F3, F3, Fy).
(3) If the map f is associated to (Fy, Fy, F3, Fy), then f o g is associated to

(g7 Fy, g7 Fy,g ' Fs, g7 Fy).

&
We will often abbreviate deg(F, Fs, F3, Fy) to deg({F:}).

Remark : We can clearly generalise the notion of 4-link to a “p-link” for any p > 3.
The closed sets Fy,...,F, form a p-link, if they cover S, and have the same intersection
properties as p cyclically overlapping intervals on S!, namely F; N F; = 0 unless j =
i—1,4,44+1(modp) forp>4,or FNFNF;=0if p=3.

We can also give a combinatorial formulation of degree as follows.
Suppose that G is a finite graph. We write Co(G) for the set of vertices of G, and
C1{@G) for the set of edges of G.

Definition : A 4-colouring, (V1,Va, Vs, Va) of @ is a partition of Cp(G) into four disjoint
subsets, Cy(G) = ¥} U V3 U V3 UV, such that no vertex in V; is adjacent to any vertex in
Vi, and no vertex in V, is adjacent to any vertex in V.

Now, any finite set of points V C S§? gives us a representation of S! as a 1-complex
with vertex set V. Any 4-colouring of this complex, V = V; UV, U V3 UV, gives rise to
amap g: 5! — S?, where g(v) = i/4 for all v € V;, and each edge of the 1-complex is
mapped either to a point of V* = {%, 2—, 2 j—}, or to a component of $2\V?. This map is
well defined up to homotopy on the edges, so we may define the degree of (V1, V2, V3, Vi)
as deg(Vy, Vo, V3, Vy) = degg.

The following lernma, relates the degree of a 4-colouring on S to the degree of a 4-link.
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Lemma 5.3 : Suppose that o is a path-metric on S, and that (Fy,F2, F3,Fy) is a
4-link. Let d = min(o(Fy,Fs),0(F2, F,)). Suppose that V C S* is a finite set of points,
such that the o-length of any of any component of S'\V is strictly less than d. Suppose
that {V1,V,, V3, V,} is a partition of V into disjoint subsets with V; C F; for each i. Then,
(Vi, Va2, Vs, Va) is a 4-colouring, and deg(Vy, V2, Vs, Vs) = deg(F1, Fy, F3, Fy).

Proof : That (V;, V2, Vs, V4) is a 4-colouring, follows from the intersection properties of
the Fj.

We associate a 4-link to (Vi, Va, Vs, V4) by constructing the “Dirichlet domains” about
the points of V as follows. Let V' be the set of o-midpoints of components of S1\V. Given
» € V, let D(v) be the closure of the component of S\V’ containing ». Thus, D(v) C Ns(v),
where 26 is the maximum o-length of any component of $*\V. Let D; = U,y D().
Then, (Dy, D3, D3, Dy) is a 4-link. We define f : §* — S! associated to (Dq, D2, D3, D,)
as follows. If v € V;, weset f(v) = ;;. If ' € V', and the adjacent vertices of V liein V; and
V; respectively, with [i—j| < 1, weset f(v') = "—}1 We map in linearly all the components
of ST\(V U V'). From the construction, f also defines the degree of (V1,V,, V;,V,). Thus
deg({Vi}) = deg({D:}).

NOW, D'u g N(,‘(T/z) (_: Ng(F,) But § < d/2, and so (N,s(F1),N5(F2), Na(Fg),Ng(F4))
is a 4-link. Making two applications of Proposition 5.2 (2), we find that deg({D;}) =
deg({Ns(F:)}) = deg({F:}).

&

Let G be a finite graph, and let W C Cy(G) be a subset of the vertices. We shall write
span(W) for the subgraph of G whose vertex set is W, and whose edge set comprises those
edges both of whose endpoints lie in W. By a “path in W”, we mean a path in span(W),
i.e. a path, all of whose vertices lie in W. An “arc” is a path which passes through no
vertex more than once. A “component” of W is the intersection of Cy(G) with a connected
component of span(W). Any two points in the same component of W may be joined by
an arc in W,

Lemma 5.4 : Suppose that P is a triangulation of the disc D, and that Co(P) =
Vi UVy, U V3 UV, is a 4-colouring of the 1-skeleton Y(P). Write V2 = V; N 8D. Then,
deg(Vla, Vzaa Vsaa Vf) = 0.

Proof : Note that every triangle ¢ € C(P) must have at least two vertices lying in
the same V;. We define f : D — S, by sending v € V; to +» and mapping linearly

triangles and edges. (Each triangle gets sent either to a vertex of V? = {1, %,2,4}, or to

a component of $1\V?.) Thus deg({V;?}) = deg(f|0D) = 0.
¢

Lemma 5.5 : Suppose that P is a triangulation of the disc D, and that Co(P) N 8D =
VPUVRUVEUVY is a 4-colouring of 8D. Suppose that Co(P) = W UW,, with WinW, =0,
and Wy N8D = VP UV? and Won 8D = VPUVP. Fdeg(V2,V,2, V.2, V) # 0, then there
is either an arc from V¢ to V;? in Wy, or an arc from V@ to V,? in W,.
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Proof : Suppose neither kind of arc exists. For i = 1,2, let V; be the set of vertices of
P connected to V2 in W;. Let Vs = Wi\ V; and V4 = Wi\ V2. Thus (V1,V2, Vs, Va)
is a 4-colouring of %(P), and V; N 8D = V2 for each i. By Lemma 5.4, we have
deg(Vla, Vza’ Vaa’ Vf) = 0.

¢

The following lemma will enable us to construct triangulations of the disc from cellu-
lations. We demand that every vertex of a cellulation should meet at least three edges.

Lemma 5.6 : Suppose P is a cellulation of the disc. Then, we can subdivide P to give
a triangulation P' with at most 54|Cs(P})| edges.

Proof : We construct the triangulation in two stages. First, we take a point in each 2-cell
of P, and subdivide the 2-cell as a cone about this point (Figure 5a).

o

Figure 5a.

This gives a complex P° which might contain vertices of degree 2 (Figure 5b)

Figure 5b.

To deal with this, we take the first barycentric subdivision P' of P? (Figure 5¢).

Figure 5c.

Let t; = |C;(P)| be the number of i-cells of P. Similarly, let #2 = |C;(P%)]| and
t, = |C;(P')|. We write t; = t] + 18, where t? = [{e € C1(P) | e C 8D} is the number
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of boundary edges of P, and #{ is the number of interior edges. Now 2f; > 3%, since each
vertex has degree 3, and 2y + {2 — £; = 1. Thus,

3t2 - t]_ = 2t1 -|'- 3t2 - 3t1
> 3tg + 32 — 34 2> 3,

and so,
t; < 3ty — 3 < 3t,.
Now,
19 =211 448 <2(f +1P) =1, <61y, !
and
to =t + 13 < 3ty + 61, = 9.
Thus,
t) = 2t} + 64
< 2(9%;) + 6(6t,)
= 54i,.
O

Now, recall the definitions of metric triangulations and cellulations from Section 2.3,
as well as the notions of area, energy and mesh, A,Ap, I, I7,m,mp. We are now in a
position to give the main formulation of the rectangle principle:

Proposition 5.7 : There is some universal constant § > 0 such that the following holds.
Suppose that (P,p) is a metric cellulation of the disc D, and suppose (Fy, Fz, F3, Fy)
is a 4-link on S = 8D. Let d; = p(Fy, Fs) > 0 and dy = p(F3, Fy) > 0. Then,

I(P,p) > 0d1d;|deg(F, Fa, F3, Fy)|.
Our proof will give § = .

In fact, all we shall need in this paper is the result that, if deg(Fy, F2, F3, Fy) # 0,
then I(P,p) > 0d,d;. This much is easier to prove. However, for completeness, we shall
outline the rest of the argument. Note that if P is a metric triangulation, then from the
inequalities of Section 2.3, we get that

1 7
IT(Pa P) 2 EI(Pap) 2 (g)d1d2|deg(F1’F2:F3,F4)|'

We shall begin by proving the analogous result for metric triangulations of bounded
mesh. This would suffice for the corresponding formulation of H3 (H3ta, Section 2.3).
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Proposition 5.8 : Suppose that (P, p) is a metric triangulation, and that (Fy, Fy, Fy, Fy)
is a 4-link on 8D. Let dy = p(F1,Fs), d2 = p(F2, Fy) and n = deg(Fy, F», F3, Fy). Suppose
that mq(P, p) < min(d;,d,). Then,

AT(P)(mT(P$ P))2 > lnl(dldz - (mT(Pa p)) min(dlad?!))'

Proof : Write CZ(P) = Co(P) N 8D. Write mgy = mr(P,p) and Ax = Ar(P). Let m
be any number strictly greater than my. Thus, Aym > Armg 2 p(XZ) (where p(X) is the
p-length of the 1-skeleton ). Let ¢ be the integer part of di/m, so that (¢ +1)m 2 dy,
hence gm > d; — m.

For r € {1,2,...,q}, let G] = N(p_1ym(F1) C X and G§ = E\ﬁrm(Fl), where N
denotes the uniform t-neighbourhood in (£, p). Thus, p(GT,G}) = m > mr. (Figure 5d.)

3
B e
A b
| 1
: r |
1 G3 1
1 ]
1 1
: K 1
] 1
F4 : \:I m : F2
I A !
1 i 1
| k r 1
y | 1aDm G !
J 1 1 1
v Ly ¥
. — e mmmmr— e — e — =
1:1
Figure 5d.

Let F' = GT N 8D and F§ = G; N 3D. Thus Fy ¢ FY, and, since rm < gm < dy <
p(Fy, Fs), we have Fy C Fy. Wesee that (Fy, Fy, Fy, Fy)is a 4¢link on 8D. By Proposition
5.2 (2), we have

deg(FT, Fy, Fy, Fy) = deg(F1, F5, F3, Fy) = n.

Now let

Ve =Ccf(P)nF]
VY = C(P)N Fy

V2 = CJ(P)n P\ (F] U Fy)
VP = C8(P)n F\(F] U FY).
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(Figure 5e.)
Since my < min(p(FT, F7), p(F2, Fy)), Lemma 5.3 tells us that (V?, V2, V2, Vi) isa
4-colouring of 8D, and that

deg(Vla,Vza, V;’,Vf) = deg(Ff,Fz,F;,F,;) = 7.

Let Wy = C2(P) N (G} U GY) and W, = C{(P)\ Wi, so that W1 N 8D = Ve U VP and
W,Nn8D =V2UV2.

Since mr < p(GT,G3), there is no path from V2 to V£ in W1.

Now, suppose that n # 0. Lemma 5.5 tells us that there must be an arc, a, from V.2
to V.2 in Wy. Thus, o, runs from F; to Fj, and lies entirely in 2 N N (Fy \N(r—1ym(F1)-
Such an arc must have p-length at least p(F, Fy) = d». Moreover, the a, for r =1,2,...,¢
are all disjoint. Thus, p(Z) > p(UL; ar) > ¢ds, and so

Arm? > (p(Z))m

> (gd2)m = da(gm)
Z dz(d] - m) = dldg — mdg.

Now, without loss of generality, we have d; < d;. Letting m — mr, we have shown that,
for n # 0,
Apm2 > did; — mpmin(dy, d;).

As remarked above, this is all we shall need for this paper. However, we see that the
full statement of Proposition 5.8 would follow if, in the above argument, we could show
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that there were |n| edge-disjoint arcs from F> to Fy lying in X N New(FI\N(p—1ym(F1)-
This, in fact, is a consequence of a generalisation of Lemma 5.5, namely Lemma 5.9 below.

¢

Lemma 5.9 : . Suppose P is a triangulation of the disc D, and that CP(P) = Co(P)NOD =
VPUVLUVPUVY is a 4-colouring of 8D. Suppose that Co(P) = W1UW,, with WinW; =0,
WynN8D =VEUVP and Won8D = VP UVY. Let n= deg(V,?, V2, VE, VE). If there is
no arc from V to V2 in Wy, then there is a set of |n| edge-disjoint arcs from Ve to V) in
W,.

Sublemma 5.10 : Suppose P is a triangulation of the disc. Suppose Co(P) = X3 U X
with Xy N X, = 0, and suppose &,y € X, N 8D. If there is no path from = to y in X3,
then there is a an arc a in X;, which meets 8D only at its endpoints, and which separates
z from y.

Proof of 5.10 : Let J,K be the two components of 8D\ {z,y}, so that J, K are open
intervals. Let Y2 = X; N J and ¥ = X; N K. Let Y2 be the intersection, with 9D, of
the component of X, containing z. Let ¥,? = (Xa N 8D)\Y?. Thus y € Y. We check
that |deg(Y?,Y,?,Y?,Y?)| = 1. Thus, by Lemma 5.5, there is an arc from Y? to Y in
X;. Let o be such an arc with a minimal number of edges.

¢
Proof of 5.9 : (Sketch.) The proof is by induction over the number, ¢, of components
of Wg.

Suppose first, that ¢ > 2.

If there is some component X of W, with XN8D = @, then, by redefining Wi = Wa\X
and W! = W; U X, we would reduce ¢. So, by induction, we could find |n| edge-disjoint
paths from V;2 to V in W C W,.

Thus, we may assume that each component of W, meets 0. Let z,y lie in distinct
components of Wy. By Sublemma 5.10, there is an arc o in Wi, which meets 8D only in
its endpoints w and z, and which separates z from y. Now, by hypothesis, there is no arc
from V? to V2 in Wi. Thus, without loss of generality, we have that w,z € V.

Now, the arc & cuts D into two discs D' and D?, with 8D'NoD? = a. Forj =1,2,
we may obtain 4-colourings (Vla(j),Vza(j), Vse(J ),Vf(j)) of 8D7, by Vla(j) = (V2 naDi)u
(e N Co(P)) and V,ia(j) = V2N 8D’ for i = 2,3,4. In other words, we assign each vertex
of a to V2. It is easily checked that

deg({V?}) = deg({V/}) + deg({V"®}).

Fori=1,2 and j = 1,2, define Wf — W, N D?. Now, each of W} and W} has fewer than
¢ components. By induction, we may find |n(j)| edge disjoint arcs from VP2 to V2 in wi,
where n(j) = deg({V;"?}).

We are thus reduced to the case when ¢ = 0 or 1, i.e. when W» is connected. We can
assume (by interchanging the indices 1 and 3 if necessary) that n = deg({V:?}) > 0. Now,
it is not difficult to find points vy, v2,...,van, cyclically arranged on 8D, with v; € V2 for
i odd, and v; € V¢ for ¢ even. (Note that if n = 0, there is nothing to prove.)
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Let T C span(W,) C ¥ be a minimal subgraph which connects all the points of
{v1,25+ .., %25} Thus, T is a planar tree whose endpoints are alternately labelled 2 and
4. We claim that such a tree contains n edge-disjoint arcs, each joining a vertex labelled
2 to one labelled 4. .

We prove this claim by induction on n. Let T' be the subtree of T' spanned by the
set of interior nodes (i.e. vertices of degree at least 3 in T). Any extreme point w of T"
will be “connected to” (at least) two consecutive vertices v; and v;41 in T'. That is to say,
the arc 8 from v; to v;41 in T, meets T' only in w. We now let T be the subtree of T
spanned by {v; | j # i,i+ 1}, so that T" C (T'\§) U {w}, and apply induction.

o

We next give a version of Proposition 5.8 for metric cellulations.

Proposition 5.11 : Suppose that (P, p) is a metric cellulation, and that (Fi, Fy, F3, Fy)
is a 4-link on 8D. Let dy = p(F1, Fs), d2 = p(Fs, F4) and n = deg(F1, Fs, F3, Fy). Suppose
that m({P, p) < min(dy,ds). Then,

AB)Ym(P,p))? 2 gl (drds — (P, p) min(ds ).

Proof : By Lemma 5.6, we can subdivide P to give a triangulation P' with
i

' Az(P') < 544(P).

We put a path-metric p' on B(P'), by assigning each new edge a p'-length equal to m =
m(P,p). It is easily checked that p' restricted P agrees with p, i.e. we do not introduce
any “short-cuts” across 2-cells of P. In particular, we have p'(F;, Fiy2) = o(Fs, Fipo) = d;
for i = 1,2. Also mp(P',p') = m(P, p) = m. Applying Proposition 5.8, we get

AT(P')mz > |n[(d1d2 — mmin(dl,dg)),

and so 1
A(PYm® > [n]a(dldg — mmin(d;, d2)).

o
From this, we may finally deduce the inequality of 5.7, namely that

1
I(P,p) 2 rzlnldida.

Proof of 5.7 : Let (P, p), (Fi, Fs, Fs, F1), d1, d2 be as in the hypotheses of Proposition
5.7. Let n = deg(F;, Fs, F3, Fy), and let § = min{p(de) | ¢ € C2(P)}-

We subdivide (P, p) to give a new metric cellulation, (P, p'), as follows. We imagine
cach 2-cell ¢ € C5(P) as a euclidean square of side-length $p(dc). We subdivide ¢ into
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a grid of much smaller squares, with a path metric on the 1-skeleton induced from the
euclidean metric, i.e. we assign to each 1-cell of this grid, a length equal to %‘?3, where
(R(c))? is the number of subsquares. We perform such a construction for each 2-cell of P,
and take p' to be the induced path-metric on the whole of L(P'). By taking the mesh of
this subdivision much smaller than §, we can can arrange that all the subsquares are about

the same size. More precisely, given any € > 0, we can arrange that p’'(8¢') > (1 — e)m/ for
all ¢' € Co(P'"), where m' = m(P’, p'). Thus,

I(P',p') > (1 — e A(P")(m") .

Note also that if ¢ € Co(P), then

p(8e)* =D {p'(8¢)* | ¢ € Oo(P"), ¢ C e},
since both sides are equal to 16 times the euclidean area of the subdivided square ¢. Thus,
I(P,p) = I(P', p').

Now, if 2,y € I(P) are any two points, it is easily seen that p'(z,y) > p(z,y). In other
words, taking short-cuts across 2-cells of P will shorten any path from  to y in Z(P) by
a factor of at most 2. In particular, we have p'(Fy, F3) > d1/2 and p'(Fy, Fy) > da/2.

We may suppose that we have taken m' < %1 min(d;,dz), so can apply Proposition

2
5.11 to (P', p') to get

t "2 1 dy d2 1 o
1 .
= m]?ﬂ(dldz —2m mm(dl,dz)).

Thus,
I(P,p) = I(P',p') =2 (1 — )" A(P")(m')?

1 .
2 E'i"é*(]. et e)2|n|(d1d2 — 2m' Imn(dl,dz)).

Now, let ¢ —» 0 and m' — 0. We conclude that
I(P,p) > ——In|did
1P) Z ﬁgn 1Q2.

¢

Clearly, there is much room for improvement in the factor of 5i-, particularly in the
proof of Proposition 5.11.

We now use Proposition 5.7 to derive property H4 from H3.
Let (S,d) be a geodesic space. Suppose that 4 = 43 U 75 U 43 Uy, is a rectangle (as

defined in Section 2.3). Thus, v: ($?,¢) — (S, d) is distance non-increasing, and we have
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Figure 5f.

S1 = [ UL,UL3UL,, with 4; = |L;. Let d; = d(y(L:),v(Li+2)) fori =1,2. Suppose that
~ bounds a cellular net (P, p, f) with 8f : (8D, psp) — (§%,c). Let F; = (8f)"'L; C 8D.
Thus, deg(Fy,Fy, Fs, Fy) = degdf = 1, and f(F;) = yo 8f(F;) = y(L;). Since f :
(2, p) — (S, d) is distance non-increasing, we have p(F, Fi ) 2 d(y(L;),v(Lig2)) = dis
for ¢ = 1,2. By Proposition 5.7, we get that

Now, if (8, d) is (ka, hs)-H3, we can choose (P, p, f) so that
I(P, p) < ks(o(S?) + hs),
and so 0
O'(Sl) 2 (—)dldg - hs.
k3
With the weaker version of the rectangle principle stated in Section 2.3, we get

kg(a(Sl) -+ h3) Z Kldldg —_ Kz(dl <+ dg 4+ 1).

This may be derived directly from Proposition 5.8 or 5.11 given the corresponding formu-
lation of H3.

Lemma 5.12 : Vk,I > 03r,s such that the following holds.
Suppose that (S,d) is a geodesic space, and suppose that for each rectangle v =
1 U v2 U s U~yq, we have

lengthy > kdydy — U(d; 4 d3 + 1)
where dy = d(v1,7s) and d» = d(v2,7.). Then (S,d) is (r,s)-H4.

Proof : Let r = £ and s = 2kr® + Ir +- 1 + 4r.

Suppose that 8 C & is a geodesic segment. Let X,Y € ON.(8), and write d = d(X,Y)
and d' = d.5(X,Y). We join X to Y by a path, 73, of length d' lying in S\Iv,.(ﬁ) Let
Z,W be nearest points to X,Y respectively, on 8. Thus d(X,2) = d(Y, W) =r. (Figure
5£.)
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Let 1 = [W, Z], v = [Z, X] and 74 = [Y,W]. Let v be the rectangle y1 Uy, U3 U7s.
We have di = d(m1,73) = r and d > dy = d(v2,7s) = d —2r. Also

lengthy < (d+2r)+r+d +r=d+d +4r.

So, by hypothesis,
d+d 4+ 4r > kdids — l(dl +dy + 1)

>kr(d—2r)—Il(r+d+1)
= (kr — 1)d — (2kr® + Ir + ).
Thus,
d > (kr —l—l)d—-(Zkr2 +Ir4+ 1+ 4r)
= 3d — 5.
¢

Pl‘OpOSitiOD 5.13 : Vk3, h3 E]k4,h4 such that if (S,d) i (k3,h3)-H3, then it is (k4,h4)-
H4.

Proof : From Lemma 5.12 and previous discussion.

¢
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CHAPTER 6. Remaining implications.

It remains to give proofs of H5 = H3, and H4 = H2. We prove the first implication
in Section 6.1. We also include a proof of H1 = H3, since it is much more direct than
following the cycle. The final argument, H4 = H2, is given in Section 6.2,

6.1. H5 = HS3.

The idea of the proof is to show that any sufficiently long loop may be shortened by a
definite amount, by replacing a portion of the loop by a geodesic segment. A sequence of
these “short-cut” operations will give us a cellular net. The existence of such short-cuts is
shown, for H1 spaces, in Lemma 6.1.4, and for H5 spaces, in Lemma 6.1.6. First, we get
the technicalities out of the way.

Recall the definitions of Section 2.3.

Lemma 6.1.1 : Let (S,d) be a path-metric space. Suppose that v = 41,92,...,7n i5 &
sequence of loops in S, where v; : (S1,0;) — (8, d) is distance non-increasing. Suppose
there are a sequence of arcs J; C S, fori =1,...,n— 1, such that v; agrees with ;11 on
S"\J; and o; agrees with ;11 on S'\J;. Suppose also that ;(J;) < K, 0341(J;) < K, and
oa(S?) < 2K, where K € (0,00). Then, v bounds a cellular net (P, p, f) with A(P) = n,
and m(P,p) < 2K.

Proof : We see (by induction on n) that the combinatorial structure of the arcs J;
determine a cellulation, P, of the disc D, with n 2-cells. The path-metrics, o;, determine
a path-metric p on the 1-skeleton %(P), so that for any 2-cell, ¢ € C3(P), we have p(8¢) <
2K. The maps ; together give a distance non-increasing map f : (£, p) — (8, d), such
that f|8D = «. Thus, 8f : (8D, pep) — (S, ¢) is an isometry, and so (P, p, f) bounds
v.
¢
Lemma 6.1.2 : VK, bdks, hs such that the following holds.

Let (S, d) be a geodesic space, and suppose for that any loop v : (8,0) — (S,d)
with ¢(S') > 2K, thereis an arc J C S satisfying o(J) < K, and d(+(p),¥(q)) < o(J) -8,
where p,q € S are the endpoints of J. Then, (S,d) is (ks, hs)-H3.

Proof : Let v : (§%,0) — (S,d) be a loop with ¢(S?) > 2K. Let J, = J C §? be the
arc given by the hypotheses. Rescale the metric o on J by a factor of %ﬁu o give a new
path-metric o, on S*, with ¢5($') = ¢(S5?) — b. Define a new loop 73 : (S*,03) ~— (S, d)
by 72|(S*\J) = 7{(S*\J), and taking v,|J to map linearly along the geodesic [y(p), 7(q)].

where p,q € $' are the enpoints of J. Note that ¢,(J) = ¢(J) — b > d(v(p), v(q))-

Continue by induction, Aftern—1 < ﬂﬂ steps, we arrive at a loop v, : (St,0,) —

(S,d) with ¢,(5') < 2K. Applying Lemma 6.1.1, we get a cellular net (P,p, f) with
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m{P, p) < 2K, and A(P) = n < }(o(S') +b). This gives H3ca.

Now, the inequality I(P, p) < A(P)(m(P,p))* gives the main definition, H3ce. Finally,
Lemma, 6.1.3 below gives us the strongest definition H3ta.

¢

Lemma 6.1.3 : Let (S, d) be a geodesic space. Suppose that is a loop in § bounding a
cellular net (P, p, f). Then, v bounds a simplicial net (P', o', f') with mg(P', p') < m(P,p),
and Ap(P') < 544(P).

Proof : Lemma 5.6 gives us P’ combinatorially as a subdivision of P. We define p' by
assigning, to each new edge e € C1(P') with e Z o(P), a length equal to m(P, p).

Now, for each 2-cell ¢ € C3(P), we choose some X, € f(8c), and map each vertex of
Co(P') N (c\B¢) to X.. We map in each edge e € C1(P") withe C c and e Z &, linearly
along a geodesic segment. This defines f' : (Z(P'),p') — (S,d). We check that ' is

distance non-increasing.

0
Lemma 6.1.4 : Vky,b 3! such that the following holds.

Suppose (S, d) is k;-H1, and that v : (§%,0) — (S, d) is a loop with a($) > 1 +b.
Then, there is an arc J C §' with o(J) =1 + b, and d(v(p),7(p)) < I where p and q are
the endpoints of J.

Proof : Lemma 2.1.1 tells us that the distances between any four points of S may be
measured up to an additive constant A = h(k;) along a tree. Let [ = b + 8h.

Suppose that v is a loop with ¢($?) > [4-b. Choose any point X € S, and let ¥ = (%)
be a point in 4(S?) furthest from X. Let J be a closed interval of o-length [ + b centred
at t. Let p,q be the endpoints of J. Thus, o(p,t) = o(g,t) = 2(1+1b). Let Z = ~(p) and
W = v(q). Thus, d(Z,Y) < 3(1 +b) and d(W,Y) < (I +5). We claim that d(Z, W) < I.

Case (1) : XY : ZW «— (zy)u(zw). (Figure 6a.)




Now, d(X, W) < d(X,Y), thus
ztutw=pct+y
w <ap Yy

and so, .
dW,Z)p w42z Zopy+utz oy dY,2) < §(l+b)’

le.
dW,Z) < %(I +5) + 4h

=1
Case (2) : without loss of generality, XZ : YW «— (zz)u(yw). (Figure 6b.)

Figure 6b.

Again (X, W) < d(X,Y), thus

ztutw=ppztuty

w <ap Y,
and so 1
dW,Z)~pwtu+tz=spytutz=2,dY,Z2)< §(l+b),
i.e. 1
AW, 2Z) < (1 +b) +4h
=1,
&

Corollary 6.1.5 : Vki3ks, hs such that if (S,d) is ki -H1, it is (kg, hs )-H3.
Proof : Set b=1. Apply Lemmas 6.1.4 and 6.1.2.
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Lemma 6.1.6 : Suppose that (S,d) is (a,b)-H5, and v : (S*,0) — (8,d) is a loop
in 8, with o(S*) > 2(a +b). Then, there is an arc J C S with o(J) < 2{a + b) and
d{x(p),v(q)) < o(J) — b, where p,q € S* are the endpoints of J.

Proof : Choose any point A € 8. Given any » > 0, let C(r) = 472 (S\I‘:T,(A)) (Figure
6c.)

Figure 6c¢.

Thus, C(r) is a closed subset of S*, with C(0) = S$* and C(r¢) = 0 for some .
Define g(r) € [0,00) to be the largest o-length of any connected component of C(r).
Now, ¢ : [0,7¢] — [0,00) in non-increasing and upper-semicontinuous in r. We have
¢(0) = o(8Y) > 2(e +b) and g(rg) = 0. Let R = sup{r > 0| f(r) > a + b}. Thus
f(R) > a+1b, i.e. there is some component L of C(R) with (L) > a + b. However,
we see that each component of v~1(S\ Ng(4)) has o-length at most @ + b. From this,
it is easy to find an arc J C L with a + & < o(J) < 2(a + b), and with (p) € dNg(4)
and v(g) € ONg(A), where p,q € S are the endpoints of J. Write d = d(y(p),v(¢)) and
& = dn 4((p),2(a)). (Figure 6.

Figure 6d.

lfd<a,theno(J)>a+b>d+b.
If d > a, then, since (S,d) is (a,b)-H5, we have d' > d 4 b. Thus, o(J) > d' > d +b.
Either way, o(J) > d + b, i.e. d(v(p),v(q)) L o(J) ~b.
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¢
Proposition 6.1.7 : Vks, hs3ks, hs such that if (S,d) is (ks, hs)-H5 it is (ks, hs)-H3.

Proof : Lemmas 6.1.6 and 6.1.2.

¢

Remark : Note that the hypotheses of Lemma 6.1.2 serve as another definition of
almost-hyperbolicity.

6.2. H4 = H2.

Let (8, d) be a geodesic space. Given X,Y € 8, we write [X,Y] for some choice of
geodesic from X to Y. If Z, W in [X,Y], we shall always take [Z, W] C [X,Y].

Lemma 6.2.1 : Suppose (S,d) is (r,L)-H4. Let J =r + %. Suppose X,Y,Z € & with
d(Y,Z) < r. Then [X,Z]) C N;[X,Y] and [X,Y]| C N;[(X, Z], (that is, for any choice of
geodesics [X,Y] and [ X, Z]).

Proof: Let [A, B] C [X, Z] be a component of [X, Z\N.[X, Y] so that A, B € 8N,[X,Y].
(Figure 6e.)

Figure 6e.

Since (8, d) is (r,L)-H4, we have d(4,B) = d,.[x,v)(4,B) > 3d(4,B) — L, and so
d=d(4,B) < L.

Now, [4,B] C N, 4[X,Y], and so [X, Z] C Ny[X,Y]. Similarly [X, Y] C N;[X, Z).
%
Lemma 6.2.2 :  Suppose (S,d) is (r,L)-H4. Let R = J + 3r (where J = r + %
comes from Lemma 6.2.1). Suppose that X,Y,Z € S and [X,Y],[X, Z] are geodesics with
d(Y,[X,Z]) > R and d(Z,[X,Y]) > R. Then, there exist A € [X,Y] and B € [X, Z] such
that

4[4, Y],[X,Z])) =2

d([B, 2], X,Y]) = r
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[Xs B] - NR[X? A]
[X: A] g NR[X: B]
(Note that this implies that » < d(4, B) < R.) (Figure 6{.)

Z

A

Figure 6f.

Proof: Let A be the point on [X,Y]N.[X, Z] nearest Y. (By hypothesis, Y ¢ Ng[X, Z].)
Let C € [X,Z] be a nearest point on [X,Z] to A. Let B € [C, Z] be the point distant
J +2r from C. (B exists since d(Z,[X,Y]) > R. (Figure 6g.)

Figure 6g.

Now, d(C,A) = r, therefore by Lemma 6.2.1, [X, 4] C N;[X,C], and so [X, 4] C
Ng|X,B]. Also by Lemma 6.2.1, [X,C] € Nj[X, A]. Since {C,B] C N,y(s42r(4), we
have [ X, B] € Ng{X, A].

By construction, we have d([4,Y],[X,Z]) > r.

Finally, suppose for contradiction, that we could find D € [B,Z] and F € [X,Y]
with d(D, E) < r. Since d([4,Y],[X, Z]) > r, we must have E € [X, A]. Since [X, 4] C
N;[X,C], there is some F € [X, ] with d(E, F') < J. (Figure 6h.)

Now, d(D,F) < d(D,E)+ d(E,F) < J +r. But d(C,B) = J + 2r, and [C,B] C
[F,D] so d(D,F) > J 4 2r. We have contradicted the existence of D an E. Thus,
d([B, Z],[X,Y]) > r.

¢
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Figure 6h.

Lemma 6.2.83 : Suppose (S,d) is (r,L)-H4. Let M = 10R+ L (where R = 4r + L comes
from Lemma 6.2.2). Then, given X,Y,Z € S, and geodesics [X,Y], [, Z) and [Z, X], there
is some W € & such that

dW, [ X,Y)< M

dW,[Y,Z))< M
dW,[Z,X])) < M.
We call such a point W, a “centre” for the triangle XY Z.

Proof : Suppose (for contradiction) that there is no centre for XY 7.

Then, in particular, d(Y,[X,Z]) > M > Rand d(Z,[X,Y]) > M > R. Let 4 € [X,Y]
and B € [X,Z] be the points given by Lemma 6.2.2. Let C,D and E,F be similar
points with respect to Y and Z respectively, so that 4,D € [X,Y], C,E € [Y,Z] and
F,B ¢ [2,X].

We claim that 4 € [X, D]. Suppose (to contradict the claim) that D € [X, A]. (Figure
6i.)

By hypothesis, (Lemma 6.2.2), D € Ng[X, B]. Also d(D,C) < R. Thus, D is a centre
for XY Z, contradicting the initial supposition. This proves the claim.

We can make similar statements about the order of points on (Y, Z] and [Z, X]. Thus,
the points are ordered cyclically X ADYCEZFBX about the triangle XY Z. (Figure 6j.)

Now without loss of generality, we can assume that

d(4,D) > max(d(C, E), d(F, B)).

Let d = d(A, D). We know that d(4,B) > r and d(D,C) > r. Let G be the point on
[4,B] N N,[X,Y] nearest to B. Let H be the point on {C,D] N N.[X,Y] nearest to C.
Thus @, H € 8N,[X,Y]. (Figure 6k.)

Let a be the path [G, B]U[B, FJU|F, E|U[E,C}U|[C, H], so that lengtha < R+d+
R+d+ R=3R+2d
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Figure 6j.

Z

Figure 6k.

By hypothesis (Lemma 6.2.2), we have d([B, F|,[X,Y]) > r and d([F, C], [X,Y]) > 7.
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Since d(F, E) < R, any point of [F, E] N N.[X,Y] would be a centre for XY Z. We see
that d([F, E},{X,Y]) = r. Thus a N N,.[X,Y] = 0. Since S is (r, L)-H4, we get

3R +2d > lengtha
> dpx,y|(G,H)
> 3d(G, H) — L
> 3(d—2R) — L = 3d — 6R — L.

Thus,
d<9R+ L.
Now,
d(A,[Y, 7]) < d(4, D) + d(D,C)
<d+R
<10R+ L= M.

Thus, A is a centre for XY Z.
This contradicts our initial supposition, and so proves the lemma.

¢
Proposition 6.2.4 : Vky,hy Ik, such that if (S, d) is (ks, hs)-H4, then it is ky-H2.

Proof : Lemma 6.2.3.
¢




