CHAPTER 7 : More about trees.

7.1. Introduction.

In this chapter, we aim to explore further the “treelike” nature of hyperbolic spaces.
The motivation for this chapter comes from [G, Chapter 6].

In Section 3.3, we showed that any finite subset of an almost-hyperbolic space may be
spanned by a tree which measures distances up to a certain additive constant. The main
aim of this chapter is to prove Theorem 7.6.1, which is a refinement of this result, though
some results along the way seem to have some interest in their own right.

By a “tree”, T, we mean a connected acyclic finite graph. As usual, we shall identify
T, thought of combinatorially, with its realisation as a 1-complex.

Given any closed subset P C T', we write spany.P, or just span P for the subtree of T
spanned by P, i.e. the the smallest subtree containing P. Thus, in particular, if z,y are
distinct points of T', then span(z,y) is the unique arc joining z to y.

Given any point z € T, we write degz for the degree of z, i.e. the number of connected
components of T'\{z}. We write

nodeT = {x € T' | degz > 3}
for the set of “nodes” of T', and
extT ={z €T |dege =1}

for the set of “extreme points” of 7.

Another way to describe ext T is to say that it is the smallest subset, W, of T' such
that T = span W.

Let V be a finite set. An (abstract) spanning tree, 7 = (T, o, f}, for V consists of a tree
T, together with a path-metric o on T, and a map f:V — T such that T = span f(V)
(or equivalently extT C f(V)). Clearly (T, o) is a geodesic space {as defined in Section
1.1). We can alternatively think of o a finite 1-dimensional measure of full support on T'. If
Q C T, we write ¢(Q) for the measure, or “o-length, of Q. We have o(z,y) = o(span(z,y))
for all z,y € T. Given v,w € V, we write

pr(v,w) = o(f(v), f(w))-

Thus p, is a pseudometric V, i.e. we allow for the possibility of two distinct points being
0 distance apart. (This extra generality will be convenient in Section 7.3.) Corollary 7.3.2
gives a characterisation of which pseudometrics may be derived in this way.

We inserted the word “abstract” in the definition to distinguish it from from the
following notion of “immersed” spanning tree. Let (S,d) be a geodesic space, and V C
(S,d) a finite set of points. An immersed spanning tree, (T, g), for V, consists of an abstract
spanning tree T = (T, 0, f), together with a distance non-increasing map g : (T,0) —
(S,d) such that go f : V — (8,d) is just the inclusion of V into (S,d). (Thus, in this
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case, f is injective and p, is a metric.) We call such a tree an embedded spanning tree if g
is injective and o is the path metric on T induced from d. In this case, we may identify
T with g(T) C S, so that the maps f and g become superfluous. In all the cases we deal
with, the edges of an embedded spanning tree will be geodesic.

In Section 3.3, we showed that if (5,d) is k-H1, and V C S has n + 1 elements, then
there is an embedded spanning tree T' = Ty for V such that for all v,w € V', we have

pr(v,w) < d(v,w) + K(k,n),

where K(k,n) depends only on & and n. In fact, we can write K(k,n) in the form kH(n),
where H : N —= [0,00) is a fixed function of n. This can be seen from a study of the
proof, though in fact, it is a consequence of a more general principle, about which we shall
say more in Section 7.2. With regard to the dependence on n, however, we were more
careless. Our proof would give H(n) exponential in n.

Definition : Given a function f : N — [0, c0), and a set V of n+1 pointsin a k-H1 space
(8,d), we shall call an immersed spanning tree, (7, g), for V, an O(f(n))-approzimating
tree, or just O(f(n))-tree, if for all v,w € V, we have

pr(v,0) < d(v,0) + RO(F(n)).

Of course, this is really a property of a method of construction, rather than of a particular
tree.

So far, we have shown the existence of embedded exponential approximating trees.
Theorem 7.6.1. shows the existence of immersed O(logn) trees. In fact, this is the best
order of growth one could hope for, as the following example shows.

Consider n + 1 points equally spaced around a large circle in the hyperbolic plane.
The best immersed tree in this case is obtained by joining each point to the centre of the
circle by a geodesic segment. The angle between two adjacent segments is O(1/n). We see
that this gives us an O(—log(1/n)) = O(log n)-approximating tree.

We shall show (Proposition 7.5.2) that the construction of Section 3.3 gives, in fact,
an O(n)-approximating tree. Another obvious way to construct an embedded spanning
tree is to take a tree of minimal total length spanning the n + 1 points of V. We call such
a tree a Steiner free. We shall show that this also gives an O(n)-approximating tree. In
both these cases, this is, in general, the best result possible, as may seen from the following
example.

Let (S, d) be the bi-infinite euclidean strip R x [-1,1] C R%. For 1 € N let X; be
the point (47,(—1)}) € S. Given n € N, let V,, be the set of points {X; |0 < i < n}.
The (unique) Steiner tree joining these points consists of the piecewise geodesic arc o =
UL ,1Xi, X;1]. Clearly, for n > 3, we have lengtha > d( Xy, X») + en for a fixed € > 0.
The construction of Section 3.3 relied on a choice of ordering of the points of V. If we order
the points in the obvious way, Xy, Xs,...,X,, then this construction also gives Ty = a.

It seems quite likely that if we were to judiciously choose the ordering of the points of
V', then the construction of Section 3.3 would always give an O(logn)-approximating tree.
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However, I have been unable to prove this, and so Theorem 7.6.1 uses 2 slightly different
construction (based on that of [G, Chapter 6]). This will in general give an immersed,
rather than an embedded spanning tree. Perhaps the proof can be modified so as always
to give an embedded tree. However, for general hyperbolic spaces, the assumption of
embeddedness does not seem particularly natural (unless, for example, S happens to be
a 2-manifold). Note that by a small perturbation, we can always arrange that a tree be
embedded in S X [0, ¢].

The main steps in the proof of Theorem 7.6.1. are as follows. We begin by giving a
construction of abstract spanning trees which approximate a metric on a set V of n +1
elements to O(logn) (Proposition 7.3.1). This gives us some hint as to the combinatorial
structure of our desired immersed spanning tree when V C §. However, we need to decide
how to partition our tree into arcs, destined to become geodesics in 8. This is the purpose
of the combinatorial result, Lemma 7.4.1. The final construction of our immersed spanning
tree is based on a variant of that of Section 3.3. To show that this works, we need the
result, stated above, that the construction of Section 3.3 is always O(n). This is the only
real geometric input. It can be viewed as a corollary of a result about piecewise geodesic
paths in §. This can in turn be interpreted as a statement about finite metric spaces
(Proposition 7.3.4).

7.2. A note on parameters.

Throughout this paper, we have used the notation z ~ y to mean that le —y| £ K,
where K has been assumed to be some function only of the parameter of hyperbolicity.
Similazrly, we have used z < y for # < y + K. If we look at Chapter 3, we see that all
such numbers K arising in this way are the result of applying a transitivity law a certain
finite number of times, starting with the parameter of hyperbolicity—either k; or ks, We
see that we can reinterpret the notation z ~ y to mean that |z — y| is bounded by some
universal multiple of k; (or k;). Similarly for <. We see that all the functions of the
hyperbolicity parameter arising in Chapter 3 can be written in the form Ak; for some
X € [0,00). This will apply equally well to this chapter, though we shall not always state
this explicitly.

Another way to view this is to note that, if k; # 0, then after rescaling the metric by
a factor of 1/ky, any k;-H1 space becomes 1-H1. Now, any 0-H1 geodesic space is metric
tree (Proposition 3.4.2), so we could restrict attention to 1-H1 spaces, and thus not worry
about the dependence on k.

7.3. Abstract spanning trees.
Let V be a finite set. A pseudometric on V is a symmetric function p: VxV — [0,00)

satisfying the triangle inequalities. Note that the definition H1 makes equally good sense
applied to an arbitrary pseudometric space, in particular to (V, p). We may thus define

hyp p = min{k € [0,00) | (V, p) is & — H1}.
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Equivalently,

hyp p = max{p(z,y) + p(2,w) — max(p(z,w) + p(y, 2), p(2, 2) + p(y,w)) | 2,9, z,w € V}.

The following result is copied from [G, Chapter 6], except that we have added more detail
to the proof.

Proposition 7.3.1 : Let V be a set of n + 1 elements, and let p be a pseudometric on
V. Then, there is an abstract spanning tree T for V, such that

pr X p < pr+ (1 +log, n)hypp.

Proof : We construct r = (T, 0, f) as follows. :

First, choose any vy € V, and write V! = V\{p}. Let T = {({,2) CR xV'|0 <
t < p(v,v)}. Thus, we imagine 7 as a disjoint union Z = | |,y I, of intervals I,,, where
I, = [0, p{v,v9)] x {v}. We topologise T accordingly.

Given v,w € V', write

{u, w) = ';‘(P(u)'vll) + p(w, vo) — P(uv w))

Thus, {u,w) < min(p(u,vy), p(10,v0)). We define a relation
Ryw CLi X Ly,

by ((s,u),(#,w)) € Ry if and only if s = ¢ < {(u,w). In other words, we identify the
initial segments [0, (u,w)] x {u} and [0, {u,w}] x {w}. Let B C T x I be the transitive
closure of all the relations R, ., for u,w € V', and let T' = /R be the quotient.

One sees easily that T has the structure of a tree, with a path-metric & induced from
the parameterisation of the intervals I,. Define f : V — T as follows. For v € V', we let
F(v) be the projection of the point (p(v,vg),v) € I, to the quotient under R. We define
f(vg) to be the projection of (0,v) € I, for any v € V, noting that all such points are
identified under R. We see that ext T C f(V), so that 7 = (T, 0, f) is a spanning tree for
V.

By construction, we have
p«,—(’b‘,‘vo) = p(v, vp)

forallv e V'.
Now, given u,w € V', write a(u,w) for the arc joining f(u) to f(w) in T. Let

(1,0} = 3 (pr(urv0) + pr(w,00) = pr (1, ).
Thus, {(u, w), is the distance, o(f(vo), a(u,w)), from f(v) to a(u,w).
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From the construction, it is clear that
(w, wh, = (4, w)
and thus,
pr(atyw) < gl w).
To complete the proof, we need to show that

1
{(u,w)r < {u,w) + Ek(l + log, n),

where k& = hypp.
Now, from the definition of k = hyp p, we find that for any u,v,w € V', we have

o0, 9) + plu, w) < max(p(u, o) + p(2,0), p(w, v0) + p(1s ) + k-
Rearranging the terms, we deduce that
(u,w) 2 min({“: v), (v,w)) —k/2.

More generally, therefore, if v1,72,...,p is any sequence of p points of V', we have

. ) 1
(o1, 05) > min{ (v, 0541 | 1 < i < p— 1} — (1 + logz 7).

Thus, given u,w € V', it is enough to find some sequence % = V3, V2;...,Vp = W of distinct
points of V' so that
(u,w), < min{(vi,vi41) |1 S <P~ 1}.

This may be accomplished as follows.

Let ¢ € ofu,w) be the nearest point of a(u,w) to F(w). Let d = o(f(vo),z) =
o(f(ve), a(u,w)) = (y, w)r.

Recall that T = Z/R, where T = | |,cy» Jo. We see that the points (d,u) € I, and
(d,w) € I, project to the same point z € T. In other words, (d,w) and (d, w) are identified
under R. From the definition of R as a transitive closure, this means that there are points
w=v1,0,...,0 =win V' with ((d,v:), (d, vi41)) € Ru; iy, for each 1 € {1,2,...,p—1}.
Thus d < (v;,viq1) for i =1,2,...,p— L. In other words,

(u,w),. < min{(vis 'vi+1) ‘ 1<:<p-— 1}7

as required. (In fact we have equality in this expression. )

&
Note that f might not be injective, even if p is a metric. (For example, take V =
{1,2,3,4}, and p(1,2) = p(2,3) = p(3,4) = p(4,1) =1 and p(2,4) = p(1,3) = 2.)

Corollary 7.3.2 : Suppose p is a pseudometric on a finite set V. Then, hypp = 0 if and
only if there is some spanning tree T for V such that p = p,.
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Proof : It is a simple exercise that hypp, = 0 for any spanning tree 7. The reverse
implication is an immediate consequence of Proposition 7.3.1.

¢

By hypothesis, a spanning tree 7 = (T, 0, f) for V satisfies ext ' C f(V). It would be
convenient if we could always take f to be a bijection to ext T, so that we may identify V
with ext T'. In fact, this can be arranged provided we allow o to be a “path-pseudometric”.
If we think of a path-metric on T as assigning a positive length to each edge of T', then a
path-pseudometric assigns a non-negative length to each edge. We do this as follows.

Given any spanning tree v = (T, 0, f) for V, we define 7' = (T, ', f') by attaching
an arc of length 0 to f(v) for each v € V. More formally, define T* = (([0,1] x V) uT)/ ~,
where (1,v) ~ f(v) for each v € V. Let f'(v) be the projection of (0,v) to T". Define ¢’
by o'|T' = ¢ and o'([0,1] x {v}) = 0 for all v. Thus, f' is injective, f'(V) = extT", and
Prt = Pr-

The remainder of this section is aimed at proving a result about finite metric spaces
(Proposition 7.3.4), which may be interpreted, in the context of almost-hyperbolic geodesic
spaces, as a statment about piecewise geodesic paths. The result is best motivated in that
context (see the beginning of Section 7.5), though it fits more logically into this section.

Suppose that (V, p) is a pseundometric space. We introduce the following notation.

Given z,y,z,w € V, write

Ty Np Zw = -;-(p(m,y) + plz, w) — p(z, 2) = p(y, w)).

We shall usually abbreviate zy A, zw to zy A zw.

We list the following properties of A, though we shall only find explicit use for parts
(1), (2) and (4).

Lemma 7.3.3 : Suppose that z,y, z, w,u are any points in the pseudometric space (V, p),
then

(1} ey A zw =yz Awz = —zz A yw,
(2}zy A zw+zwAyz+zz Awy =0,

(3) 2y A 2w < min(p(:z:,y),p(z,w)),
(4) zy A2y > 0,

(5) zy A zy = p(z,y),

(6) uy A wz + uw Ayz +we Azy=0.

Proof : Elementary.

¢
We remark that if V is finite, then we can define hyp p in terms of this notation, thus:

hyp p = 2 max{h{zy A zw,zw A yz,zz Awy) |2, y,2z,w € V},

where h{a,b,c) > 0is defined for any a,b,¢ € R with a+b+¢ = 0, as follows. If it happens
that a > max(|b|,|c|), then we set h(a,b,¢) = —b. From this, we may define h(a,b,c} in
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general, by insisting that it have the symmetry h(a, b, ¢) = h(b,c,a) = h{—a,—c,—b). It is
readily checked that this agrees with the definition given earlier in this section.

Suppose that hyp p = 0, so that p = p, for some spanning tree 7 = (T, o, f) (Corollary
7.3.2). Given z,y € V, write afz,y) = span(f(z), f(y)). In this case, if zy A zw > 0, then
zyAzw = o(a(z,y), a(z,w)) = ¢(B) (i-e. the o-length of B), where g = a(z,y)Ne(z,w) =
afz,w)N(y,z). Lemma 7.5.1 gives an interpretation of the quantity zy A zw in the context
of almost-hyperbolic geodesic spaces.

Suppose now that V = {vo,v1,...,V,} is a set of n + 1 points with pseudometric p.
We set

A0, 01, -+« 305 p) = max{vivip1 Avj41v; |0 <2 <j < n}.

Thus, A(vg,v1,. .+, ;) = 0, by Lemma 7.3.3(4).

Proposition 7.8.4 : Suppose that V = {vo,1,.. .,Un} is a set of n+ 1 points with
n > 2, and that p is a pseudometric on V. Let k = hypp and | = A(vg,v1,. 00y 005p0)-
Then,

n

3 p(viy0i-1) < p(v0,v0) + 2(20 — 3)+ 2(3n — 4k

=1

The essential point is that the terms in k and [ are both linear in . In fact, the term
in [ is the best possible, though there is some room for improvement in the term in k.

The case k = 0 is not hard to deduce (set £ = 0 in the argument presented below, and
ignore most of the proof). Suppose we know this, and we are given a general pseudometric
p on V. Then Proposition 7.3.1 gives us a pr, with hypp, =0, and

pr < p < pr + k(1 +logy n).

We see that
L = A(g, 15+, 0n; pr) ST+ k(1 +log, n).

Thus,

k3

Z p(vi,vi—1) < Z pr (i, vi-1) + kn(1 + log, n)

i=1 i=1
< pr(ve,vn) + 2(2n — 3)- + kn(1 + log, n)
< p{vo, vn) + 2(2n — 3) + (5n — 6)(1 + log, n)k.

So this gives the term in k to be O(nlogn). If we want it O(n), we need a more careful
argument.

Proof of Proposition 7.3.4 : Let V = {vp,v1,..-,%n},p, [,k be as in the hypothesis.
We shall construct a spanning tree for V. We begin exactly as in the proof of Proposition
7.3.1. Let V' = V\{vo}, and let

T={({t,p) CRxV'|0<t<p(v,0)}= | | L.
veV!
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Write
{v,w) = vvg A woy

- %(P(u,vg) + p(w,v0) — p(v, w)),

so that, for u,v,w € V', we have
(1,20) > min((u,), (v, ) — b/2.
For: € {1,2,...,n}, let R; be the relation Ry, _, 4 C I,,_, X I, i.e.
((s,vi-1),(#,%;)) € Ry & s =t < (wi_1,v:).

So far, there has been no difference from Proposition 7.3.1. This time, however, we set
R C T x T to be the equivalence relation generated by the R; for ¢ € {1,2,...,n} (rather
than using all the R, ,). Again, T = I/R is a tree with path-metric ¢ and a natural
map f : V — T. Let 7 = (T, 0, f). By attaching arcs of length 0, as described above,
we can identify V with ext T, and |V with p,. We shall abbreviate p(v;,v;), pr(vi, ;)
and {v;,v;) respectively to p(i, ), p-(3,7) and (i, 7). We shall write (%, j) for span (v;, v;).
(Thus, p.(%,7) is the o-length of a(t, 5).)

From the construction of T', we have that p,(0,7) = p(0,7) and p-(z —1,%) = p(i —1,1)
for each i € {1,2,...,n}.

Given z,y € T, we shall write z < y to mean that z € span(vg,y). Thus, < is a
partial ordering on the points of T. We write z < yifz <y and z # y. Givenz €T, we
write V(z) = {v € V |z < v}. From the construction of T', we see that V(z) necessarily
consists of a consecutive sequence of points {vp(z), Vp(s)+1s - + + > Vg() } Of points of V, where
0 < p(z) < g(z) <n.

Suppose that z € T\ (ext T U nodeT). We see that 2 € a7 — 1,7} if and only if 3
equals either p(z) or g(z) + 1, using the convention that n + 1 = 0. Thus, the closed path
Uit! «(s — 1,4) traverses each component of T'\(ext T UnodeT') precisely twice. Thus,

Z pr(i —1,i) = pr(0,n) + 20(T\ (0, m)).

Since p.(i —1,1) = p(z — 1,1) and p.(0,n) = p(0,n), we see that we need to show that
c{T\a(0,n)) < (2n — 3){ + (3n — 4)k.

We shall split this into two parts. To each node 2 € nodeT’, we shall associate a subset
B(z) C T containing the point z, which is either a closed arc or a single point. Writing

B =IJ{A(z)| » € nodeT}, we shall show that

a(f) < (n—1)k,

and that
o(T\(BU (0,n))) < (2n—3)(I + k).
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We shall begin with the first part. In fact, we shall show that for any = € nodeT, we
have o(y(z)) < (degz — 2)k, where

1(z) = Blz)\| J{B(») | y € nodeT and z < y}.

If z € B, and we choose ¢ € node T, maximal with respect to < such that z € §(z), then
z € v(z). It follows that 8 = U{y(2) | # € nodeT}. We may then deduce that

o(B)< Y. (degz —2)k = (lextT| - 2)k = (n - 1)k,
zenodeT

as required.

So, suppose that # € nodeT so that V(z) = {Vp(x), Vp(a)+1s---»Vg(z)}- We define
B(z) as follows. If o(z,v) < {p(z),q(z)), we set B(z) = {z}. If o(z,v0) > {p(z), q(z)),
then we set § = span(z,y), where y € o(z,v) is the point with o(ve,y) = (p(2), ¢(z)}.
(It is conceivable that there may be some ambiguity in the choice of y, arising from the
fact that o is only a pseudometric. Though this does not give us serious problem—
all distances and lengths are well-defined.) We could alternatively define 3(z) as the
closed arc (or point) in span(z,v), with one endpoint at , and of o-length equal to
lmaac((),p(p(:c),q(:t:)) — pr(p(z),q(x))). (See Figure 7a.) If ¢ € extT, we shall write

2
B(z) = {z}. In each case, we have

‘7(”03 ﬁ(w)) = m-in(a('vﬂs x)a (p(:c), g(a:)))
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For any = € nodeT, the set V() = {vy(4), Vp(z)411 - - - » Vg(x)} 1S a naturally partition
as V(z) = |, V(zi), where r = degz —1 and 21, 23,...,%, € nodeTUext T are vertices
of the tree T', adjacent to . In fact, we can express the sequence p(z), p(z)+1,...,¢(z) as
the concatenation of the consecutive sequences p(z;), p(z;)+1,...,¢(x;) for i =1,2,...,7.
Thus p(z1) = p(e), ¢(2») = ¢(z) and ¢(z;) + 1 = p(zi41) for ¢ € {1,2,...,r — 1}. (See
Figure 7b.)
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Figure Thb.

By the construction of T', we have that {g(z;), ¢(z;)+1) = o (ve, a(g(z:),q(=:) +1)) =
o{vg,z) for each ¢ € {1,2,...,» — 1}.
Now, for any ¢ € {1,2,...,7}, we see that

o(B(2)\B(z:)) = max(0, o (vo, B(z:)) — o{vo, B()))
= max(0, (p(z:), ¢(z:)) — (p(=),q(2)})-

ﬁllsz, o(B(z)) = max(0,0(ve,z) — {p(z),q(2)})). Since y(z) C B(=)\Ui~, B(z:), we have

o(+(z)) < max(0, min({(p(z:), a(=:)) | 1 < i < r}uU{o(ve,2)}) — (p(2), a(2)))-
Now hyp p = k. So, after (2r—2) applications of the inequality {u,w) > min({u,v), {v,w}))—

k/2 (to the sequence p(z) = p(z;), ¢(21),q(z1) + 1 = p(z2), ¢(=2), ..., p(xx), q(2-) = g(z)),
we find that

(p(z),q()) 2 min({(p(z:), a(z:)) 1 < i <7} U{o(m,2)}) — (27 — 2)(k/2).
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We conclude that
o(2(2)) < (2r — 2)(k/2) = (r — )k = (degz — 2)k,

as required. ‘

We have shown that ¢(8) < (n — 1)k. Tt remains to show that o (T\(8 U (0, n))) <
(2n —3)(1+ k).

By an “edge” of T, we mean the closure of a component of T\nodeT. Now T has
at most 2[extT| — 3 = 2n — 1 edges. Thus, there are at most 2n — 3 edges not lying in
a(0,n). Let e = span(z,y) be such an edge, where y € nodeT, z € nodeT U ext T and
y € span(vg,z). We claim that o(e\B(z)) < [+ k. The result then follows by summing
over all such edges.

Suppose first that z € nodeT. Write p = p(z) and ¢ = ¢(z). If e C B(z), then there
is nothing to prove, so we can assume that

a(vo,y) = o(vo, €) < o(ve,8(z)) < (P, q)-

Now, V(z) = {vp, Upt1,.-+,Vq} is, by definition, the set of points of V separated from v
by z. Since y is the adjacent node to z in the direction of v, we must have that both
a(p—1,p) and a(q,q + 1) pass through y. Thus,

{(p—1,p} = o(vo,(p— 1,p)) < o(v0, %) < (P, q)-

Similarly,
{(,9+1) < {(pa)

Writing

("*33)1' = E(PT(O')?’) + P‘r(oa.?) - p‘r(z).?)) = a(vg,a(z,j)),
(so that (i,i+4 1), = {i,i+ 1) for each i) we see that

(p—1,g+1) 2 min({p — 1,p),(p, 0), (e ¢ + 1)) — 2(k/2)

= min((p - 1,?)1’1 (Q:q + 1)7‘) —k
= (p—l,q+1)1-'—k.

Thus,
pr(p—1,q+1) > p(p—1,¢+1) — 2k.

(Recall that p,(0,p—1) = p(0,p ~ 1) and p,(0,g+1) = p(0,¢ +1).} From the definition
of B(z), we have that o(8(z)) = %ma.x(ﬂ,p(p, q) — p+(p,49)), so that

pr(p,q) + 20(B(z)) = p(p, 9)-
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Also, we have p-(p—1,p) = p(p—1,p) and p-(g,q+1) = p(g,¢+1). From the construction
of T', we have that e = a(p — 1,p) N a{q, g+ 1), and so

o(e\B(=)) = o(e) — o(B(z))
= %(pf(p ~1,7) + pr(9,9+1) = pr(p,0) = pr(p— 1,4 +1)) = o(8(=))

< (oo —1,8) + p(g,a+1) = p(p,0) — (p(p— L, +1) ~ 2K))

= Vp—1Yp A Vg11Yyg + k
<14k,

as required.

The case where z € ext T' is similar, but simpler. We have, by definition, that §(z) =
{z}. If we set p = ¢ so that z = v, = vy then the argument goes through, more or less, as
before.

¢

7.4, Pinnate Structures.

In this section, we describe a few combinatorial properties of trees.

Let T be a tree (i.e. a finite acyclic connected 1-complex). Let V' = extT be the set
of extreme points of T'. Suppose z,¥,z,w are distinct points of V.. We shall write zylzw
to mean that span(z,y) meets span (z,w) in at most one point. (Figure 7c.)

>, K
X r\3 x

w
E;
)LU‘}I?,WJ\

Figure 7c.

We have the following properties.
(1) zy|zw & zy|lwz & zw|zy,
(2) zy|zw and zz|yw = zw|yz.
Remark : Given a finite set V, we can regard the the quaternary relation (..)|(..) as
defining & structure on V equivalent to the notion of a combinatorial spanning tree for V,

with ¥ equal to the set of extreme points. As axioms for (..)|(..), we can take properties
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(1) and (2) stated above, as well as an enumeration of the possibilities for the relation
restricted to any set of five distinct points {a,d,¢,d,e} € V. That is, we need to assume
that the relation on {a,b,¢,d, e} is derived from one of the possible combinatorial spanning
trees for five points. (There are twenty-six such, in total.) We leave as an exercise the
observation that one can reconstruct uniquely a spanning tree for V from such data.

In this section, we want to describe an additional structure on V, which we shall call
a “pinnate structure”. .
Let T' be a tree with V = ext 7.

Definition : A pinnate decomposition of T'is a partition of T into disjoint subsets indexed
by V, written T = | },cv 7(), such that z € ~{z) for all , and () is homeomorphic to
a half-open interval for each # € V, except one point z9 € V for which v(zq) = {zo}.

We refer to zo as the root. We call y(z) for ¢ € V\{zo} a branch of the pinnate
decomposition.

I z € V, then there is a unique ¢z € V such that the closure ¥(z) of v(z) meets
+(¢z). Thus, ¢zo = #o, otherwise éz # z. Also, since zg is an extreme point of T', there
is a unique point z; € V with ¢z; = 2. We call span(zg,z1) = {zo} U v(z1) the stem of
the pinnate decomposition.

Thus, we may imagine a tree with a pinnate decomposition as resembling a fern frond
with one main stem, and a sequence of successive branching. (Figure 7d.)

¥
Ao

=gl

Figure 7d.

Given T', we may recover the pinnate decomposition from the map ¢ by taking

¥(z) = span(z, ¢z, $%z)\span (¢z, ¢°z)
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for # # 3y, and

Yzo) = {=0},

where 2 is the unique fixed point of ¢.
We call 2 map ¢ : V — V arising in this way a pinnate structure on T' (or a pinnate
structure on V' compatible with T').

Remark : We may give a set of axioms for a pinnate structure ¢ : V — V compatible
with (..)|(..) as follows.

(1) There is some zy € V with ¢zg = 2.

(2) Hz,y € V\{zo} and ¢z = ¢y = z¢, then z = y.

(3) If ¢%z # =z, then =, ¢z, ¢*x, $*z are all distinct.

(4) I z,y, ¢z, ¢y are all distinct, then z(dz)|y(dy).

(5) If z,y, pz, $*z are all distinct, and gz = Py, then either zy|(pz)($*z) or yz|(dz)($Hz).

We leave as an exercise that this data suffices to reconstruct a pinnate decomposition
{y(z) | =z € V} as described above.

Let ¢ : V — V be a pinnate structure compatible with T If ¢*z # z,, then it
follows that z, ¢z, d?z, ..., ¢'z are all distinct. Thus, there is some r such that ¢"z = =z,.
We write depthy(z) (or just depth(z)) for the smallest such r. We write

depth¢ = Izr%a.%c(depthqs(:c)).

Proposition 7.4.1 : Any tree T admits a pinnate structure of depth at most 1 +
log, (1), where m = |ext T.

The worst case is, in fact, a tree with 3.27~? extreme points, and each node of degree
three, as shown in Figure Te for p = 5. Any pinnate structure on such a tree must have
depth at least p.

We shall first prove the following lemma (7.4.2). In fact, this lemma suffices to give
a logrithmic bound on the depth of a pinnate structure, which is all we shall need for
Theorem 7.6.1.

Lemma 7.4.2 : Suppose T is a tree with at most 2P extreme points, and that zq € extT
is any extreme point. Then T admits a pinnate structure of depth at most p and with root
Lo,

Proof : Let V = extT. We construct a pinnate decomposition for T'. We begin by
constructing its stem o as follows. We imagine moving along T', starting at z¢. Each time
we come to a node y € node T, we follow the edge of T' which separates a maximal number
of extreme points from z,. In other words, we move into a component C of T\ {y} which
maximises {C N V| for zp ¢ C. We continue until we reach an extreme point z; € V. Let
« = span{zg,z;) be the path we have followed. Let v(z;) = a\{zo}.
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Figure Te.

Now, if D C T is a component of T\, then by construction, [D N V| < 2r-1 1,
The closure D C T is a subtree with ext D = (DN V)U {zp}, where zp is the point
where D meets a. Thus, Jext D| < 2¢71. By induction, D has a pinnate decomposition
D =, cext p YD(2), with root zp, and depth at most p—1. Ifz € DNV, set 4(z) = vp(z).

Doing this for each such component D, we arrive at a pinnate decomposition {v(z)lz €
V'} of depth at most p, and root z4.

%

Proof of Proposition 7.4.1 : Let V = ext T, and suppose that |[V| < 3.227" —1 with
p > 2. We want to construct a pinnate decomposition of depth at most p. (The casep=1
is trivial.)

Suppose that yis anode of T. Let Cy, Ca,...,C; (r 2> 2) be the connected components
of T\ {y}. Let e; = |C; N V], so that >, ;e; = [V|]. Foreachje {1,2,...,r}, we must
have e; < E# ; €1, otherwise we would do better choosing the node in C; adjacent to y.
It follows that

1« 1 |
L < L p—1 _ P
e; < 5 ;=1 e; < 2(3.2 1) <2P —1.

Now, without loss of generality, we have e; > €3 = -+ > €,. Since Z:zl e, < 3.2071 1,
we must have e; < 2P~ —1 fors > 3.

Considering each closures C; as a subtree of T', we have ext C; = (C; NV}U{y}. Thus,
lext ;| < 2 for i = 1,2, and }ext §;| < 277" for ¢ > 3. For each 4, let {vi(z) [z € ext C:}
be the pinnate decomposition of C;, with root y, given by Lemma 7.4.2. Let zo € cinv
and 21 € Cy NV be, respectively, the unique points such that 51(zo) and F2(z1) meet y.
(Thus span (y,z¢) and span(y, ;) are, respectively, the stems for Cy and C3.)

Define v(zo) = {zo}, 7(z1) = span (zq, 1)\ {z0}, and ¥(z) = vi(2) for z € (C; N V)\
{@o,#1}. We check that {y(z) |z € V} is a pinnate decomposition of T' of depth at most
.
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Suppose that ¢ : V — V is a pinnate structure compatible with the tree T'. Let
{7(z) |z € V} be the corresponding decomposition of T'. For any z € V, we have that
v(z) meets span(zq, z) if and only if z = ¢’z for some ¢ with 0 < ¢ < 7 = depthz. We call
zo = ¢z, ¢" 1z,..., ¢,z the path sequence for z. (Figure 71.)

~,CO=¢1W>L

T ule.p‘:k(pc) r

Figure Tf.

More generally, suppose that 2,y € V with » = depthz and s = depthy. Let £t > ¢
be the largest integer such that ¢"*z = ¢*~*y. Then, 4(z) meets span(z, y) if and only if
z belongs to the sequence

T, ¢m, s ’¢r—t$ = ¢s—ty’ veey ‘;bya Y.

We write w = w(z,y) = "%z = ¢*~*y. The path sequences for z and y agree on the first
t+1 terms, namely, o = ¢*w,...,dw, w. Note that this is precisely the path sequence for
w. We must have either zxg|yw or yzo|zw. (Figure 7g.)

X

W= w(x,ﬂ)

- ¢r}/:¢sﬂ ¢w (/W = r“’,(_ _-,¢5-—b'3

Figure Tg.
This dicussion will be relevant to Section 7.6.
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7.5. Piecewise geodesic paths.

In this section, we return to the context of almost-hyperbolic geodesic spaces.

Suppose that V is a set of n 4 1 points in such a space. We have already stated (in
Section 7.1) that both Steiner trees, and the construction of Section 3.3, give trees which
approximate distances up to an additive term kO(n). The property both trees have in
common which gives rise to this linear estimate may be summarised as follows. Suppose
X,Y € V, and that 3 is the path in the tree joining X to Y. Then § consists of the
union of at most n geodesic segments, no two of which run “almost parallel” over a long
distance. The result can thus be rephrased as a property of such paths, namely that
length 8 < d(X,Y) + kO(n). We shall see that this is a simple consequence of Proposition
7.3.4. In fact, we are able to weaken the hypothesis, taking account of the direction of
geodesic segments. Thus, we need only assume that the path 8 should not double back on
itself over a large distance.

We introduce the following notation. Suppose that (S,d) is a (pseudo)-metric space.
If Xq, X3,...,X, € S, we shall write (XoX; --- X,) to mean that

d(Xﬂa-.Xp) = i d(Xz'a Xiﬂ-l)'

i=1

If (8,d) happens to be a geodesic space, then we shall always choose geodesics so that
[X;, X;] € [Xo,Xp] for any 1,7 € {0,1,...,p}. Thus we may imagine the sequence of
points Xy, X1,...,X, occurring in order along [X;, Xp}. If X, Y,Z, W are any points in
(S,d), we have already defined (Section 7.3)

XYAmvzgaxyﬂwwmn_amm—ﬂan

To the properties (1)~(6) of Lemma 7.3.3, we may add that if X, Y, Z, W, X", Y", 2", W' € §
with (XX'Y'Y) and (ZZ'W'W), then X'Y' A Z'W' < XY A ZW. We have already
observed that we can express property H1 in terms of this notation. In fact, we can write
XY : ZW as

XZANYWXWAYZ = 0.

If we already know that (S,d) is H1, then XY : ZW becomes equivalent to the statement
XZAYW ~XW AYZ, or to the statement XZ AYW ~ 0.

Suppose that (S, d) is an almost hyperbolic space. If XZ : YW, and (X Z)AB(YW)
is a spanning tree for X,Y, Z, W (Section 3.1), then it is readily checked that

XY AZW ~ XW A ZY ~ d(A, B).

Thus, the quantity XY A ZW may be thought of as measuring the distance over which
the geodesics [X,Y] and [Z, W] run almost parallel.

The following lemma. gives a more careful formulation of this idea.
Lemma 7.5.1 : Vk 3h such that the following holds.
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Figure 7h.

Suppose (S, d) is a k-H1 geodesic space, and that X,Y,Z,W € & satisfy XYAZW 2> 0.
Then, there exist A,B,C,D € § with (XABY) and (ZCDW) and d(A,B) = d(C,D) =
XY AZW. Also, if E € [A, B] and F € [C, D] satisfy d(A, E) = d(C, F'), then d(E,F) < h.
(In particular, d(A,C) < h and d(B, D) < h.}) See Figure 7h.

Proof :

Case (1) : XW : Y Z (or equivalently, XY A ZW =~ 0).

We have d([X,Y],[Z,W]) ~ 0. Since XY A ZW < min(d(X,Y),d(Z,W)) (Lemma
7.3.3(3)), we can find A ~ B ~ C ~ D with (XABY), (ZCDW) and d(4, B) = d(C, D) =
XY ANZW.

Case (2) : XY : ZW.

We have XY AZW = -XZAYW <0. So, XY AZW ~ 0, and we are back in Case
(1)
Case(3): XZ:YW.

Let (XZ)PQ(YW) be a spanning tree for X,Y, Z, W (Section 3.1). Thus, d(P,Q) =
XY ANZW.

Now, there exist A',B' € [X,Y] with A' ~ P and B' ~ @, so that d(4',B') ~
d(P,Q) ~ XY A ZW. Since d(X,Y) > XY A ZW, we can find 4, B € [X,Y] with A ~ A’
and B ~ B' and d(4,B) = XY A ZW. Now,

d(X,Y) = d(X, P) + d(P,Q) + d(Q,Y)
~ d(X, A) + d(A, B) + d(B,Y).

Thus if (X BAY'), then d(4,B) ~ 0, and so XY A ZW ~ d(A, B) ~ 0, and we are back in
Case (1). Therefore, we can assume that (X ABY ).

Similarly, we can find C, D € [Z, W] withC ~ P, D ~ Q and (ZCDW) and d(C, D) =
XY ANZW.

Now, suppose that E € [4,B] and F € [C, D] satisfy d(A, E) = d(C, F). Applying
Lemma 3.1.2 twice, we find F' € [C,D] with F' ~ E. Now, d(C,F') ~ d(C,E)
d(A,E)} ~ d(C,F),and so F ~ F'. Thus E~ F.

¢

7—18




Suppose Xo,X1,...,Xn is any sequence of points in the geodesic space (S,d). We
shall write

n

(X0, X1, - » Xn] = | J[Xi1, Xi]

i=1

for the piecewise geodesic path joining these points. If v = [Xo, Xi,... , Xn], then, as in
Section 7.3, we shall write

A(’Y) = A(Xg,.Xl,.. .,Xn) = maX{XiX«j_'_l A .Xj_|.1Xj | 0 S ) <] <n-— 1}

(Formally we should think of v as consisting just of the sequence of points (Xo, X1,.. ., Xn),
though we are imagining it as a piecewise geodesic path, or as the image of this path in
S.) Note that if 4" is obtained by subdividing 7, i.e. by adding additional points along the
geodesic segments of y, then we have A(y") < A(7).

If (S, d) is k-H1, then the quantity A{7y) measures the maximum distance along which
~ doubles back on itself (along a pair of geodesic segments). Proposition 7.3.4 tells us that
the total length of v is at most d{ X, X,) + 2(2n — 3)A(7) + 2(3n — 4)k.

We shall apply this to the tree construction given in Section 3.3.

Let V C S be a set with (n-+1) elements. A linear ordering on V can be thought of as
a bijection X : {0,1,...,n} — V. We shall write X; = X(3) and X = (X0, X1,-..,Xn).
We define Ty = Tx C § inductively as follows. We take T(x,,x,) = [Xo,Xa1] and
T(Xo, X110 Xn) = L(XoyXiyesXa—1) Y [X,,Y,], where Y, is a nearest point to X,, on the
tree T(xo, Xy, Xno1)+ YVE S€E that T’y an embedded treein S, and that ext T'x € V. Thus,
Tx is an embedded spanmning tree for V in the sense described in Section 7.1.

Suppose that 4,7 € {0,1,...,n}, with i > j. Let a be the arc in Tx joining X; to X;.
Then « is piecewise geodesic with at most n segments. In fact, « has one of the following
forms (Figure 7i).

Figure Ti.
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(1) @ = [X:, Y5, Y4y, Yy o+ 9 ¥5,, Y50 Y5,y o+, Y5y, Yo, X5] where p, g € {0,1,...,n} and
t=14) > 1 >+ >iyand j=jo > j1 > - > jg. Also, the i, and j, are all distinct.
Moreover, we have ¥; € [X; Y Jfor 0 <r <p-1,and Y;, € [X;,,,,Y;,,,] for
0<s<q—1.

(2) e =[X;,Y5,Y5,,Ys,..., Y5, X;] where p € {0,1,...,n}and i =4 > &3 > --- > i,
Also Y;, € [X;,,,,Yi, 4] for O <r<p-1.

(3) & = [Xo, X1]. _

Suppose that [4,B] and [C,D] are two distinct geodesic segments of «, so that
A,B,C,D occur in this order along . (Possibly B = C.)

By inspection of the form of a given above, we see that we must have either d(4,B) <
d(A,[C,D]) or d(D,C) < d(D,[A, B]). We claim that this implies that AB A DC < h,
where b is the constant of Lemma 7.5.1. ,

We can assume, without loss of generalify, that d(4, B) < d(4A,[C, D)), and (since
h > 0) that ABACD > 0. Lemma 7.5.1 gives us points A', B' € [4,B] and D' € [C, D]
with (44'B'B), d(A',B"'Y = ABADC and d(A',D') < h. Now,

d(4,A") + ABADC = d(4, A') + d(4', B') < d(4, B)
< d(4,[C,D]) < d(4,4") +d(4,C")
< d(4,A)+ h.

Thus, AB A DC < h as required.
Since this applies to any pair of geodesic segments of «, we conclude that

Ala) < h.

As remarked in Section 7.2, the constant A must have the form Ak for some universal
A € R. We may now apply Proposition 7.3.4 to find that

lengtha < d(X;, X;) + 2(2n — 3)(Ak) + 2(3n — 4)k
= d(X;, -XJ') + kH(n),

where H(n) = 2\(2n — 3) + 2(3n — 4).
We have shown:

Proposition 7.5.2 : There is a linear function H : N — R such that the following
holds.

Suppose that (S,d) is a k-H1 geodesic space, and that Xy, X1,...,X, € 8. Let Tx
be the embedded spanning tree as defined above. Ifi,j € {0,1,...,n} and « is the arc in
Tx joining X; to X;, then

length o < d(X;, X;) + kH(n).

This proposition is used in the proof of Theorem 7.6.1.
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We conclude this section with a brief discussion of Steimer trees.

Suppose that (S,d) is a geodesic space, and V C § a set of (n+ 1) points. Among all
spanning trees (T, o, f,g) for V, we choose one of minimal length o(T). It is an exercise
to show that this minimum is always attained in geodesic spaces. Such a tree must be
embedded, so we may identify T' with its image, Sv, in 8. Clearly, each edge of Sy must
be geodesic. We call Sy a Steiner tree for V.

Suppose that (S, d) is k-H1 and that a an arc in Sy joining two points of V. A simple
application of Lemma 7.5.1 shows that, as in the previous case, A(a) < h (otherwise we
could construct a shorter tree). Applying Proposition 7.3.4 (as in the case of Proposition
7.3.2) we deduce:

Proposition 7.5.3 : There is a linear function J : N — R such that the following
holds.

Suppose that (S,d) is a k-H1 geodesic space, and that V C § is a set of (n+1) points.
Let Sy be a Steiner tree for V. If X,Y € V, and « is the arc in Sy joining X to Y, then

lengtha < d(X,Y) + kJ(n).

7.6, A logrithmic spanning tree.

In this section we collect the various pieces together to show how to comstruct an
O(log n)-approximating tree.

Suppose (S,d) is a k-H1 geodesic space, and V C S is a set of (n + 1) points. We
shall write p for the metric d restricted to V. Thus, hypp < k (Section 7.3). Proposition
7.3.1 gives us an abstract spanning tree 7' = (I",0', f') for V with

prr SpE pr t (1 + log, n)k

As remarked after the proof of Proposition 7.3.1, we can identify V with extT'.

Now, Lemma 7.4.1 gives us a pinnate structure ¢ : V — V for T of depth p, where
p<1+log, (’3—';:-7‘—'-) Let X be the root of this pinnate structure.

Suppose X € V has depth ». We defined, at the end of Section 7.4, the “path sequence”
X = (Xo,Xy,...,X,) for X, where X; = ¢"*X, so that X = X,. If X' is some other
point of V, of depth s, then the path sequence X' = (X,,X;,...,X,) for X' will agree
with that for X precisely on some initial segment (Xg, X1,...,X3:) = (Xo, X1,..., X3).
This initial segment is, itself, the path sequence, W, for some point W = W(X,X") € V
of depth t. (Possibly W is the same as X or X'.) In the tree T', we must have either
XXo|X'W or X'X3)XW (see Section 7.4). We see that

pei(X, X") + pr (W, Xo) = max(pr (X, W) + pr (X', Xo), pr (X', W) + prr (X, X0)).
Thus,
(X, X") + 2k(1 + log, n)
> max(p(X, W) + p( X', Xo) — p(W, Xo), p(X", W) + p( X, Xo) — p(W, XQ)).
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We shall now use these path sequences to construct our immersed r = (7,0, f, g) as
follows.

For each X € V, we construct the embedded tree T(X)} = T, as defined in Section
7.5, where X is the path sequence for X. Since the definition of T'x was inductive, we can
do this consistently over initial segments, so that for any X, X' € V, the trees T(X) and
T(X') agree on the common subtree T(W(X, X')). Thus the trees T(X), as X varies in
V, form a directed set under inclusion. This allows us to define T' as the direct limit of
the T(X).

More explicitly, let T = {(X,Y) €V x S| Y € T(X)}. We write (X,Y) ~ (X',Y") if
Y =Y' € T(W(X,X'")). We check that ~ is an equivalence relation, and set T = T/ ~.
Let ¢x be the natural inclusion of T(X) in . We define f : V — T by f(X) = tx(X).
We define g : T — S by demanding, for each X € V, that gotx be the inclusion of T(X)
in §. Thus, go f is the identity on V. Finally, the path-metrics on the T(X), induced
from &, themselves induce a path-metric ¢ on IT'. Clearly, f is distance non-increasing
from (T, o) to (S,d). This defines our spanning tree r = (T, 7, f, g).

Note that if Y,Y' € V both lie in the path sequence for X, then f(¥),f(Y') €
txT(X) CT. Applying Proposition 7.5.2, we see that

(YY) < p (Y, Y') = o(£(Y), f(Y") < p(Y,Y") + kH(p),
where p = depth ¢.
Now, suppose that X, X' € V are arbitrary. Let W = W(X,X'). Now, Xy and W
each lie in the path sequences of both X and X'. Thus,

p(X, X") + 2k(1 + log, n)
> max(p(X, W) + p(X', Xo) — p(W, Xo), p( X', W) + p(X, Xo) — p(W, Xo))
> max(p-(X, W) + p- (X', Xo) — pr(W, Xo), 0 (X', W) + (X, Xo) — p-(W, X0))
— 2kH(p).

But hyp pr =0, and so
pr(X, X" + pr(W, Xo) < max(p-(X, W) + pr(X', Xo), pr (X', W) + p-(X, Xo)).
We conclude that
p(X, X") < p(X, X") + 2k(1 + log, n + H(p)).
Now p £ 1 + log, (31%13), and H is linear, so
pr(X, X") < p(X,X") + kF(n),

where

F(n) = 2(1 + log, n + H(1 + log, (n : 2)))
= O(log n).

T—22




We have shown:
Theorem 7.8.1 : There is a function F : N — R such that the following holds.

Suppose (S,d) is a k-H1 geodesic space, and V C S is a set of (n + 1) points. Then,
there is an immersed spanning tree T for V in 8, such that for any X,Y €V, we have

p-(X,Y) < d(X,Y) + kF(n).

Moreover, F(n) = O(logn).
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CHAPTER 8 : Propagation of hyperbolicity.

8.1. Summary.

The aim of this chapter is to show that the property of almost-hyperbolicity “prop-
agates”. Thus, we shall show that a path-metric space is almost-hyperbolic if and only if
it is “locally almost-hyperbolic” and “almost simply-connected”, provided, of course, that
we properly quantify the various parameters involved.

Let (S,d) be a path-metric space. Recall, from Section 2.3, the notion of a cellular
net, (P, p, ), and of its mesh, m(P, p), as well as the notion of a loop, (v,0). Given X € §
and 7 € [0, 00), write N.(X) for the uniform ball {Y € §{d(X,Y) <r}.

Definition : The space (S, d) is m-simply-connected if every loop in S bounds a cellular
net of mesh at most m.

Definition : Given i € {1,2,3,4,5}, and k € [0,00) LI [0, 00)?, and r € (0, 00), we shall
say that (S,d) is r-locally k-H(3) if, for each X € S, the uniform ball N,(X) about X is
k-H(%) in the induced path metric.

Given any @ C S, we shall write dg for the induced path-metric on Q. Applying
the equivalence of definitions H(i) to the spaces (N,dy) for N = N,(X) as X varies in
S, we see that if (S, d) is r-locally k-H(4), then it is r-locally &'-H(j) for E = E(k,i,j).
This is the primary reason for making the definitions in this way. We shall use mostly the
hypothesis of locally H1. Clearly any space is r-locally k-H1 if » < k/2, so the hypothesis
is only useful if » is large in relation to k.

Proposition 8.1.1 :
(1) Yk 3m such that any k-H1 geodesic space is m-simply-connected.
(2) Vk 3k' ¥r any k-H1 geodesic space is r-locally k'-HI.

Part (1) is an immediate consequence of property H3ca (Section 6.1).

Part (2) is in not guite immediate, since we have defined local hyperbolicity in terms
of the induced path metric on balls. However, it is a simple consequence of the uniform
convexity of balls in an almost hyperbolic space, as we shall explain in Section 8.2.

The main result of this chapter is the following converse to Proposition 8.1.1.

Theorem 8.1.2 : Vk 3k' Vm IR such that any m-simply-connected R-locally k-H1
geodesic space is k'-H1.

As usual, we can take &' to be a certain universal multiple of k (see Section 8.7).

The necessity of some sort of simple-connectedness is easy to see. Consider, for exam-
ple, the subset Wr = ([0,00) x {0}) U s~ 5 Cn of the euclidean plane R?, where R€ N,
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and for each n € N, Cp, is the circle of radius n about the origin (0,0). If we take the
induced path-metric on Wg, then it is R-locally 0-H1, but not k-H1 for any k.

The fact that simple-connectedness is central to this result suggests that we should
make use of the linear isoperimetric inequality (property H3). The idea is roughly as
follows.

Suppose that (S,d) is almost simply-connected, and locally almost-hyperbolic, for
suitable parameters. Let « be any loop in §. We span v by a “disc” of “minimal area”.
We may imagine this disc as having some kind of metric structure induced from &. In this
induced structure, the disc is, itself, locally almost-hyperbolic. The reason for this is as
follows. Any loop in the disc of small diameter satisfies the linear isoperimetric inequality
in S since S is locally H3, and thus intrinsically in the disc since it is area-minimising. We
see that the disc is intrinsically locally H3.

We have essentially essentially reduced the problem to a 2-dimensional situation. In
this context, we can imagine that the “curvature” of our disc is always negative when
averaged on a certain scale. From this we might hope to deduce that the global average
of the curvature of the disc is negative., This should then imply the global isoperimetric
inequality, namely that the area of the disc is at most a certain linear function of the length
of its boundary. This would show that (S, d) were H3.

There are many ways one might try to make sense of this argument. It seems that all
lead into technical complications at some point or other. We shall try to keep these to a
minimum by adopting a notion of spanning disc best suited to our purposes, namely what
we shall call a “vertex net”. We can thus contain the most unpleasant technicalities to
relating this to our previous notion of cellular net (Lemma 8.5.1). The essential passage
from local to global will take the form of a combinatorial lemma (8.4.1).

We shall give a more detailed outline of the proof in Section 8.6. For the moment, we
return to a discussion of local hyperbolicity.

8.2. Local hyperbolicity.

Suppose (S, d) is a geodesic space. If Q is a closed subset of S, and dg is the induced
path-metric on @, then (@, dg) is also a geodesic space. (In general, we need to allow dg
to take the value oo when two points are not joined by a rectifiable path in @.)

Recall the discussion of convexity from Chapter 4.

Lemma 8.2.1 : Suppose that (S,d) is a geodesic space, and that @ C S is closed and
A-convex. Let N = N»(Q). Then, for all X,Y € N, we have

dn(X,Y) < d(X,Y) + 4).

Proof: Let Z € projo X and W € projpY. Then[Z, W] C N, and the path [X,Z,W,Y] =
[X,Z]U[Z,W]U[W,Y] C N has length at most d(X,Y) + 4).

¢




We deduce Proposition 8.1.1(2) as follows.

Corollary 8.2.2 : Suppose (S,d) is a k-H1 geodesic space, and Ay = Ag(k) is the constant
of Lemma 4.2. For any r € [0,00) and X € S, we have that (N,dy) is (k+8Xo)-H1, where
N = N.(X).

Proof : If r < Ao, then clearly (N,dn) is (4)o)-HI.
If r > Ao, then Q@ = N(,_3)(X) is Ag-convex, by Lemma 4.2. Thus, d < dy < d+4
by Lemma 8.2.1. The result follows easily.

¢

Remark : There is an alternative way one might define local hyperbolicity. Given
a geodesic space (S,d), we weaken the hypothesis of k-H(3), for ¢ € {1,2,3,4,5}, by
demanding that the set of points under consideration should have diameter at most some
fixed number, which we call the range. Thus, for example, to say that (S, d) is locally 4-H1
in this sense means that XY : ZW or XZ : WY or XW : Y Z for any X,Y,Z,W € &
satisfying diam{X,Y,Z, W} < R for some fixed range R. The equivalence of these five
definitions for large range follows from the arguments of previous chapters, although we
cannot apply these results directly. Relating these notions to the definitions of Section
8.1 is easiest using property Hi. Suppose we are given k,7 € [0,00). Then if the range,
R = R(k,r), is large enough, and (&8, d) is a locally k-H1 geodesic space, in the sense just
defined, then, using the arguments of previous chapters, we see that any uniform »-ball in
S is almost convex. It follows (as in 8.2.1 an 8.2.2) that (S,d) is r-locally k'-H1 in the
original sense (i.e. that of Section 8.1), where &' depends only on k. The converse of this
statement (similarly quantified) is a consequence of Lemma 8.2.3.

We conclude this section with the following trivial observation.

Lemma 8.2.3 : Suppose that (S,d) is a geodesic space, and N = N,.(X), where X € §
and v > 0. Then for anyY,Z € N,;»(X ), we have dn(Y,Z) = d(Y, Z).

Proof: [Y,Z]C N.

¢

This means that if we know that (S,d) is r-locally almost hyperbolic, we can apply
any result obtained for globally almost hyperbolic spaces, provided that we ensure that
our constructions do not take us outside a set of diameter r.

8.3. A geometric lemma.

Suppose (S,d) is a geodesic space, and that X,Y,Z, W, X, X;,..., X, € S. Re-
call, from Section 7.5, the notation XY A ZW, A(Xp, X1,..., X0), {Xo, X1,...,X,] and
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(XpX; ...Xn). Note that if Xo = X, then

A(Xo, X1y. .0, Xn) = A(X1, X2, -+, Xn1, Xo, Xa)-

Thus, if v = [Xo, X1,...,Xx] is a closed piecewise geodesic path, then A{#) is defined
independently of the choice of basepoint. We shall write lengthy = Yo d( Xy Xia)

Lemma 8.3.1 : There is 2 map F: N — R and a fixed X > 0 such that the following
holds.

Suppose that (S, d) is a k-H1 geodesic space, and that v is a closed pathin & consisting
on n geodesic segments. Then,

lengthy < (A(y) + Ak)F(n).

Proof : This is just a special case of Proposition 7.3.4 (which gives ¥ linear in n).

Alternatively, one may give a short proof of Lemma 8.3.1 as follows.

Let L = lengthy. Without loss of generality, we can suppose that d(Xn-1,Xo0) =
d(X;, Xs41) for each i € {0,1,...,n—1}. Thus, d(X ~1,Xo) 2 L. Fori=0,1,...,m—1,
let ¥; be a nearest point in [Xg, Xn—1] to X;. Thus, Y5 = Xp and Yy = X, 1. Clearly
there is some 7 € {0,1,...,n — 1} with (XoY;Y;11Xn—1} and

1 1
(n— 1)d(-Xn—11 Xy) 2 ml—h

Then, either ;1(—13:5]_'. ~ 0, or else one can show without difficulty that

d(}fia 1frl-i-l) 2

1
> -t ANY;Yiy1 = —————=1L.
A("}’)_.XD.X 1AY Y = n(n-—l)L

(This argument gives F' quadratic in n.)

&

Lemma 8.3.2 : Vk Ja VH 3L such that the following holds. Suppose (S,d) is a k-H1
geodesic space, and that v = [Xy, X1,...,Xy] is a closed piecewise geodesic path with at
most 13 segments. (Thus, Xo = X, and n < 13.) Then, either lengthy < L, or else we
can find 0 <i < j <n, and A, B € [X;,X;41], such that (X;ABX;11), d(A,B) > H and

d(Xz‘, B) + d(B, A) -+ d(A,Xi+1) < d(.X,;, Xf;_}.l) + a.

Proof : Let L = (H + M) max{F(r) |1 <r <13}

If A(v), then by Lemma 8.3.1, lengthy < L. So, suppose A(v) > H. This means there
exist 4,7 with 0 < i < j < n and with X; X, A X;41.X; > H. Applying Lemma 7.5.1, we
find 4, B € {X;, Xj41] as required, with @ = 2h (h being the constant of Lemma 7.5.1).
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8.4. A combinatorial lemma.

Let P be a presentation of the disc D as a CW-complex. Write C;(P) for the set
of i-cells of P, and N(P) for the 1-skeleton of P. We say that X is j-edge-connecied, for
j €N, if no set of j — 1 edges disconnects &. We say that I is trivalent if every vertex of
T has degree 3. _

Note that if T is trivalent and 2-edge-connected, then the boundary, 8¢, of every 2-cell
¢ € Cy(P) is an embedded topological circle. Moreover, the two endpoints of any edge are
distinct. Thus, in this case, P, is a cellulation in the sense of Section 2.3. If ¥ is trivalent
and 3-edge-connected, then any two distinet 2-cells of P meet either along a single commeon
edge or not at all. Moreover, any 2-cell of P meets 8D either in a single edge or not at all.

For i = 0, 1, let C2(P) be the set of i-cells lying in 8D. Write Cf(P) = C:(PN\CE(P).
Clearly, |C2(P)| = |C2(P)|. Given c € Ca(P), write v(c) = |Co(P) 1 O¢] for the number
of vertices in the boundary of ¢ (or equivalently, the number of edges of ¢).

We call ¢ € C2(P) an interior 2-cell if eN 3D = 0. Write CI{(P) for the set of interior
2-cells of P, and Cf(P) = Ca(P)\C3(P).

Lemma 8.4.1 : Suppose that P is a cellulation of the disc D, with ©(P) trivalent
and 3-edge-connected. Suppose that for any two distinct interior 2-cells, ¢1,¢3 € ci(P),
satisfying v(c1) < 13 and v{cz) < 13, we have that ¢; Nep = §. Then, it follows that

|C2(P)] < 15ICT(P)]-

Proof : We construct a new cellulation P' of the disc by contracting each interior 2-
cell with fewer than 14 edges to a single point. This is a well-defined process, since,
by hypothesis, no two such cells intersect. The set of interior 2-cells of P’ corresponds
bijectively to the the set of interior 2 cells of P with at least 14 edges. Now each such cell
has lost at most half its edges through this process of contraction, and so each ¢ € C5(P")
has at least 7 edges. Clearly, there is a bijective correspondence between C?(P) and
CP(P"), since 8D is unchanged. Note also that P' is 3-edge-connected, and so Co(P") is
also in bijective correspondence with C2(P). Also, each vertex of P’ has degree at least 3.
For i = 0,1,2, write A; = |Ci(P)], A? = |CP(P)|, X = |C{(P")], A = |CP(P')] and
\ = [CH(P).
The following relations are easily verified.
() dtre-M=1,
(2) 320 < 2Mq,
(3) A= Af + A{'.v
(4) X2 = 2§ + AL,
(5) TAL < 24,
(6) A‘_'? :A?z Ag:




(7) A < Ag + s
Now, from (1) and (2), we obtain the following inequality (*),

A <322 —1).

Applying (3), (4) and (6) to this, we get
M <l +2x0 -3
From (5), we get
AL <2030 + 2] - 3),

and so

M <4l —s.
From (4) and (6),

Ao =X 420 <(ax2 -6)+ 22 =520 6.
Using () again, we get
A1 €32z —1) <1527 — 21,
By (7) and (1),
Ay < do+Ag=1+4+X <1508 —20.

Using (6),
As < 15A% — 20.

So certainly,
|C2(P)| < 15|CP(P)|-

&

8.5. Vertex nets.

This is a technical section. We define the notion of a “vertex net”, which is another
formulation of the idea of a spanning disc. We relate this to the idea of a cellular net from
Section 2.3.

Let G be a finite graph. We write Cy(G) for the set of vertices of G, and C1(G) for
the set of edges of G. By a subgraph, G', of G, we mean a subset C1(G') of the edges of
G, together with all their endpoints.

Suppose that (S, d) is metric space, and that g : Co(G) — S is any map. Ife € Ci(G),
we shall write

length(e, g) = d(g(v), 9(w)),

where v, w € Cy(G) are the endpoints of e. If G’ is a subgraph of &, then we write

length(G', g) = Z length(e, g)
e€C1(G")
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and _
T
coarseness(G', g) = eexg% . length(e, g).

As an example, consider the circle S? as the unit circle in the complex plane. Forn € N
and j € Z, let v} be the point e?mili/m) ¢ St Let V™ = {o},v3,...,v7} C 81. For any n,
we can represent S* as a graph with vertex set C;(S*) = V™. Suppose (S, d) is a geodesic
space, and g: V™ — & any map. Then, we can identify (S, g) with the closed piecewise
geodesic path v = [Xy, Xy,...,Xy]. Thus, length(S?, g) = lengthy = Y 7., d(X;, X;-1).
We shall call such an object a cycle of n points in S.

Let P be a cellulation of the disc D. We call such a cellulation good if the 1-skeleton,
¥ = X(P), is trivalent and 2-edge-connected (see Section 8.4), and if each 2-cell of P meets
0D either in a single edge or not at all.

We identify S = 8D.

Definition : Let (5,d) be a geodesic space. A verter net, (P,g), consists of a good
cellulation P of the disc D, together with a map ¢ : Co(P) — S.

We can thus define length(P, g) and coarseness(P, g) by putting G' = G = E(P) in
the formulae given above. We set

mesh(P) = . é)él;?()fp ) length(de, g).

Definition : Suppose that v = (57, go) is a cycle of » points in S. We say that v bounds a
vertex net (P, g), if CJ(P) =V™, and g|C{(P) = go. (Recall that CO(P) = Cy(P) N 8D.)
Clearxly, coarsenessy < coarseness(P, g} < mesh(F, g).

We now relate all this to the definitions of Section 2.3.

Lemma 8.5.1 : Let 0 be a path-metric on the circle S'. Suppose that the points
T1,®3,..., 2y € ST are cyclically ordered, and cut §* into segments of o-length at most
myg. Suppose that (S, d) is a geodesic space, and that 8 : (S*,0) — (S, d) is distance non-
increasing (i.e. f is a “loop” in the sense of Section 2.3). Let ~ be the cycle [Xq, X1,..., Xa),
where X; = f(z;) for 1 > 1, and Xo = X,,. (Thus coarsenessy < my.) Then, we have the
following.

(1) Suppose that v bounds a vertex net (P, g), then for any € > 0, 8 bounds a cellular net
(P, p, f) with
m(P, p) < my + mesh(P, g) + e.

(2) Suppose that 8 bounds a cellular net (P, p, f), then v bounds a vertex net (P', g) with

mesh(P', g) < mq + m{P, p).




Proof:

(1) Write C2(P) C Ci(P) for the set of 1-cells lying in 8D. Write CL{(P) = C,(P)\CE(P).
By hypothesis, each 2-cell of P meets 3D either in single edge, or not at all. Let n =
/15 (P)].

We define a path-metric p on L(P) as follows. If e € C2(P), set ple) = my. If
e € C{(P), set p(e) = max(n,length(e, g)).

Now (by definition), C8(P) = Co(P) N 8D = V™ = {v},07,...,v}}, and g(v}) = X;.
We define 8f : (8D, p) — (S, ) by setting 8f(v}]") = &, for i = 1,2,...,n, and mapping
each component of 8D\ C?(P) onto the corresponding component of 1\ {zy,zs,...,2,},
linearly with respect to the parameterisations induced by p and o respectively. Note that
B o 8f|CE(P) = g|C?(P), and that 8f is homotopic to the identification 8D = §*.

We define f : Z(P) — (S, d) as follows. We take f|Co(P) = g and fl0D = S o 3f.
(Note that this is consistent on C2(P).) Finally,ife € C{(P), with endpoints v,w € Cy(P),
then we map e (with parameterisation induced by p) linearly onto the geodesic [g(v), g(w))
in S.

We have defined (P, p, f). It is readily checked that m(P, p) < mg + mesh(P,g) + e.
This completes the proof of part (1).

(2) We have that 8 bounds a cellular net (P, p, f). We can suppose that mg > 0. We shall
construct (P', g) in a series of stages.

We identify 8D = S. Let Dy be the topological disc Dy = DUgp (S* X [0,2]), where
we identify §* = 8D with S x {0} via z « (,0).

Let Q be any triangulation of the annulus S x {0,1]. Let h: S* x [0,1] — S* be a
homotopy from h{.,0) = 8f : (8D, pap) — (S, ) to the identity h(.,1) =151 : §* —
$1. By subdividing Q enough times, we obtain a new triangulation Q; of S x [0,1] with
the property that a(h(p), h(g)) < m/3 for the endpoints, p and ¢, of any edge of ¢}1. We
define a cellulation, @, of $* x [1,2] (i.e. a presentation of S* x [1,2] as a CW-complex)
as follows. Set g = @, and for each i € {1,2,...,n}, write [z;_1,z;] C S" for the closed
interval joining x;_; to z; in S? (in the positive direction). We take

C(](Qz) = {:131,332,. . .,:En} X {1, 2},

C1(Q2) = {lzi—1, ] x G} 1<i<n, j =12 U{{z} x[1,2]|1 <i < n},

and
C2(Q2) = {[zi—1, %] x [1,2][1 <7 < m}.

The cellulations P, Q; and @2, together give us a cellulation, Py, of the disc Dy, after
taking a common subdivision on the circles 8D = §* x {0} and $* x {1}. By taking the
maximal such subdivision, we will have that each 0-cell of Py has degree at least 3 in X(Fp).
Moreover each 0-cell in 8Dy = S* x {2} has degree exactly 3. We define go : Co(Py) — S
as follows.

90|Co(P) = f|Co(P),
90]Co(@1) = B o h|Co(Q1),

8—=8




and
go(zi, §) = B(z:)

for i =1,2,...,n and j = 1,2. One can check that gy is well-defined on any O-cells P, @,
or @2 may have in common. Moreover, one may check that mesh(P;, go) < mo + m(P, p).

Now let ¢ : D — Dy be any homeomorphism with ¢(v?) = (2;,2) fori =1,2,...,n.
Let P; be the pull-back of the cellulation Py to . Let g1 = go 0 ¢ : Co(P1) — S. Thus
go(v?) = X; = B(z;). Clearly, mesh(Py,g:) = mesh(Py,g0). Note that every vertex of
C8(P;) has degree 3, and that no 2-cell meets 3D in more than one edge.

Finally, we define P' by arbitrarily splitting apart each vertex of Cy(P;), with degree
at least 4, to give a tree in X(P;). Thus, we can arrange that each vertex of P' has degree
3. There is a natural map 6 : Co(P'} — Cy(Py) given by contracting all these trees back
to points. We define g = g4 08 : Co(P') — 8. Clearly, mesh(P’, g) = mesh(P;, 1) <
mo + m(P, p).

&

Corollary 8.5.2 : In an m-simply-connected geodesic space, any cycle of coarseness my
bounds a vertex net of mesh at most m + my.

Proof : Apply Lemma 8.5.1(2) to the closed piecewise geodesic path given by the cycle
(i.e. by joining the points of the cycle by geodesic segments).

¢

Corollary 8.5.8 : VYm,mg, A, p ks, hs such that if (S,d) is a geodesic space in which
every cycle of n points, with coarseness at most mg, bounds a vertex net of mesh at most
m and with at most An + g 2-cells, then (S, d) is (ks, hs)-H3.

Proof : Apply Lemma 8.5.1(1).
<&

8.6. Main Proof.

In this section, we give the proof that almost hyperbolicity propagates. It will remain
in the final section (8.7) to refine this statement with regard to the parameters involved.

The idea of the proof is as follows. Suppose that (S,d) is an m-simply-connected
r-locally k-H1 geodesic space, with r much larger than both m and k. Choose any cycle,
v = [Xo,X1,...,Xn}, in 8. Let my > coarsenessy = max{d(X;,X; 1) |1 < ¢ < n}.
Corollary 8.5.2 tells us that v bounds a vertex net of mesh at most m + mg. We choose
M > m + my very large (but smaller than ). Among all vertex nets bounded by «, and
of mesh at most m, we select those of (close to} minimum length. Then, among these, we
choose one, (P, g), with a minimal number of 2-cells. We aim to show that P satisfies the
hypotheses of Lemma 8.4.1.

First, we note that P must be 3-edge-connected. This is a simple argument.
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Next, we show that there is some upper bound, L, on length(8e¢, g) for any interior
2-cell ¢ with fewer than 14 edges. The reason is that, if length(8c, g) were very large, we
could use Lemma 8.3.2 to reduce length( P, g) by partially collapsing the 2-cell ¢. In doing
this, however, we disturb one of the neighbouring cells, so it is conceivable that we may
increase the mesh of the net above M. In this case, however, Lemma 6.1.4 allows us to
cut the offending 2-cell in half, without increasing the total length of the net too much.

Finally, suppose that ¢; and ¢, are adjacent interior 2-cells, each with at most 13
edges. We have shown that length(d¢;) < L, and we can assume that L < M/2. Thus,
if we delete the common edge of ¢; and ¢;, we will not increase the mesh beyond M.
However, we reduce the number of 2-cells. This contradicts the choice of (P, g).

We conclude that P satisfies the hypothesis of Lemma 8.4.1. Thus P has at most 15n
2-cells. We now apply Corollary 8.5.1 to deduce that (S, d) is almost hyperbolic.

To make this argument precise, we need to describe, more carefully, the modifications
of vertex nets we use, and to quantify all the parameters involved.

Suppose that (P, g) is a vertex net. As before, write C?(P) for the set of 1-cells of P
which lie in 8D. Write Cf = C;(P)\C#(P). We describe the following ways to modify
(P, g) to give a new net (P, g').

(1) Addition of an edge.

Vi W) vy Wy
e, e, o
e[ L, x-ey
Ca
wi “oow G

Figure 8a.

Suppose ¢ € Co(P). Suppose e;,e; € CI(P) are distinct edges of ¢, with endpoints
vy, wy and v, w; respectively. We assume that v;, wi,vs,ws (not necessarily distinct) are
cyclically ordered in this way around dc. (Figure 8a.) Suppose that C &€ S lies in the
geodesic segment [g(v;), g(w1)] and that D € [g(v2), g(w2)]. We form P' by adding a new
edge, e, between the points z € e; and y € e;. Thus, Co(P') = Co(P) U {z,y}. We define
g by ¢'|Co(P) = g and ¢'(z) = C and ¢'(y) = D. We have

length(P’, ¢') < length(P, g) + d(C, D)
mesh(P', ¢') < max(mesh(P, g), length(8e;, ¢'), length({e,, 7)),

where ¢y, ¢y € Co(P') are the 2-cells meeting e.
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(2) Partial contraction of a 2-cell.

Let ¢, ey, €2,01,W1,v2, w2 be as in modification (1). Suppose that A,B € S with
{g(vy)ABg(wz)). We form P' by contracting 2 strip joining e; to ez as shown in the
Figure 8b. Let z and y be the new vertices introduced. Thus, Co(P') = Co(P) U {z,y}.
Define ¢’ by ¢'|Co(P) = g and ¢'(z) = A and g'(y) = B. We have

length(P', ¢') < length(P,g) — d(4,B) + 6
mesh(P’, ¢') < mesh(P, g) + 6,

where § = d(g(v), B) + d(B, 4) + d(4, g(wn)) — d(g(o1), g(w1)).

(3) Removal of an edge.

3
o,

Figure 8c.

Suppose e € C1(P) with endpoints z,y € Cy(P). Suppose that z,y ¢ 8D. Thus
Co(P'} = Co\{z,y}. Let ¢' = g|Co(P). We have

length(P',¢') < length(P,g)
mesh(P',¢') < max(mesh(P, g),length(8e1, g) + length(deq, ),

where ¢1, ¢y € Ca(P) are the 2-cells of P meeting e.
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Figure 8d.

(4) Removal of a subgraph.

Suppose the edges e; and e; of P separate X(P) into two components. Let G be the
component not meeting 8D. (Figure 8d.) We form P' by removing G and joining e; and
ez to form a single edge e. Thus Co(P') = Co(P)\Co(G). Let ¢’ = g|Co(P'). We have

length(P', ¢') < length(P, g)
mesh(P', ¢’} < mesh(P, g).

We now give the proof in detail. We make no essential use of the completeness or
local compactness assumptions on S.

Proposition 8.6.1 : Vk,m 3r,k' such that if (S,d) is an m-simply-connected r-locally
k-H1 geodesic space, then it is k'-H1.

Proof : We are given k, m.
Choose ¢ > 0 and mq > 0 arbitrarily (for example take € = my = 1).
Let a be the constant arising from Lemma 8.3.2, given k.
Let b = a 4+ 2mg.
Let [ be the constant arising from Lemma 6.1.4, given k; = k and b.
Let H=a+14+mg+ 2e.
Let L be the constant arising from Lemma 8.3.2, given k and H.
Let M = max(2L,m + mq, 2(l +b)).
Let r =M + a.

Suppose that (S, d) is an m-simply-connected r-locally 2-H1 geodesic space. Suppose
v = [Xo, X1,...,Xp] is some cycle in S, with coarseness v < mq.

Let P be the set of all vertex nets in & spanning v, and with mesh at most M. Since
m+ my < M, applying Corollary 8.5.2, we have that P # 0.

Let

A = inf{length(P, g} | (P, g) € P},
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and
Po ={(P,g) € P| length(P,g) < A + €}.

Choose a fixed (P, g) € Py with minimal number of 2-cells. We shall show that (P, g)
satisfies the hypothesis of Lemma 8.4.1. We can deduce from this that |{C5(P)| < 15n.
The result then follows by applying Corollary 8.5.3 and the equivalence of H1 and H3.

First note that P is 3-edge-connected — otherwise, we could use modification (4) to
strictly reduce the number of 2-cells, without increasing the length or mesh.

Now, suppose (for contradiction) that there is some ¢ € C3(P) with length(8c, g) > L,
and v(c) < 13. Let 1,92, .., ¥s be the set of vertices dcN Cy(F), ordered cyclically around
Hc. Thus s < 13. Set 3 = ., and let ¥; = g(y;) € S for each i. Let o be the closed
piecewise geodesic path [Yp,Y1,...,Ys]. Now, diam[Y¥;,Y1,...,Y,] < mesh(P,g) < m <.
Thus, we apply Lemmas 8.3.2 and 823 to find 0 < ¢ < j < nand 4,B € (Y, Y44
with (Y}'ABYJ'-H): d(As B) > H and d(Yia B) + d(BaA) + d(A, Yi-’rl) < d(Yi’ 1’;+1) +a. We
perform modification (2), with v1 = ¥;, w1 = ¥i41, v2 = y; and w2 = Yj41 (Figure 8e).

Vi Ky

B
A

Lrl
\/ .
Ll J
Figure 8e.

(Possibly w; = vy or vy = ws.) This gives us a new net (P',g"). Let ¢o be the 2-cell of
P, other than ¢, which meets the edge, e, between vy and wy. Let ¢' be the corresponding
cell of P'.
We have
length{P', ¢') < length(P,g) — d(A,B) + a

<A+e—-H+a.

However we may have increased the mesh, so that, perhaps, (P', g’} does not belong to P.
Since d(A, B) > H > a, the only cell of P' which may have boundary length greater than
M is ¢'. We know, at least, that length(d¢',g) < M + a.

If length(d¢',¢') < M, then mesh(P',¢'} < M. Since H —a + ¢ < 0, we have have
length(P', ¢') < A, contradicting the definition of A, Thus, we can assume that

M < length(dc',¢') < M + a.
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Let zq, 23, . .., 2z; be the vertices of 8¢'NCy(P") cyclically ordered around ¢. Let z = 2;, and
let Z; = g'(2;) for 0 < i < t. Let B be the closed piecewise geodesic path [Zq, Z1,..., Z4].
Now diamB < M +a < r and length8 > M > 2(I -+ b). So, applying Lemmas 6.1.4 and
8.2.3, we find C',D' € B with d(C',D') < I, but with the distance between C' and D',
measured along 3, at least [4-b. If ¢ € CJ (i.e. 'N8D = 0), thenset C = C' and D = D".
If, on the other hand, ¢'N&D # @, then ¢' meets 8D in precisely one edge, which, without
loss of generality, we can take to have endpoints z, and 2z;. Thus Z; and Z; must be
consecutive points in our original cycle v. It follows that d(Z,, Z;) < mq. It is impossible
that C' and D' lie in the same geodesic segment of 3, so we can assume, without loss of
generality, that D' # {Zp,7;]. Weset D = D'. X C' € [Zy, Z,], we set C = Z, otherwise,
we set C = C'. Thus, in any case, d(C,C") < my. Now, d(C, D) < 14 my, and the distance
between € and D, measured along (3 is at least [ + b — mg. We have C € [Z,, Z,41] and
D € [Z,,Zy41), where we can suppose that p # 0 and ¢ # 0. Since b — mq > myg, we must
have p # q. Let €| be the edge in 8¢' bounded by z, and 2,4, and let e} be the edge of
d¢' bounded by zg+1. We now perform modification (1), to give a new net (P",g"). If
cl, e € Cy(P") are the 2-cells into which ¢' is split, then it is easily seen that, for: = 1,2,

length{dc!, ¢") < length{8c', ¢') — (b — 2mq) < (M + a) — (b — 2my) = M.

Thus,
mesh(P", ¢") < M,

and so {P",g") € P. However, we have

length(P", ¢") < length(P', ¢') + (I + my)
<(A+e—H+a)+ (I +mo)
=A—¢

which contradicts the definition of A, and thus the existence of the original cell c.

We have shown that, for any 2-cell ¢ € CJ(P) with v(c) < 13, we have length(dc, g) <
L.

Finally, suppose (for contradiction) that there exist ¢1,c; € C3(P) satisfy v(e;) < 13,
v(cs) < 13 and meet along some edge e € Cy(P). Thus, e N 8D = §. We know that
length(de;, g) < L < M/2. Thus, if we perform modification (3) to produce (P',g'), then
we get

mesh(P',¢'y < M

and

length(P’', ¢') < length(P,g9) < A+ e

Thus (P',g") € Py. However, |Co(P')| < |Co(P)| — 1. This contradicts the assumption
that P has a minimal number of 2-cells, and so such ¢; and ¢, cannot exist.
We have shown (P, g} satisfies the hypotheses of Lemma. 8.4.1, as required.

¢

8.7. Refinement of parameters.
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The argument of the last section does not give any sensible way of relating the final
hyperbolicity parameter &' to k. In fact, however, one can always take &' to be a certain
universal multiple, £k of k (independent of the mesh m). The main theorem of this chapter
(Theorem 8.1.2) follows from Proposition 8.6.1, and the following proposition.

Proposition 8.7.1 : There is some universal ¢ € [0,00), and a function R : [0,00) —
[0, 00) such that the following holds.
Suppose that (S,d) is a k-H1 and R{x)-locally k-H1 geodesic space. Then it is £k-H1.

We shall need two lemmas,

Lemma 8.7.2 : Vk 3h such that (S,d) if a k-H1 geodesic space, and if X, Y, Z,W € S
satisfy
min(d(X,Y),d(Z,W)) > max(d(X, Z),d(Y,W)),

then d([X,Y),[Z,W]) < h.

Proof : XY AZW > 0. Apply Lemma 7.5.1.
¢

Lemma 8.7.3 : Vk,h 3K such that if (S,d) is a k-H1 geodesic space, and if the points
Y1,Y,Ys, 24,24, %3 € S satisfy d(Y;, %;) < h fori =1,2,3, then there is some C € S with
d(C,[Yit1,Zi]) < K fori=1,2,3.

Proof : Let C be a centre of Y1Y,Y;. Apply Lemma 3.1.2.
¢

Proof of Proposition 8.7.1 : Suppose (S,d) is a k-H1 geodesic space. Let X3, X, X
be any three points of S. Let A be a centre for X3 X5 X3 (with respect to the parameter
k). For i = 1,2,3, let W; be a nearest point on [X;, X;11] to A. (We take subscripts
mod 3.) Applying Lemma 3.1.2, we can find J = J(x) such that d(W;, W;11) < J and
[X:, Wi] C Ns[X;,Wiqq] fori=1,2,3. Let R =12J. Thus R depends only on «.

Suppose now that {S,d) is also R-locally k-H1. We want to find some point C € &
whose distance from each of the geodesics [X;, X;+1] has a bound depending only on k.

Suppose d(X;, W;) > 3J. Then, let E € [W;, X;] be the point with d(E,W;) = 3J.
There is some F € [W3, X;| with d(E, F) < J. We must have J < d(F, W3) < 5J. Thus,
min(d(E, W1), d(F,Ws)) < max(d(E,F),d(W1,Ws)). Also, diam[W;, E,F,Ws, W1] <
5J < R. Thus, applying Lemmas 8.7.2 and 8.2.3, we can find ¥; € [W;, F| and Z; €
[Wy, E] with d(Y1, W3) < 5J, d(Z;,W;) < 5J and d(Y1,Z1) < min(h,J), where h = h(k)
comes from Lemma 8.7.2.

In the case when d(X;,W;) < 3J, we take Y; = Z; = X;.

We perform similar constructions with respect to X, and X;. This gives points Y; €
[—Xa‘,Wi—l] and Zg = [X,;,Wi] with d(Yi,Wi_l) S 5J, d(Z,;,W,;) S 5J and d(Y:;,Z-,;) S
min(h, J).

8—15




We thus have diam[Y3, Z1,Ys, Z2,Ys, Z5,Y1] < 127 < R. Thus, applying Lemmas
8.7.2 and 8.2.3, we find C € § with d(C,[Yi41,Z;]) < K for ¢ = 1,2,3, where K =
K(k,h{k)) depends only on k.

We have shown that (S, d) is K-H2. It is thus &'-H1 for some k' depending only on
k. As discussed in Section 7.2, we can assume that &' has the form £k for some universal
£>0.

¢
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