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In the course of his construction of groups of intermediate growth, Grigorchuk [Gri]
showed that there are continuously many quasiiometry classes of 2-generator groups. In
this paper, we describe another class of groups exhibiting the latter phenomenon, and
for which the demonstration is elementary. Unlike those of Grigorchuk, our groups have
exponential growth, and can be taken to be torsion free. In fact, they can be exhibited
explicitly as small cancellation groups as follows.

Let P(N) be the set of subsets of the natural numbers, N. Given F, F ′ ∈ P(N), we
write F ∼ F ′ if the symmetric difference of F and F ′ is finite. This defines an equivalence
relation on P(N) with every equivalence class countable. There are thus continuously
many equivalence classes.

Given F ∈ P(N), let S(F ) = {22
n

| n ∈ F}. Given p ∈ N, let wp(a, b) = (apbp)7

be the (cyclic) word in two letters, a and b. Given S ⊆ N, let Γ(S) be the group with
presentation 〈a, b | (wp(a, b))p∈S〉. We show:

Proposition 1 : If F, F ′ ∈ P(N) are such that Γ(S(F )) and Γ(S(F ′)) are quasiisometric,

then F ∼ F ′.

We chose the words (apbp)7 for simplicity. The groups thus defined have 7-torsion. If
we want torsion-free groups, we could for example use the words a(apbp)12 instead.

This construction is clearly quite arbitrary. Its essential features may be summarised
as follows. We chose the cyclic words wp so as to satisfy the C′(1/6) cancellation property
(see, for example [LS]). This means that if w′ is a common (linear) subword of wp and
wq, then either p = q or 6L(w′) < min{L(wp), L(wq)}. Here, L denotes the length of a
word. Note that L(wp) = 14p, so in the presentation of one of our groups, the lengths of
relators grow superexponentially. Any construction retaining these features should serve
for our purposes. Note that if we were to use the words a(apbp)12, then the resulting groups
would be torsion-free — in a small cancellation group, any torsion must show up in the
cyclic symmetry of one of the relators, see [LS]. (The examples described by Grigorchuk
are torsion groups.)

One obvious corollary of the above proposition is the result of B. H. Neumann [N]
that there are continuously many finitely generated groups up to isomorphism. There are
now many proofs of this around, though most of these arguments seem to be essentially
algebraic in nature and in particular tend to make some use of torsion.

The quasiisometry invariant that distinguishes Grigorchuk’s groups is the growth func-
tion. Indeed, the main objective of that paper was to construct groups of superpolynomial
but subexponential growth. In contrast, our groups are all non-amenable. In fact, they all

1



Quasiisometry classes

contain non-cyclic free subgroups. Consider, for example, the elements a5b6 and a7b8. The
existence of a Dehn algorithm for C′(1/6) groups shows that no non-trivial reduced word
in these elements can represent the trivial element in the group. They therefore generate
a free group.

Our quasiisometry invariant, though in principle applicable to any finitely generated
group, is tailored to our particular examples. It would be interesting to search for other
kinds of quasiisometry invariants (for example among those suggested in [Gro]) that are
capable of distinguishing continuously many quasiisometry classes while remaining reason-
ably amenable to computation.

The idea of the proof of Proposition 1 is very simple. In a small cancellation group,
the lengths of the relators determine the sizes of the “holes” in the Cayley graph, and
so give rise to a geometrically defined subset of the natural numbers. This subset can
change only by a linearly bounded amount under quasiisometry. By arranging that it
grows superexponentially, we can recover, up to finite ambiguity, the original set of natural
numbers used for our presentation. To do this properly, we need a few definitions.

Let X be a connected graph with vertex set V (X). Let dX be the combinatorial
distance function defined on V (X). If Y is another graph, and k ∈ N, we say that a map
φ : V (X) −→ V (Y ) is k-lipschitz if for all x, y ∈ X , we have dY (φ(x), φ(y)) ≤ kdX(x, y).
Note that a 1-lipschitz map φ : V (X) −→ V (Y ) extends to a map φ : X −→ Y in which
every edge of X is either mapped homeomorphically to an edge of Y or is collapsed to a
vertex of Y . We say that two graphs X and Y are k-quasiisometric if there are k-lipschitz
maps φ : V (X) −→ V (Y ) and ψ : V (Y ) −→ V (X) such that dX(x, ψ ◦ φ(x)) ≤ k for all
x ∈ X and dY (y, φ ◦ ψ(y)) ≤ k for all y ∈ Y .

A cycle, β, is a graph homeomorphic to a circle. We write L(β) for the number of
vertices (or edges) of β. A net , σ, is the 1-skeleton of a cellulation of the topological disc
(i.e. a presentation of the disc as a CW-complex in which every closed 2-cell is embedded).
We imagine σ as coming equipped with certain preferred subcycles, namely, its boundary,
∂σ, and the set, C(σ), of boundaries of 2-cells. Let M(σ) = max{L(γ) | γ ∈ C(σ)}.

Let X be a graph. A loop in X consists of a 1-lipschitz map, f : β −→ X from a cycle,
β, into X . A spanning disc for the loop, (β, f) consists of a 1-lipschitz map, f : σ −→ X of
a net, σ, into X , where we have identified β with ∂σ in such a way that f |∂σ agrees with
f as already defined on β. Let H(β, f) be the minimum value of M(σ) as σ ranges over
all nets which give rise to spanning discs for (β, f) in this way. Clearly, H(β, f) ≤ L(β).

Definition : A loop, (β, f) is taut if L(β) = H(β, f).

We write H(X) ⊆ N for the set of values taken by H(β, f) as (β, f) ranges over all
taut loops in X .

Lemma 2 : If f : β −→ X is a loop, then H(β, f) ∈ H(X).

Proof : Let L = H(β, f). Suppose, for contradiction, that L /∈ H(X). Let f : σ −→ X be
a spanning disc for (β, f) with M(σ) = L. Suppose γ ∈ C(σ) with L(γ) = L. Now (γ, fγ)
is a loop in X , where fγ denotes the restriction of f to γ. Since L /∈ H(X), this loop is not
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taut, so we can find a spanning disc, fγ : σγ −→ X for (γ, fγ) with M(σγ) < L. Note that
∂σγ is identified with γ, and so the net σγ gives rise to a subdivision of the 2-cell bounded
by γ in the cellulation of the disc given by σ.

We perform this construction for each such loop γ, and, in this way, obtain a net,
σ′, with σ a subgraph of σ′ and with ∂σ = ∂σ′. Note that M(σ′) < L. Moreover, the
maps fγ allow us to extend f to a spanning disc f : σ′ −→ X for (β, f). This gives the
contradiction that L = H(β, f) ≤M(σ′) < L. We conclude that L ∈ H(X). ♦

Definition : Given k ∈ N, we say that two subsets, H,H ′ ⊆ N are k-related if given any
L ∈ H with L > k2 + 2k + 1 there is some L′ ∈ H ′ with L/k ≤ L′ ≤ kL, and conversely,
swapping H and H ′.

The artificial constant k2 + 2k + 1 arises from the following lemma:

Lemma 3 : Suppose that the connected graphs X and Y are k-quasiisometric, then the

sets H(X) and H(Y ) are k-related.

Proof : Let φ : X −→ Y and ψ : Y −→ X be the maps given by the hypothesis. Suppose
that L ∈ H(X) with L > k2 + 2k + 1. Let f : β −→ X be a taut loop with L(β) = L.
Now, φ ◦ f : V (β) −→ V (Y ) is a k-lipschitz map. We can subdivide β to give a loop β′,
with V (β) ⊆ V (β′) and L(β′) ≤ kL, so that φ◦f |V (β) extends to a loop g : β′ −→ Y . Let
L′ = H(β′, g). By Lemma 2, we have L′ ∈ H(Y ). Note that L′ ≤ L(β′) ≤ kL. We extend g
to a spanning disc g : σ −→ Y with ∂σ = β, and with M(σ) = L′. Now ψ ◦g : V (σ) −→ X
is a k-lipschitz map. We subdivide σ (as a graph) to obtain a (homeomorphic) net, σ′,
and extend ψ ◦ g|V (σ) to a 1-lipschitz map, h : σ′ −→ X . Note that M(σ′) ≤ kL′. Also,
∂σ′ is a subdivision of β in which each edge has been subdivided into at most k2 edges.
Note that V (β) ⊆ V (∂σ′), and from the construction, h(x) = ψ ◦ φ ◦ f(x) for x ∈ V (β).
Thus dX(f(x), h(x)) ≤ k.

Now construct an annulus by gluing together a set of L squares cyclically along their
“vertical” edges. We identify the “top” boundary circle with β, and identify the the
“bottom” boundary circle, after subdivision, with ∂σ′. After subdividing each of the L
vertical edges into at most k edges, we can find a 1-lipschitz map, i, of the 1-skeleton of
this annulus into X , such that i|β = f and i|∂σ′ = h|∂σ′. (Note that the length of the
boundary of each 2-cell in this annulus is at most k2 +2k+1.) We now formally glue this
1-skeleton to the net σ′ along the common circle, ∂σ′, to obtain a net σ′′ with ∂σ′′ = β.
The maps h and i combine to give us a 1-lipschitz map j : σ′′ −→ X with j|∂σ′′ = f .
Thus, (σ′′, j) is a spanning disc for (β, f). Moreover, M(σ′′) ≤ max{M(σ′), k2+2k+1} ≤
max{kL′, k2+2k+1}. Since β is taut, we haveM(σ′′) ≥ L(β) = L. Since, by assumption,
L > k2 + 2k + 1, it follows that L ≤ kL′. We see that L/k ≤ L′ ≤ kL as required.

The converse follows by symmetry. ♦

To relate this to the groups we have constructed, we need the following observation.
Given S ⊆ N and q ∈ N, let qS = {qn | n ∈ S}. Recall that if F, F ′ ⊆ N, we write F ∼ F ′

to mean that the symmetric difference is finite.
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Lemma 4 : Suppose that F, F ′ ⊆ N, and that qS(F ) and qS(F ′) are k-related for some

k ∈ N. Then, F ∼ F ′.

Proof : If F 6∼ F ′ then, without loss of generality, we can find some n ∈ F \ F ′ with

q22
n−1

> k2 + 2k + 1 > k. Now q22
n

∈ F , so there is some m ∈ F ′ with q22
n

/k ≤ q22
m

≤

kq22
n

. Thus 22
n−1

< 22
n

/k ≤ 22
m

≤ k22
n

< 22
n+1

, and so m = n, giving the contradiction
that n ∈ F ′. ♦

To relate this to small cancellation groups, we need the following observation. Suppose
that A is a finite alphabet, and (wi)i∈I is a collection of cyclically reduced words of letters
in A and their formal inverses, indexed by a set I, and satisfying the C′(1/6) cancellation
condition pairwise (i.e. if i 6= j, then the largest common subword of wi and wj (or w−1

j )
has length less than (1/6)min{L(wi), L(wj)}). We have:

Lemma 5 : Let X be the Cayley graph of the presentation 〈A | (wi)i∈I〉. Then,

H(X) = {L(wi) | i ∈ I}.

Proof : This follows more or less from the existence of a Dehn algorithm for C′(1/6)
groups. Suppose, first, that w is a cyclically reduced word representing the identity, which
we can think of as a loop in X . If w is not equal to a relator or its inverse, then we can find
some relator wi (or w

−1

i ) with L(wi) < L(w), and which has a common subword of length
more than (1/2)L(wi) with w. This allows us to shorten w, and continuing inductively, we
can reduce w to the identity using only relators of length less than L(w). In particular,
this gives us a spanning disc, σ, for w, with M(σ) < L(w). Thus, w is not taut.

Conversely, suppose w is not taut. There is a spanning disc, σ, for w, with M(σ) <
L(w). Applying the construction of the last paragraph to each 2-cell of σ, we obtain
another spanning disc for w, this time with each 2-cell corresponding to a conjugate of
a relator (of length less than L(w)). At least one of these 2-cells, corresponding to a
conjugate of wi, say, has a common subword of length more than (1/2)L(wi) with L(w).
This shows that w cannot itself be a relator.

We have shown that the taut loops in X are precisely conjugates of relators and their
inverses. This gives the result. ♦

Finally, we return to the examples given at the beginning. Note that if X is the
Cayley graph of Γ(S(F )), then, by Lemma 5, we have H(X) = 14S(F ). By Lemma 3, we
see that if Γ(S(F )) is k-quasiisometric to Γ(S(F ′)) then 14S(F ) is k-related to 14S(F ′).
By Lemma 4, it follows that F ∼ F ′. This proves Proposition 1.
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