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0. Introduction.

In this paper, we describe a number of characterisations of virtual surface groups.
One of the principal results will be:

Theorem 0.1 : Suppose F is a field, and that I" is a group which is F P, over F. If
H?(T; FT') has a 1-dimensional T'-invariant subspace, then T is a virtual surface group.

Recall that the F'P, condition means that the trivial FI'-module, F, admits a partial
resolution P, — P; — Py — F, where Py, P, and P, are finitely generated projective
FI'-modules. The cohomology group H?(I'; FT') has the structure of an FI'-module, or
equivalently, a vector space over F with a linear I'-action. We are therefore assuming
that it has an FI'-submodule which is isomorphic to the trivial module. By a wvirtual
surface group, we mean a group with a finite index subgroup which is isomorphic to the
fundamental group of a closed surface other than the 2-sphere or projective plane. Note
that it follows that, in fact, H?(I'; FT') 2 F, and that H*(I', FT') = 0 for all n # 2.

Theorem 0.1 applies in particular to 2-dimensional rational Poincaré duality groups:
Corollary 0.2 : A group I' is PD(2) over Q if and only if it is a virtual surface group.

This answers affirmatively a conjecture of Dicks and Dunwoody (see [DiD] Chapter
V, Conjecture 4.6).

For definitions and further discussion of Poincaré duality groups, see for example
[Br,DiD]. The result of Eckmann, Miiller and Linnell [EM,EL] characterises surface groups
as PD(2) groups over the integers. In view of the fact that torsion-free virtual surface
groups are surface groups (following, for example, from [EM,EL]), Corollary 0.2 can be
viewed as a generalisation of this result. In fact, Corollary 0.2 had already been established
in the case where I' is assumed to contain an infinite order element (see [DuSw]). In fact,
much of the proof of Theorem 0.1 will be aimed at the elimination of the possibility that I"
might be a torsion group. Another approach to these results, which avoids this particular
difficulty, has been given by Kleiner [KI] (at least in the finitely presented case).

Another corollary of Theorem 0.1 is:

Y

Corollary 0.3 : IfT is finitely presented, one-ended, semistable at infinity, and w{°(I") =
Z, then T is a virtual surface group.
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The notion of “semistability at infinity” was defined in [Mi]. Here n{°(I") denotes the
fundamental group at infinity.
This, in turn, leads to another proof of the result originating in the work of Mess:

Corollary 0.4 : [T ,Me,Ga,CJ] If T is finitely generated and quasiisometric to a complete
riemannian plane, then I' is a virtual surface group.

In fact, it’s enough for I" to be quasiisometric to any complete path-metric space
homeomorphic to R?.

The logical interconnections between these various characterisations, along with sev-
eral others, will be described in Section 14.

Our proof of Theorem 0.1 involves interpreting the homological condition in terms of
a kind of “coarse planarity” of the Cayley graph of I'. A number of different formulations
might be given for this. We shall focus on one involving winding numbers, as described in
Sections 1 and 2. This condition will easily be seen to be a quasiisometry invariant. Much
of this material can be interpreted in terms of the theory of “coarse Alexander duality”.
This theory was introduced in [FarbS], and some related ideas can be found in the work
of Higson and Roe (see [R]). It has been developed extensively in a more general context
by Kapovich and Kleiner [KaK]. However, for the specific cases in which we deal here, it
will be easy to give direct arguments.

One of the main intermediate goals in the proof will be to show that I" has an infinite
order element, and that every infinite cyclic subgroup is codimension-one. The argument
can then be completed using a result from [Bo]. Graham Niblo has observed that this
can also be deduced from the results and methods of [DuSa], [DuSw| and [Sw]|, at least
in the case where I' is almost finitely presented, and has suggested how the arguments
might be adapted to deal with the finitely generated case. We shall also outline a more
direct argument in Section 13. Both these approaches depend on the classification of
convergence actions on the circle by Tukia, Gabai and Casson and Jungreis [T,Ga,CJ].
All the arguments involved are essentially geometric, and can, in principle be interpreted
combinatorially.

In the original proof of Corollary 0.4, Mess makes use of Varopoulos’s theorem (see
[V] or [W]). This relies on Gromov’s result [Gr| on groups of polynomial growth which
in turn relies on the solution to Hilbert’s fifth problem [MoZ]. Recently, Maillot [Ma] has
given a more direct geometric proof of Corollary 0.4 which byepasses Varopoulos’s result,
though still requires that of Gromov. Kleiner’s approach to Corollary 0.2 also depends on
Gromov’s result. However, this can be eliminated using results of the present paper (in
particular Theorem 12.9), thereby giving another essentially combinatorial proof. All of
these arguments rely on [T,Ga,CJ].

We note that conditions of the type appearing in Theorem 0.1 are discussed in the
papers of Farrell [Farrl,Farr2]. For example, in [Farr2|, he shows that if F = Zy and I is
not torsion, then any finite dimensional I'-invariant subspace of H?(I'; FT') is 1-dimension.
It would be interesting to know if this can be extended to other fields, and whether the
non-torsion hypothesis can be eliminated. If so, this would give a stronger version of
Theorem 0.1.
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In retrospect, we see from Theorem 0.1 that the “orientation preserving” subgroup
of T', i.e. that fixing H?(I'; FT') pointwise, has index at most 2 in I'. One can similarly
define the orientation preserving subgroup of a Poincaré duality group in any dimension,
n (replacing H2(I'; FT') by H™(T; FT)). It seems to be an open question as to whether this
subgroup must always have index at most 2.

One of the main motivations of Mess’s paper [Me] was to reduce the Seifert Conjecture
to Corollary 0.4. The Seifert Conjecture states that if M is a closed irreducible 3-manifold
such that 71 (M) contains an infinite cyclic normal subgroup, then M is a Seifert fibred
space. Theorem 0.1 allows us to give a version of this for PD(3) groups:

Corollary 0.5 : Suppose that I" is PD(3) over Z, and contains an infinite cyclic normal
subgroup. Then, I" is the fundamental group of a closed Seifert fibred 3-manifold.

This answers a question attributed to Scott in the problem list compiled by Kirby
[Ki] (No. 3.77(B)). It was already known in the case where I" is assumed to have infinite
abelianisation [H1]. This result will be discussed further in Section 15. In view of the
result of Scott [Scol] that there are no “fake” Seifert fibre spaces with infinite fundamental
group, we recover the Seifert conjecture as a corollary.

The main result of this paper also has applications to 4-manifolds. In particular, the
fact that H?(T', ZT") = Z implies that ' is a virtual surface group, for I' F'P, over Z, can
be used to streamline or strengthen a number of results in [H3] (for example, by eliminat-
ing hypotheses demanding the non-vanishing of first cohomology). Such applications are
described in [H4].

I am indebted to several people, in particular, Michel Boileau, Warren Dicks, Martin
Dunwoody and Jonathan Hillman for bringing these questions to my attention. I have
profited particularly from discussion with Bruce Kleiner, who first suggested using some
notion of “rotation number” in this context, and who explained to me the principles of
coarse Alexander duality which have helped to streamline some of the arguments of this
paper. I would also like to thank Ian Leary for his help with some of the more algebraic
aspects of this paper. Discussions with John Crisp, Warren Dicks, Martin Dunwoody and
Graham Niblo have also been helpful.

1. Notation and conventions.

Before starting properly, we describe some conventions and terminology used through-
out this paper.

We shall use A and F to denote a commutative ring with a one and a field respectively.
We write F* for the multiplicative group F \ {0}. If " is a group, we write AT' and FI’
for the corresponding group rings.

Suppose X is a locally finite 2-dimensional CW complex. We put a path-metric p on
the 1-skeleton, X, by assigning unit length to every 1-cell. If there is a bound on the
length of the boundary of each 2-cell, then we shall refer to (X, p) as a metric 2-complez.
It is sometimes convenient to imagine p extended to all of X, in such a way that the 1-
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skeleton is geodesically embedded, and such that there is a bound on the diameter of each
2-cell. However, only the metric on X is strictly relevant.

We shall write V(X)) for the set of vertices of X. However, we shall take the statement
x € X to mean implicitly that we are choosing a vertex of X. Similarly, we shall assume
that all the subsets of X with which we are dealing are subcomplexes. Also paths in X
are always assumed to map into the 1-skeleton. The only purpose in these conventions is
to avoid having to worry about nasty subsets.

Suppose @ is a subset (i.e. subcomplex) of X. We write pg for the induced path-
metric on (the 1-skeleton of) Q. We write Q¢ for the closure of the complement of Q.
Given r € N, we write N(Q,r) for the subcomplex of X whose 1-skeleton, K, is the r-
neighbourhood of the 1-skeleton of @, and where a 2-cell of X lies in N (@, r) if and only if
its boundary lies in K. We shall generally use this notation without bothering to specify
that » € N.

We can think of a path in X formally as a cellular map of a subinterval of the real
line into X;. A loop is a closed path, and a circuit is an embedded loop. We shall speak
of finite paths, rays and biinfinite paths, if the domain is compact, one-ended, or 2-ended
respectively. We shall always assume rays and biinfinite paths to be proper maps. We
shall frequently abuse notation, by identifying a path with its image in X, even if it is
not embedded. A finite path is a geodesic if its length equals the distance between its
endpoints. In general, a path is geodesic if every finite subpath is. If the direction of a
path is important, we shall sometimes denote it by & where « is the underlying undirected
path. We shall write —a for the same path directed in the opposite direction. We use U
for concatenation of paths.

We shall write £(X) for the set of loops in X. Note that there is natural map of
L(X) into Hy1(X;A) for any ring A. We shall write (.,.) for the Kronecker pairing on
HY(X;A) x H(X;A) — A. If A =F is a field, then this is a non-degenerate bilinear
form, so we can identify H'(X;F) as the dual space of H;(X;F).

We shall refer to a map u : L(X) — F as a cocycle if it factors through a linear map of
Hi(X;F)toF (i.e. an element of H*(X;F)). This linear map is uniquely determined, and
we shall also denote it by p. The cocycle condition can be expressed more combinatorially
as follows. If r is a bound on the length of the boundary of any 2-cell, then p : £(X) — F
is a cocycle if and only if:

(1) p(v1) 4+ p(y2) + p(y3) = 0 whenever 71, y2,v3 € L(X) form a theta-curve, and
(2) p(y) = 0 whenever length(y) < r.

We say that ~1,72,v3 form a theta curve if there are finite paths a1, as, a3 sharing the
same pair of endpoints, such that v, = a; U—ay11, taking subscrips mod 3. We shall speak
of an integral cocycle to mean a map p : L(X) — Z which extends to a cocycle with
values in Q. Such a map is also characterised by properties (1) and (2).

We shall say that X is A-acyclic if H1(X;A) = 0. We say that X is uniformly A-
acyclic if for all r > 0 there exists s > r such that for all z € X, the image of H; (N (z,r); A)
in Hi(N(z,s); A) is 0. Note that these properties remain unchanged if we add additional
2-cells to X. We can thus speak of a locally finite graph as being stably (uniformly) acyclic
if there is some ¢ > 0 such that if X is the complex obtained by attaching a 2-cell to every
loop in X of length at most ¢, then X is (uniformly) acyclic. We see that if a 2-complex is
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(uniformly) acyclic, then its 1-skeleton is stably uniformly acyclic. Moreover the property
of stable (uniform) acyclicity is easily seen to be a quasiisometry invariant.

2. End cohomology and winding numbers.

In this section, we mention some basic facts regarding “end cohomology” and, in the
1-dimensional case, relate this to the more geometric notion of “winding number”.

Let A be a ring, and let X be a locally finite n-dimensional CW complex, with
H*(X;A) =0 for all i < n. Suppose I' acts freely cocompactly on X. Let C, = C,(X; A)
denote the cellular chain complex with coefficients in A, thought of as a graded AI'-module.
We get a finitely generated partial free resolution of A:

C,—Chg — - —C) — Cy — A,
which we can extend arbitrarily to free resolution:
oo —Cppg — Cp — - — O — Cyp — A

Let C* = Hom(C;; A) denote the cochain module, and let Cf denote the submodule
of finitely supported cochains. Let § : C° — C*t! be the coboundary map. Now,
5(CL) C CE, so (C, 6); is a sub chain complex. We denote its homology by Hg,. Now,
since the cochain complex (C?); is exact, for any m, the submodule, Z™ of cochains in C™
is also the module of coboundaries B™ = §(C™~!). Let Z% = C% N Z™ and let B =
s(CH—1 € ZZ~'. By definition, H?(X;A) = Z%/B% = (CB N s(C™ 1)) /6(CH).
Now, for m < n, H{ is the “compactly supported cohomology” of X. Here we are
interested in the group H@ which depends only on the complex X. We denote it by
J™(X).

Now, if M is any AT'-module, then AT'-module homomorphisms from M into A can
be identified with finitely supported A-module homomorphisms from M into A. This gives
rise to a natural identification of J"(X) with H™(I'; AT'). (See [Br] for details.)

We can also interpret this in terms of the “end cohomology” of X. Let D be the
directed set of compact subcomplexes of X, ordered by inclusion. This gives a direct
limit system of cohomology groups (H*(K%; A))kep (where K€ denotes the closure of
the complement of K). We denote the direct limit by H! (X;A), and refer to it as the
end cohomology of X. We can identify J"(X) with H%1(X; A) as follows.

Suppose o € J"(X). Now, o is represented by compactly supported coboundary,
6t € C& where t € C"!. Choose some K € D such that 6t = 0 on K€. Thus, t
defines an element of H" 1(K“; A) which gives rise to an element, f(o), in the direct
limit H1(X; A). Tt is easily verified that f is an abelian group isomorphism from J"(X)
to HY1(X; A). If A = F is a field, then f is F-linear.

Let us now restrict to the case where n = 2, and F is a field.

The following result was shown to me by Ian Leary. For more details, see [L].
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Lemma 2.1 : Let F be any field. Then I is F'P, over F if and only if I' acts properly
discontinuously cocompactly on a locally finite 2-complex, X, with H(X;F) = 0.

Only the “only if” part is relevant here. (The “if” part is easy.) We begin by showing
the result is true if F is replaced by the integers, Z. Note that F'P; over Z, or indeed any
non-trivial ring, is equivalent to finite generation [Br|. Thus, if T is F'P, over Z we obtain
an exact sequence of ZI'-modules, 0 — K — C1(Y;Z) — Co(Y;Z) — Z — 0,
where K is finitely generated, and C;(Y;Z) are the chain modules of some Cayley graph,
Y, of I. Now, the image of K is C1(Y;Z) is generated, as an abelian group, by the set
of I'-images of a finite set of circuits in Y. By attaching 2-cells to circuits we obtain the
desired 2-complex, X.

Now, the same argument works with Z replaced by Z,, for any n, or by Q. In the case
of Q we need to note that some multiple of any element of H;(Y; Q) is a represented by
a finite sum of circuits.

To complete the argument, we show that a group is F'P; over a field, F, (if and) only
if it is F'Py over its prime subfield, E. To see this, consider the sequence 0 — K —
Ci(Y,E) — Cy(Y;E) — E — 0 as above. This time, K is an EI-module such that
K ®gr FI if is finitely generated as an FI'-module. If {E;”Zl kij@Xgj |i=1,...,m}
generates K ®gr FI', where k;; € K and \;; € F, then {k;;} generates K. To see
this, let L be the submodule of K thus generated, so that we have an exact sequence
0 — L — K — M — 0, where M is the cokernel. Since FT' is faithfully flat as an
ETl'-module, it follows that M = 0. We thus deduce that K is finitely generated as an
ETl'-module as required. (The converse of the above statement is easy.)

In summary, if ' is F'P, over F, then it’s F' P, over the prime subfield, E. Thus I" acts
properly discontinuously cocompactly on a 2-complex, X, with Hy(X;E) = 0. It follows
by the Universal Coefficient Theorem that H;(X;F) = 0.

More elaboration of this will be given in [L]. We remark that not all finiteness prop-
erties of large fields pass to subfields. For example, there are examples of groups that are
FL over C but not over Q — see [L].

Now, suppose that E C H?(TI'; FT') is a I'-invariant subspace. This gives us a 1-
dimensional subspace of H. (X; F), which we also denote by E. We shall explain how this
gives rise to a “winding number” in F. Firstly we should give some definitions.

Suppose (X, p) is a locally finite metric 2-complex, and that 7o > 0 is some constant.
We assume that the boundary of every 2-cell in X has length at most ry. Suppose that
H,(X;F)=0. Given two subsets P,Q C X, we shall write P A ) to mean that p(P,Q) >
ro. Let W =Wi(rg, X)={(z,8) € X x L(X) | z Av}. (We are tacitly assuming that x is
vertex of X.)

Definition : A winding number on X with values in F (and with separation constant rg)
is a map w : W — F satisfying the following:

(W1) Given x € X, the map [y — w(z,7)] : LN (z,79)¢) — F is a cocycle in N(x,r9)¢
(i.e. factors through a linear map on homology),

(W2) if z,y € X are adjacent vertices (in the 1-skeleton of X), and v € £(X) with Ay
and y A vy, then w(x,vy) = w(y,7), and
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(W3) (Fz € X)(Vr > 19)(Fy € L(X)) p(x,v) > r and w(z,v) # 0.

Note that the above definition makes no reference to the group action. However, the
winding number we construct will have an additional invariance property, namely:

(W4) There is a character € such that for all that for all g € T', z € X and v € L(X) with
# Ay, we have w(gz, g) = 0(g)w(x, ).

(By a character we mean a homomorphism from I" to F*.)

We shall eventually see that it is necessarily the case that the image of  lies in {—1, 1},
beyond which point we can pass to a subgroup of index at most 2 so that w(gz,gvy) =
w(z, ) for all g.

We now describe how to construct such a winding number. Suppose I' is F'P, over F,
and X is an F-acyclic 2-complex on which I' acts freely and cocompactly. Note that X is
necessarily uniformly F-acyclic as defined in Section 1. Let E C Hl (X;F) is an invariant
1-dimensional subspace. As an intermediate step, we have:

Lemma 2.2 : There is a compact set K € D, a linear map p : Hy(K%;F) — F, and
a character 0 : I' — F* such that for every g € ', there is a compact set L(g) € D with
KUg 'K C L(g) such that if v, gy € L(L(g)), then u(gy) = 0(g)u(vy). Moreover, if L € D
with K C L, then there is some v € L(L®) with p(v) # 0.

(Here we are using the convention of using the same symbol to denote a linear map on

H,(Q;F) and the induced map on £(Q) where @ C X.)

Proof : Choose any element ¢ € E'\{0}. We have a homomorphism, § : I' — F* defined
by g.¢ = 0(g~ )¢, where [(g,¢) — g.¢] denotes the action of I' on E C H. (X;F). Now,
we can find a compact K € D so that ¢ corresponds to some element v € H'(KY;F).
Given any element s € H; (K% F), we set u(s) = (¢, s), where (.,.) denotes the Kronecker
product.

Now, since ¢ # 0, for any L € D with K C L, we have ¢|L¢ # 0. Since £(L®) spans
Hy(L®;F), and the Kronecker product is non-degenerate, there is some v € £(L%) with
p(y) # 0.

Suppose g € . Now, g 1.¢ = 0(g)¢, so, by the definition of the I'-action on
H! (X;F), we have that g ') € H'(¢g7'KY;F) and 6(g9)y € H(K;F) pull back to
the same element of H'(L(g);F) for some L(g) € D with K Ug 'K C L(g). Thus, if

Y, 97 E.E(dL(g)C), then u(gy) = (¥, 97) = (g7 ¥, 7) = (0(9)¥, ) = 0(g)(¥,7) = 9(9)#(@
asS requlre .

We can now go on to construct a winding number having properties (W1)-(W4) as
follows.

Fix an orbit transversal, A, of the set of vertices of X. Thus, A is finite. Let S C T’
be a finite symmetric set such that if some element of A is adjacent to some vertex of gA,
then g € S. Choose rg > 0 big enough so that for any x € A and g € S, then K C N(x,rg)
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and L(g) € N(z,79). Thus, if x € A, v € L(X) and g € S with x Ay and x A g7, then
1(gy) = 0(g)n(7)-

Now, given a vertex x € X, there is a unique g € T, such that g7z € A. If vy € £L(X)
with = A7, then g7tz A g7 1y and so pu(g~17) is defined. We set w(z,~) = 0(g)u(g~17).

Note that if y € A, then w(y,v) = p(y) and w(gy, gv) = 0(g)u(y) for all g € T'. We
deduce that for any vertex x € X with 2 A~ and any g € T', w(gz, gv) = 0(g9)w(z,7). In
other words, property (W4) holds.

Suppose now that z,y € X are adjacent vertices, and that x,y A~v. Let g,h € T be
such that x € gA and y € ghA. Now A and hA contain adjacent vertices (namely g~ 'z and
g ly),soh € S. Now, g taAg tyand h g iyAh gty and g~ ta, h~tg 'z € A. Thus,
p(h=tg=ly) = 0(h~")u(g~1y), and so w(y,v) = 0(gh)u(h g~ 'v) = 0(gh)0(h")u(g~ ") =i
0(9)pu(9~ 1) = w(x,v). This proves property (W3).

Finally we note that properties (W1) and (W2) are immediate, so we have constructed
our winding number as claimed.

Definition : We say that a locally finite metric 2-complex, (X, p), is homologically planar
over a field F, if it is uniformly F-acyclic over F, and there is some ry > 0 such that the
boundary of every 2-cell has length at most 7y, and such that X admits a winding number
satisfying axioms (W1), (W2) and (W3).

Note that this property remains invariant under attaching additional 2-cells of bounded|j
boundary length. It can thus be viewed as a property of graphs, and as such is easily seen
to be a quasiisometry invariant. It thus makes sense to speak about a finitely generated
group as being “planar” in the sense that some (hence every) Cayley graph has this prop-
erty. Note that planarity implies F'P, over F. We shall eventually see that it implies that
I' is a virtual surface group.

We can summarise the construction of this section in the following way:

Proposition 2.3 : Suppose that I' is a group and F is a field. Suppose I' is F'P, over
F and that H*(T;FT) has a 1-dimensional T-invariant subspace. Then T' admits a free
cocompact action on a metric 2-complex which is homologically planar over F'. &

Indeed the construction gave us axiom (W4) as well for free. We shall see in Section
6 how one can recover (W4) by purely geometric arguments, starting with assumption of
planarity.

3. Uniform acyclicity and straight sets.

The kinds of ideas we describe here are related to “coarse Alexander duality”. Similar
ideas feature in [FarbS] and have been developed extensively in [KaK]. However, we shall
only be using fairly simple properties which are easily derived from first principles.

Let F be a field and (X, p) be a metric 2-complex. Suppose @ C X, and r > 0.
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Definition : We say that @) is r-straight (over F) if the image of H1(Q;F) in H;(N(Q,r); F)}}
is 0.
We say that Q) is straight if it is r-straight for some r.

Thus, we can define uniformly acyclicity by saying that X is uniformly acyclic over F
if there is some function h : [0, 00) — [0, 00), such that if @ C X with diam(Q) < r, then
Q is h(r)-straight.

We note that it is enough to verify this for circuits in X. Indeed, if the complex is
uniformly locally finite, then it’s enough that any circuit v should bound an F-cycle in X
whose diameter is controlled as a function of length(y).

Here are a couple of trivial observations about straightness.

Lemma 3.1: Suppose @ C P C X are such that the natural map H1(Q; F) — Hy(P;F)
is surjective. If () is r-straight, then so is P. &

Given Q C X, let C(Q) be the set of connected components of Q€. As an immediate
corollary of Lemma 3.1, we have

Lemma 3.2 : Suppose X is acyclic, Q C X and £ C C(Q). If Q is r-straight, then so is
QUUE. o

Examples of straight subsets arise from the following construction. Suppose (Y, o)
and (X, p) are metric complexes. Suppose f : (Y,0) — (X, p) is a cellular map.

Definition : We say that f is a uniform map if for all ¢ > 0 there is some s > 0 such that
if x,y € Y with o(z,y) > s, then p(f(x), f(y)) > t.

The following is easily verified (cf. [KaK]):

Lemma 3.3 : Suppose (Y,0) and (X, p) are both uniformly acyclic, and f : Y — X is
a uniform map. Then, for all r > 0, N(f(Y),r) is s-straight, where s depends only on r
and the functions of uniformity. O

We now want to apply these ideas to planar complexes. Recall that a “planar complex”
is a uniformly F-acyclic metric 2-complex, (X, p), with a winding number w satisfying
axioms (W1)-(W3).

Suppose @ C X is connected. If z,y € Q and v € L(X) with Q A, then axiom (W2)
tells us that w(z,v) = w(y, ). We shall denote this quantity by w(Q,~).

Lemma 3.4 : For allt > 0, there is some r > rq such that if z € X and v € L(X) with
p(z,7v) > r and diam(y) < t, then w(z,7y) = 0.

Proof : By uniform acyclicity of X, there is some s > 0 depending on ¢ such that v is
F-homologous to 0 in N(v,s). Let r = rq + s. If p(z,7v) > r, then N(~,s) N N(z,ro) = 0.
Thus, « is null F-homologous in N (z,7)¢, so w(x,v) = 0. O
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Corollary 3.5 : For all t > 0 there is some u > 0 such that if () C X is connected and
v € L(X) with Q Ay, diam(Q) > u and diam(y) < t, then w(Q, ) = 0.

Proof : Let u = t 4 2r, where r is given by Lemma 3.4. Now, we can find x € @) with
p(z,7) = r. Thus, w(Q,7) = w(z,7) =0. %

As an immediate consequence, we have:

Lemma 3.6 : Suppose Q C X is connected and unbounded, and that v € L£(X) with
QN~vy. Then w(Q,v) = 0. &

Definition : A sequence (v,)nen of loops in X is big if for some (hence every) x € X,
p(z,vn) — oo and w(z,vyy,) # 0 for all sufficiently large n.

A subset Q C X is big if it contains a big sequence of loops.
Thus, Axiom (W3) tells us that X itself is big.
Lemma 3.7 : IfQ C X is big and r-straight, then X = N(Q,r + ro).

Proof : Suppose z € X with p(z,Q) > r + ro. If v € L(Q), then ~ is null F-homologous
in N(Q,r) C N(x,70)¢. Thus w(x,v) = 0 contradicting bigness. &

As a consequence, one can show:
Proposition 3.8 : A planar metric 2-complex is one-ended.

Proof : Suppose K C X is compact. Since X is locally finite, C(K) is finite. Let (7y,)n, be
a big sequence in X. Passing to a subsequence, we can assume that each ~, lies in C' for
some C' € C(K). Thus C'UK is big. Since X is uniformly acyclic, K is r-straight for some
r > 0. Thus, by Lemma 3.2, CUK is also r-straight. By Lemma 3.7, X = N(CUK,r+rg).
It follows that K is the only unbounded element of C(K). This shows that X is one-ended.

¢

4. Systems of connected sets.

For the moment, we shall allow (X,p) to be any metric 2-complex. Let A be a
collection of connected subsets of X. By the nerve, Q = Q(A), of A, we mean the graph
with vertex set V(A) = A, and with two such vertices connected by an edge in 2 if and
only if the corresponding sets have non-empty intersection. We shall adopt the convention
of denoting elements of A by upper case letters, A, B, C, ..., and the corresponding vertices
of €2 by the corresponding lower case letters, a,b, c,.... We shall denote a path in € by
listing the vertices through which it passes.

10
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Given a loop, 8 € L(|J.A), we shall say that a path ajas...a, is a coding for § if we
can write f = ay UagU- - -Uay,, with a; € A; U A, for all ¢ (subscripts mod n). We shall
frequently write 3 for such a coding (even though it need not be uniquely determined).

By a p-cycle we mean a system A of connected sets such that 2(.A) is a p-gon (a
circuit of length p), which we typically denote by ajas...ap, so that A = {A41,...,4,},
taking subscripts mod p.

Lemma 4.1 : Suppose A = {A;,---,A,} is a p-cycle with p > 4, and € L(|J.A) has
coding ajas . ..a,. Then  represents a non-zero element of Hy(|J A; A) for any ring A.

Proof : This follows from the following observation. Suppose C' and D are connected
complexes, and x,y € C'N D lie in different components of C N D. If v C C and 6 C D
are paths each with endpoints x and y, then v U § is non-trivial in H;(C' U D; A).

We now apply this to C' = Ay UAyUA3 and D = A3 UA4U---UA, UA;. Then
CND=AUA3. Let y=a1Uaz and 6 = ag U --- U, where a; € A; U A; ;. Thus,
B=~Uod. %

Now, fix a field, F, and recall the definition of “straightness” from Section 3.

Lemma 4.2 : Suppose that A = {A1, Ao, A3, Ay} is a 4-cycle in X, and that | A is
r-straight in X. Then, either p(Ay, As) < 2r, or p(Asy, Ay) < 2r.

Proof : Suppose not. Let B; = N(A;,r). Then B = {By, By, B3, B4} is a 4-cycle. Choose
any loop 5 € L(|J.A) with coding sequence ajasazay in 2(A) and hence b1babsby in Q(B).
By straightness, (3 is trivial in Hy(|J B;F), contrary to Lemma 3.1. &

Lemma 3.3 : Suppose A is a system of connected sets. Suppose that I < H;(|JA;F)
is an F-subspace with the property that for A, B € A, the image of Hi1(A U B;F) in
Hy(JA;F) lies in I. Then, there is a natural map j : H;(; F) — Hy(|J A; F)/I such
that if 3 € L(|J.A) with coding sequence B then the homology class of 3 maps to the
representative of the homology class of 3. &

Proof : If r =a;y...a, is aloop in £ then choose 8 € L(|J.A) with coding 7, and set j()
to be the class of 3. If 8’ were another such path, then it is easily seen that the homology
class of B — 8 can be represented by > ., 7;, where v; € L(A; U A;4+1), and thus lies in I.
This shows that j(7) depends only on the loop 7.

Now, if 7 is homologically trivial, then it’s homotopically trivial, and so can be reduced
to the trivial loop by a series of reductions of the form aba — a, where aba is a subpath.
Now, shortcutting £ by cutting away a loop in A U B, we similarly reduce 5 to the trivial
loop, and so (3 represents an element of I.

We now extend j F-linearly over Hy(Q); F). &

11
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Lemma 4.4 : Suppose F is a field. Suppose u € H*(|JA; F) and that the restriction of
p to AU B is trivial for all A, B € A. Then, there is a (unique) i € H'(Q;F) such that
B € L(X) and B is a coding for 3, then pu(B) = u(pB).

Proof : Let I < Hi(|JA;F) be the subspace mapped to 0 by p under the Kronecker
pairing. Let j be as given by Lemma 3.3. Given ¢ € H1(; F) set u(¢) = u(j(¢)). This
defines an element of H'({; F). %

5. Planar separation by paths.

Any properly embedded arc in the plane, R?, separates it into two components. In
this section, we shall describe an analogous course separation property for uniform bi-
infinite arcs in planar 2-complexes. In the setting of riemannian geometry, a similar coarse
separation property can be found in [Sch] (see also [FarbS]).

We shall fix a field, F, and use the term prime subring for the ring of integers in the
prime subfield. This is Z if char(F) = 0 and Z,, if char(F) = p.

Let (X, p) be a metric 2-complex. A wuniform path is a map « : I — X, where
I is a subinterval of the real line, satistfying f(|t — u|) < p(a(t), a(u)) < |t — u|, where
f:]0,00) — [0,00) is a fixed function tending to infinity (the “function of uniformity”).
In this section, we won’t worry much about parametrisation, but keep track of the direction
of the path. We shall abuse notation by writing « for the image of a. Note that the notion
of a uniform path can be defined without explicit reference to the parametrisation by
saying that the diameter of any finite subarc is bounded above by some function of the
distance between its endpoints. A uniform bi-infinite path is necessarily proper.

Given z,y € a, we write afx, y] for the subarc a([t, u]), where x = a(t) and y = a(u).
Given a finite subarc, § C «, we write a™(8) = a((—o0,t]) and at(§) = a([u, 00)) where
§ = a([t,u]). We use the same notation, a®(x) if = d is just a point of a.

The following is a simple consequence of uniformity:

Lemma 5.1 : Suppose that « is a uniform bi-infinite path, * € o and r > 0. There
there is a finite subpath § C « such that p(x,a~) > r, p(x,at) > r, p(a”,a™) > r and
5 C N(x,1), where | depends only on r and the functions of uniformity. O

The following is immediate from Lemma 4.3:

Lemma 5.2 : If X is uniformly acyclic, and « is a uniform arc, then N («, 1) is s-straight,
where s depends only on r and the functions of uniformity. &

Now, let’s suppose that (X, p) is a planar metric 2-complex, with winding number
w with separation constant ry. Let’s fix a uniform bi-infinite arc a. Let r > rg, and
set Y = N(a,r). Note that Y is topologically two-ended. Let C = C(Y) be the set of
components of Y.

Suppose § C a. Write a® = a™(§). Set K = K(§) = N(6,7) and set AT = A*(§) =
N(a*,7). We shall want to assume that p(A*, A~) > 0 is sufficiently large depending on
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Lemmas 5.2 and 4.2 as we shall explain in due course.
We note that the following two observations are both simple consequences of the
uniformity of a.

Lemma 5.3 : For all t > 0 there is some u > 0 such that if x,y € A* with p(§,x) > u
and p(8,y) > u, then x and y are connected by a path e C AT with p(J,€) > t. O

Lemma 5.4 : For all t > 0 there is some u > 0 such that if v is a path connecting A"
to A~ in N(Y,t), then p(z,~) < u for all x € 6. O

In both cases, u depends only on t and the functions of uniformity.

Now, let Co = {C € C|CNA- #0and CNAT #(}. Let B=CU{A", AT} and
let By = CoU{A™, AT}, Let Q = Q(B) and let Qg be the subgraph Q(B) (as defined in
Section 4). We recall the convention of using upper and lower case letters for corresponding
elements of B and ).

Now, Qp is the complete bipartite graph on the sets {a~,a™} and {c | C € Cy}. The
remainder of ) consists of a number (possibly 0) of free edges attached to either a~ or a™,
and a (finite) number of isolated vertices.

Now, by Lemma 5.2, Y is s-straight for some fixed s > 0. Moreover, by Lemma 3.2,
if £ CC, then Y UJE is s-straight.

We shall now assume that p(A~, AT) > 2s.

Lemma 5.5 : IfC € Cy, then p(K,C) < 2s.

Proof : Suppose p(K,C) > 2s. Then, {K,A™,C, A"} is a 4-cycle in X. Moreover,
KUA UCUAT =Y UC is s-straight. Since p(A~, AT) > 2s, this contradicts Lemma
4.2, o

By the local finiteness of X, it follows that C is finite. Hence, (g is finite.
Now, let © be the cocycle on |J B defined by [y — w(d,7)].

Lemma 5.6 : IfB,C € B and~ € L(BUC), then u(y) = 0.

Proof : We can assume that B N C # (). Thus, without loss of generality, B,C # AT,
and so (BUC) A (6Uat). But §Ua™ is connected and unbounded. Thus, by Lemma 3.6,
w(y) =w(d,y)=0forally C BUC. O

Thus, by Lemma 4.4, we get an element ji € H'(2; F), such that if 3 € £(|JB) with
coding 3, then p(8) = fi(5)- )

Now suppose 5 € L(|JB) with u(8) # 0. Let 8 be a coding for 8. Now, from the
form of Q described above, we see that there must be subpaths of 3 of the form a~¢ja™
and acea”, where C1,Csy € Cy are distinct, and with ji(a”ciatca) # 0. Tt follows that
B contains subarcs 3; C O connecting A~ to AT and 82 C C5 connecting A" to A~.
Let € be a path in AT connecting the corresponding endpoints of 3; and B2, and set
B =e UBUetUPBs € LIUB). Now, ' has coding sequence a~cia™ ¢y, and so u(8’) # 0.

13



Planar groups

Note that, using Lemma 3.5, we can arrange that if p(d, 8) > u, then p(d, 5’) > ¢, where u
depends only on t.

Now, let (5,), be a big sequence in X. We can assume that 3, € L(|JB) for all n,
and so we get a sequence 3/, constructed as above. Clearly, (/3]) is also big. Moreover,
since Cy is finite, passing to a subsequence, we can assume that 3/, has coding a~ciates
for fixed C4, Cy € Cy with C4 7& Cs. It follows that YUC; UCy D A~ UC, U At U (s is
big.

Now, Y is s-straight, and so, by Lemma 3.3, Y U Cy U Cy is s-straight. Thus, by
Lemma 3.7, we have X = N(Y UCy U Ca, 19 + s). Now, if C € C\ {C1, Cs}, the nearest
point in Y U Cy U Cs to any point in C' must lie in Y. It follows that C C N(Y,rg + s).

Suppose that C7; C N(Y,t) for some ¢ > 0. Lemma 5.4 tells us that any path from
A~ to AT in C; must lie a bounded distance from §. But this contradicts the existence of
our big sequence (f},),. We conclude that C; \ N(Y,t) # 0 for all ¢ > 0. The same goes
for Cs.

In summary, we have shown:

Proposition 5.7 :  Suppose (X, p) is a planar metric 2-complex, o C X is a uniform
bi-infinite path, and r > ro. Let Y = N(a,r). There is a constant k > r, depending
only on r and the functions of uniformity, and distinct elements C7,Cy € C(Y') such that
C1\N(a,t) # 0 and Co\ N(a,t) # 0 for allt > 0 and C C N(a, k) for all C € C\{C1, Ca}.

<

In particular, C'y and Cy are canonically determined by Y. We shall refer to them as
the deep complements of Y. The remaining elements of C are shallow.

Now, by Lemma 5.4, we may as well choose k so that any path from A~ to AT
must intersect N(z, k) for any = € 6. Suppose that 3 € £(|JB) has coding 3, and that
p(8,8) > k. Now if B contains a subpath a~ca™ or a*ca™, then if follows that ¢ € {c1,ca}.
Thus, by the description of  given earlier, we see that 3 is homotopic in € to some integral
multiple, deg(3), of a~cia*co. In fact, the quantity deg(/3) can be read off combinatorially
from 3 as follows.

Let alii be the number of subpaths, v, of § with the property that v C C; and with ~
meeting AT precisely in its initial point, and meeting A* precisely in its final point. Then
it’s easy to check that deg(B) = df (8) — d; (B) = d5 (B) — d3 (B) € Z. We denote this
quantity by deg(8) = deg, 5(8)-

Now, writing wo(a,d) = ji(a”cra™cy), we see that if 8 € L(X) with p(d, 8) > k, then
w(d, B) = pu(B) = deg(B)wo(a, d). In other words, w(d, B) can be read off combinatorially.

We next show that wg(a,d) is, in fact, independent of §. Suppose that ¢’ is another
such subarc of a. Since d and §’ are contained in a common subarc, we may as well
suppose that 6 C ¢’. Thus, A*(§') C A%(§). Choose 3 € L(X) with p(d’, 8) > k, and with
deg, 5/ (8) = 1. Since fNY C A~ (d") U A* ('), we see that deg, 5(8) = deg, s(8) = 1.
Thus, wp(a, d) = w(d, B) = w(d, B) = wo(a, d"). We can therefore write wp(a, d) = wp(a).

In summary, we see that wp(a) depends only on the direction of the path «, and on
an ordering on the pair of deep complements. We shall refer to the latter as an orientation
on «. Given such an orientation, we shall write Cr = C and C, = Cs for the right and
left deep components respectively. Note that we can find a big sequence, (f,), such that
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w(d, Br) = wo(a) for all n.

Next, we consider what happens if we choose a different uniform path o’ with r’ and
k" corresponding constants. Choose a sufficiently large finite subarc, &' C o'. Let (5,), be
a big sequence with w(d, 5,) = wp(a) for all n. Now, for all sufficiently large n, we have
w(d’, Bn) = w(d, B,) and that w(d’, B,) is an integral multiple of wy(a’). In other words,
wo () is an integral multiple of wy(a’). Conversely, swapping the roles of o and o/, we
see that wp(a’) is an integral multiple of wy(a). We thus conclude that wy(a’) = Awp(«)
where ) is a unit in the prime subring of F', i.e. A = £1 if the characteristic of F is 0, and
A is a non-zero element of the prime subfield in general.

In summary, we have shown:

Proposition 5.8 :  Suppose (X, p) is a planar metric 2-complex over F. There, there
is a non-zero element, wy € F, with the following property. Suppose a C X is a directed
oriented uniform bi-infinite path. Then, there is some A € F, which is a unit in the prime
subring, satisfying the following. Suppose that r > rg, then there is a constant k > r,
depending only on r and the function of uniformity of o, such that if § C « is a sufficiently
large finite subarc, and f € L(X) with p(d,) > k, then w(d, ) = deg(B)Iwo, where
deg() € Z is the combinatorial degree of 3 as defined earlier. &

Of course, we haven’t yet said anything about the existence of uniform bi-infinite
paths, so the above result may be vacuous for all we know. If some bi-infinite uniform
path exists, then the constant, wg, is determined up to a unit in the prime subring.

Definition : A metric 2-complex, (X, p), is taut, if there is some function f : [0,00) —
[0, 00) tending to infinity, and some r > 0, such that every point of X lies within a distance
r of some f-uniform bi-infinite path.

Note that by incorporating r into f, we may as well assume that every point of X lies
on an f-uniform bi-infinite path.

Now, suppose that (X, p) is a taut planar metric 2-complex. Given x € X, we can
find a uniform « containing x. By Lemma 5.3, we can find a finite subpath § C «, such
that p(a=(d),at(d)) is sufficiently large for the above constructions to work, and with
d C N(xz,t), where t depends only on the parameters of planarity and tautness. Putting
this together with Proposition 5.8, we conclude:

Proposition 5.9 : Suppose (X, p) is a taut planar 2-complex. Then there is some | > r,
depending only on the parameters of planarity and tautness, and some non-zero wy € F,
such that if v € X and v € L(X) with p(z,7) > [, then w(z,~) is an integral multiple of
wo - <>

Thus, by enlarging ry to [, we may as well assume that the image of the winding
number is precisely Zwg. Dividing throughout by wg, we can also assume that wg = 1.
Thus, we will not loose any generality in assuming that either F = Q, and that the winding
number takes precisely integral values, or that F = Z,, for some prime p. In the latter case,
we shall show in Section 7, how one can “lift” the winding number to Z. Thus, ultimately,
we will be able to assume that all winding numbers take values in Z.

15



Planar groups

The following definition will be useful in later sections to avoid having to deal with
shallow components.

Suppose « is a uniform bi-infinite path, and r > rq. Let k = k(r) > r be the constant
described by Proposition 5.7. Let Y = N(a,r) and let A = A(a,7) = Y UJC(Y) \
{CL,CRr}). Thus, N(a,7) C A C N(a, k(r)). Clearly, A has precisely two ends.

Suppose ¢ C « is a finite subarc. Now N(a*(d),k(r)) contains an end of A. Let AT
be the unique unbounded connected component of ANN (a™(4), k(r)). We similarly define
A~. Let AY be the closure of A\ (AT UA™). Thus, A is compact.

Now, applying Lemma 5.3, given any = € «, and t > 0, we can choose § appropriately
so that p(z,A™) >¢t, p(z,AT) >t, p(A=,AT) >t and A° C N(z,u), where u depends on
r, t, and the parameters of uniformity.

Thus, A* and A play similar roles to AT and K in the previous discussion. Moreover,
we have that & = {A~,Cr, AT, CRr} is a 4-cycle in X, and that X = A° U|J&. However,
A% need not be connected.

6. Consequences for the action of I' on winding numbers.
Let’s begin with a general observation:

Lemma 6.1 : Suppose I' is infinite and acts properly discontinuously cocompactly on a
metric 2-complex, (X, p). The (X, p) contains a bi-infinite geodesic.

Proof : This is a standard fact. Choose a sequence of longer and longer finite geodesic
segments, translate their centres to a fixed vertex, and take a diagonal subsequence. <

In particular, we see that (X, p) is taut. Now suppose that (X, p) is planar over the
field F. Let U(F) be the multiplicative group of units in the prime subring (i.e. the ring
of integers in the prime subfield). As described towards the end of last section, without
loss of generality, we may suppose:

(W5) The image of the winding number is precisely the prime subring of F.

It follows that for all x € X, there is an arbitrarily large loop 8 with w(x, 8) = 1.

Now, given x € X, choose a directed oriented uniform bi-infinite path, a through
xz. Let Y = N(a,rg), and let Cr () and Cr(«) be the left and right deep complements.
We can suppose that we have chosen 7y so that if 5 € £(X) with x A 3, then deg,(8) is
defined (using a smaller neighbourhood of «). Thus, w(z, 8) = Adeg,(5), where A € U(F)
depends only on «.

Now, suppose g € I'. We choose the orientation on ga by setting C,(ga) = gCr(«)
and Cr(ga) = gCr(«a). Now, since deg,, (8) is defined combinatorially, we see that it must
be invariant under g, i.e. deg,,(98) = deg,(8). It follows that there is some element
Az(g) € U(F) such that for all g with = A 8, w(gzx, g8) = A\z(g9)w(z, B). Clearly, A\, does
not depend on a.
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Suppose y € X. Let v be a path connecting = to y, and choose § with v A 8 and
w(z, B) = w(y, B) = w(v,B) = 1. Now, gy A g8, so w(gz, gB) = w(gy,9B) = w(g7,9B).
Thus, A\;(g) = Ay(g). We can therefore set A(g) = A\;(g). This gives amap A : I' — U(F),
sothat if g € T, z € X and g € L(X) with A B, then w(gx, gf8) = A(g)w(x, 5). Now, it’s
clear that this A must be a homomorphism. In summary, we have shown:

Proposition 6.2 : Suppose that I' acts properly discontinuously cocompactly on a planar
2-complex (X, p). Then, assuming that we have chosen the separation constant sufficiently
large, there is a homomorphism A : I' — U(F) such that if g € T', z € X and 8 € L(X)

with z A B, then w(gz, gB) = AN(g)w(x, B). O

In particular, we see that the winding number automatically satisfies (W4).
In the case where F has characteristic 0 so that U(F) = {—1,1}, we derive the
following conclusion:

Proposition 6.3 : Suppose that I is a group, and F is a field of characteristic 0. Suppose
that T is FP, over F, and that E C H?(T',FT) is a 1-dimensional T'-invariant subspace.
Then, the subgroup of I' which fixes E pointwise has index at most 2 in I'.

Proof : By Proposition 2.2, I' admits a free cocompact action on a planar 2-complex.
By Lemma 6.1, this complex is taut. Let w be the winding number arising in this way.
The constructions of Section 5 tell us that we can assume property (W5) and that one can
define combinatorial degrees of loops. Thus, by Proposition 6.2, we get a homomorphism
A: ' — {—1,1}, giving property (W4).

On the other hand, we get a character 6 : I' — F* | arising out of the action of T' on
E, giving us property (W4) directly. Thus, § = X\, and so the subgroup fixing F, namely
ker = ker A\, has index at most 2. &

In this case, we shall refer to the subgroup fixing E pointwise as the orientation
preserving subgroup of I'. At the moment, it is still conceivable that this may depend
on the choice of subspace E. A different subspace might give rise to a different winding
number. Ultimately however we shall see that, in fact, H?(I; FT') = E.

7. Lifting winding numbers.

We saw in Section 5 how to reduce winding numbers to the prime subring, A, of the
field, F. If char(F) = 0, this is Z, and we are happy. If char(F) = p, this gives us Z,, and
in order to make the arguments of later sections work, we shall need to lift it to Z. This
will require some refinement of the geometric constructions of Section 5. We can allow F
to be any field, though the construction is a bit pointless if its characteristic is 0. Apart
from the main result, the constructions of this section are not required elsewhere in this
paper.

Let (X, p) be a planar metric 2-complex with separation constant ro. We shall con-
struct our integral winding numbers by identifying a kind of “circular structure” at infinity.
The idea can be summarised more formally as follows.
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Let D be the set of compact connected subsets of X, viewed as a directed set under
inclusion. We fix a constant, k, to be chosen appropriately. Suppose K € D, and () O K
is any complex. Let Io(K) be the image of Hi(N(Q,k)°;Z) in H;(K%;Z). Let I(K) =
P{Io(K) | Q 2 K is unbounded}. In other words, I(K) may be defined as the subgroup
of Hy(KY;Z) generated by those loops, 3, for which there is some ray, v, connecting K to
infinity, with p(8, K U~) > k. Let J(K) = H,(KY;Z)/I(K).

Note that if K C L € D, then the natural map of Hy(L%;Z) into H,(K%;Z) sends
I(L) into I(K), and so we get an induced map J(L) — J(K). We thus get an inverse
limit system of abelian groups, (J(K))xep, and we set J to be the inverse limit.

Now, using Lemma 2.6, it’s easy to see that if x € K € D, then the map w, = w(zx, —)
vanishes on I(K), and so induces a homomorphism of J(K) to the additive group, A.
This map respects the maps J(L) — J(K), so we get a homomorphism w, : J — A.
Moreover, there is an element ¢ of J defined (up to sign if char(F) = 2) by taking a big
sequence, (Bn)nen in X with w(zx, 8,) = 1 for all n. Now the arguments of Section 5 show
fairly easily that this is well-defined: if K € D, then 3, — 5, € I(K) for all sufficiently
large m,n. Moreover we see that this element generates J, and that w, maps ¢ to 1 in
A. In summary, this shows that w, maps J surjectively to A. Of course, this gives us
nothing essentially new. The aim of this section will be to use the combinatorial notion of
degree defined in Section 5, to lift this to a surjective map of J to Z, thus showing that
J is infinite cyclic. Furthermore, observing that the constructions are uniform (in that
the various constants involved depend only on the parameters of X) this gives rise to a
rational integer valued winding number satisfying properties (W1), (W2) and (W3).

To this end, it will help if we assume that X admits a cocompact group action. From
this it follows immediately that every point of X is a bounded distance from a bi-infinite
geodesic. Moreover, given any r > rg, we can find some lo(r) > r, so that if x € X, there
is some 5 € L(N(z,lp(r))) with p(z, ) > r and w(z, ) = 1. (Our arguments work more
generally, but it’s not worth introducing unnecessary complications here.)

We begin by elaborating on the combinatorial notion of degree defined in Section 5.
We shall simplify the discussion by confining our attention to geodesics. Let a be a bi-
infinite geodesic, and fix some point, g € a. Let Y (r) = N(a,r) and let C1(r) and Cgr(r)
be the left and right deep complements. Given r > 0, let §(r) be the subarc aN N (zg, 2r).
Let a®(r) = a®(8(r)) and set AT (r) = N(a™(r),r). There is some I;(r) such that every
shallow complement of Y (r) lies in N(a,l1(r)). We can assume that [; is an increasing
function of 7. Given 8 € L(X) with p(z,8) > l1(r), we set deg,, = dj(8) — dg(B) =
d; (B) — df (B), where d is the number of subpaths in 8\ (At (r) U A= (7)) which connect
AF(r) to A*(r) and which lie in Cp,, and where di is defined similarly. Note that this
definition also makes sense for any path with endpoints in A*(r) U A~ (r).

Now suppose s > r. We see that CL(s) C Cr(r) and Cr(s) € Cr(r). Moreover,
p(CL(s),Y(r)UCg(r)) > s —r, and similarly swapping r and s. Suppose 7 is a path in
Cr(r) with 0y = L(r) N7, p(x,7y) > l1(s) and with initial endpoint in A~ (r) and final
endpoint in AT (r). Now, 7 can only cross between A~ (s) and A™(s) in Cgr(s). Clearly
there is precisely one more forward crossing than backward crossing, i.e. deg, ((v) = 1.
It now follows that if 8 € L(N(zo,l1(s))%), then deg, .(8) = deg, ,(8). We thus get a
fairly robust notion of degree which we shall denote by deg, (). Of course, we can’t use
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it directly as a definition of winding number, since, a-priori, it may depend on «. Note
that we can assume that we have chosen r( large enough so that w(zg, 5) equals deg, (5)
modulo char(F).

The key step in using this notion of degree will be a coarse analogue of the following
elementary fact of planar topology.

Lemma 7.1 : Let 3 be a (piecewise differentiable) loop in the plane, R?, with non-zero
winding number about the origin 0 = (0,0) ¢ image(3). Then, there is a loop, vy, with
winding number 1 about 0, with image~ C image 3.

Proof : Consider the boundary of the component of R? \ image(3) containing 0. &

We aim to prove:

Lemma 7.2 : There is a constant, l5 > 1o (depending only on the parameters of X ) such
that if « is a bi-infinite geodesic in X, g € o, and 8 € L(N(zg,2l5)¢) with deg,(3) # 0,
then there is a loop v C N(B,15) with deg,,(y) = 1.

Let’s fix a bi-infinite geodesic a, and a point zg € a.. Let AT = AT (2rg), Y = Y (2r),
Cr = Cr(2r¢) and Cg(2r¢) etc. By an L-path, we mean a path § C Y UC, with endpoints
in «, so that SNY consists of two geodesic segments each of length 2ry, and with SNCY, a
non-empty subpath. Thus, 08 = 8N «a. We similarly define an R-path where 5 CY UCg.
We say that a path is an LR-path if it is either an L-path or an R-path.

Given a sequence, f1,...,[3, of LR-paths, we define o(f31,...,0,) to be the loop
BrUS UBUdU---UpB, Ud,, where d; is the subpath of a connecting the final point of j;
to the initial point of 3;11. We refer to a loop arising in this way as a o-loop. Now, each
shallow complement of Y lies inside N («, l2) where ly = 11(2rg). From this, it follows easily
that if 5 € £(X) with p(zg, 5) > l2, then there is some o-loop, o, lying in N(f3,l3) with
deg, (8) = deg, (o). To see how to obtain o, consider a component, 4, of 5 with the union
of Y and all the shallow complements. Thus, J is a subarc, with endpoints, z,y € Y. We
replace this with an arc, 0’, which goes directly from = to «, runs along a segment of «,
and then returns to y. The arcs connecting x and y to a we can take to be geodesics, each
of length 2rg. Thus, ¢’ C N(4,1y). We replace each such subarc, 4, by an arc, §’, in this
way. Note that deg, (o) is the number of positive R-paths minus the number of negative
R-paths making up o. By a “positive” R-path we mean one connecting o~ to ™, whereas
a “negative” R-path connects a™ to a~. (Of course an R-path might be neither.)

Given z,y € a, we write z < y if x = «(t) and y = a(u) with t < u. If x < y < z,
we say that y interlocks {x,z}. If x <y < z < w, we say that {z, z} interlocks {y,w}.
If v is an LR-path and = € «, we say that = interlocks ~y if it interlocks 0v. If v and §
are LR-paths, we say that v interlocks § if O interlocks 09, and v and § are either both
L-paths or both R-paths.

Now let I3 = lp(l3 + 2rp). Thus, if € «, then (by the definition of the function g,
some loop, B with w(zg, B) # 0, with 3 C N(z,13) N N(x,ly + 2ry)¢. From this it follows
that there is some L-path, 6, interlocking x, with 6 C N(x,15)¢ N N(x,l3), and a similar
R-path, e. Note in particular that p(zg,d) > lo and p(xg, J€) > Is.
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We shall need the following observation:

Lemma 7.3 : Suppose [ is an L-path and that 7 is an R-path with p(0f3,0v) > 5rg.
Then p(8,7) > ro.

Proof : Let C? = Cp(rg), C% = Cr(ro) and Y° =Y (rg). Then, p(C,Y°UCY) > r¢ and
p(CL,YOUCY) > ryg. Now, p(BNY,yNY) > 5rg — 2(2r¢) = ro. Since § C YO UCY and
v CYOUCY, we have p(BNCL,7) > ro and p(yNCr, 3) > ro. This covers all possibilities,
and so p(B,7) > ro as claimed. &

Now let Iy = I3 + brg.
Lemma 7.4 : Suppose [ and ~ are interlocking LR-paths. Then p(B,7) < l4.

Proof : Suppose that § and v are both L-paths and that p(8,v) > l4. Let 08 = {z, z}
and 0y = {y,w}. We can assume that x < y < z < w. Note, in particular, that
p(y,w) > p(z,w) > ly. By the observation before Lemma 7.3, we can find an R-path,
9, with 96 = {a,b} with a < y < b, and Iy < p(y,a) < I3 and ls < p(y,b) < l3. Now,
p(b,w) > p(y,w) — p(y,b) > lg — I3 = brg. Thus, p(w,dd) > bry, and so p(dv,dd) > 5ry.
By Lemma 7.3, p(v,0) > ro. Also p(BUd,a™(w)) > ro (where a™(w) is the positive ray
of a based at w).

Now let o0 = o(f3,8). We see that p(o,v U a™(w)) > ro. But, yUa™(w) is a path
connecting y to infinity. Therefore, by Lemma 3.6, w(y,o) = 0. However, deg, (o) =
1, where deg, here represents the combinatorial degree about y. By Proposition 5.8,
w(y, o) = deg,(0). We therefore derive the contradiction that 0 = 1. &

Proof of Lemma 7.2 : Let I5 = [y + 4. Suppose that zo € X and 3 € L(N(zo,2l5))
with deg,(8) # 0. As we have observed, there is a o-loop, 0 = o(f1,...,8,) = f1 Ud U
--U By Ud, in N(B,l2) with deg,, (o) = deg,(5). We now use Lemma 7.4 to shortcut o
and obtain the desired loop, 7. The argument is essentially combinatorial, but it is easier
to express it geometrically as follows.

Let o/ = Rx {0} C R? Let C; = Rx[0,00) and C);, = R x (—00,0]. We parametrise
a by arc-length so that a(0) = . Given an L-path, €, let € be the semicircle in C} with
endpoints (¢,0) and (u,0), where de = {«a(t), «(u)}. We similarly define € for an R-path e.
Now, let o’ be the loop 51U U---UpS;, Ud,,, where 0, C ' is the segment connecting the
final point of 3; with the initial point of §;, ;. Clearly, the winding number of ¢’ about the
origin equals deg, (o), which is non-zero. Thus, by Lemma 7.1, there is a loop, 7/, with
image(y’) C image(o’), and with winding number 1 about the origin.

We now use this to construct the loop + by following the corresponding segments
of B8; and ¢;. The only complication is that 4/ may cross between different semicircles,
Bl and 6; However in this case, the corresponding paths 3; and (; interlock. Thus,
Lemma 7.4 allows us to cross from f; to 3; along a path of length at most 4. Thus,
v C N(o,ly) CN(B,ly+12) = N(B,l5). Since p(xg,y) > 2l5 — l5 = l5 > lo, it follows that
deg, () is defined and equal to 1. &
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Now let k =I5 + rg.

Corollary 7.5 : Suppose that 5 € L(X), with p(x, ) > 2k. Suppose that there is a
path e connecting xg to infinity with p(e, 3) > k. Then deg, (5) = 0.

Proof : Suppose not. Let v C N(x,15) be the loop given by Lemma 7.2. Thus w(zxq,y) =
deg,(v) = 1. Also p(e,7) > k —l5 = ro. Thus, by Lemma 3.6, w(zg,y) = 0. Therefore
0=1. %

Lemma 7.6 : The map deg,, extends to a homomorphism, deg,, : Hy (N (zg,12);Z) —
Z.

Proof : Clearly, if 8 € L(N(xg,l2)¢) has diameter at most rg, then deg,(8) = 0. We
need also to verify that if v1, 72,73 € L(N(x0,12)%; Z) form a theta curve then deg,, (71) +
deg,(72) + deg,(v3) = 0. We can write v, = (; U —f;41 where (i, 2,83 are paths
with the same endpoints. By attaching paths to these endpoint if necessary, we can
assume that both endpoints lie in a. This means that deg,(8;) is defined, and that

dega (’77,) - dega (BZ> - dega (614—1)‘ <>

Let D(z9) = {K € D | N(zo,l2) € K}. Note that D(xg) is cofinal in D. Also, if
K € D, then, by Lemma 7.6, we have a homomorphism deg,, : Hy(KY;Z) — Z. By
Lemma 7.5, this is identically zero on a generating set of I(K). We thus have:

Lemma 7.7 : If K € D(xg), then the map deg,, : H1(K®;Z) — Z is identically zero
on I(K). &

We thus get a homomorphism, also denoted deg,, from J(K) to Z for all such K.
Moreover, deg,, clearly commutes with all maps in the direct limit system, so we get an
induced homomorphism deg, : J — Z.

Now, let (8,), be a big sequence in X, with deg,(5,) = 1 for all n. Suppose that
K € D(xg). There is some r > 0 such that K C N(zg,7) € N(a, 7). Now, the argument
of Lemma 4.3 shows that for all sufficiently large m and n, 3,, — 3, € I(K). Thus, the
sequence defines an element, (x € J(K). Since D(xz¢) is cofinal, we thus get an element,
¢ € J. By definition, deg,({) = 1. In particular, the map deg,, : J — Z is surjective.

Again, the argument of Lemma 4.3 shows that there is some L € D(xg), containing
K, such that if 8 € £(LY), then 8 — (deg,(8))B. € I(K), for all sufficiently large n. Thus
B is represented by (deg,(8))(x in J(K). In other words, the image of J(L) in J(K) is
generated by (. This shows that J is generated by (.

In particular, we have shown:

Proposition 7.8 : The group J is infinite cyclic. &

We are assuming that X admits a cocompact group action, so that every point lies a
bounded distance from a bi-infinite geodesics, and all the above constructions are uniform.
We see that there are constants, l; > lg > I, such that if x € X and L € D with
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L DO N(xzg,l7), then the image of J(L) in both J(N(z,ls)) and J(N(z,ls + 1)) is infinite
cyclic, with the generator naturally identified with (.

Now suppose that 3 € L(N(z,17)¢). Then, 3 is represented by some multiple, &(z, ),
of (. We check that this satisfies properties (W1)-(W3). Now, (W1) and (W3) are im-
mediate. To see (W2), suppose that =,y € X are adjacent, and suppose p({z,y}, ) > l7.
Let L = N({z,y},l7). Now, the image of J(L) in J(N({z,y},ls)) is infinite cyclic, so g
is represented by some multiple of ¢ in J(N({x,y},ls)). This multiple must be equal to
both @(z, #) and @(y, B). &

Note that w(x, 5) equals @(z, ) modulo char(F). If char(F) = 0, we have achieved
nothing. If char(F) = p, then, at the cost of increasing the separation constant (from rg
to l7) we have lifted the winding number from Z, to Z.

8. Orders and cyclic orders.

Let (T, <) be a totally ordered set. Suppose that g : T — T is an order automor-
phism. We say that g is positive if gr > x for all x € T, and negative if gz < z for all
x € T. We say that g is archimedean if, for all z,y,z € T, {n € Z | x < ¢g"z < y} is finite.
Note that an archimedean map is either positive or negative. Moreover, g is archimedean
if and only if ¢g” is archimedean for all non-zero n € Z.

Suppose a group, I', acts by automorphism on T'. We say that the action is archimedean]j
if every non-identity element of I' is archimedean. Clearly, I' acts freely on 7T'. In fact, '
must be abelian, by the result of Holder, Frege and Huntington (see for example, [ADN]
for a discussion).

Now, if T" is countable, we can embed T canonically in the real line, or more precisely
in a totally ordered set which is order isomorphic to the real line. (For example, first
embed T as T' x {0} in 7" x Q with the antilexicographic order. This a countable dense
order, so we can complete it to give the reals.) Any order automorphism of 7" extends
canonically to an orientation preserving homeomorphism of R. Thus a group action on T’
extends to a group action on R. If the action on 7" is archimedean, then so is the action on
R. Conversely, any orientation preserving group acting freely on R is archimedean, hence
abelian (in fact a subgroup of the additive reals).

Now let © be a set. By a cyclic order on © we mean a function from the set of distinct
ordered triples, {(z,y,2) € ©3 | x # y # 2z # x}, of ©, to {—1,1}, satisfying o(x,y, 2) =
o(y,z,x) = —o(y,x, z) for all distinct x,y,z € ©, and if o(z,y, 2) = o(z, z,w) = 1, then
o(z,y,w) = 1. Clearly the circle, S, admits such an order. One can show inductively
that any finite subset of © can be embedded in the circle, so that the standard cyclic order
restricts to the given one. In fact, in a manner analogous to that described for total orders
(i.e. first embedding every point in a copy of the rationals), we can canonically embed a
countable cyclically ordered set in (a set cyclically order isomorphic to) S. Thus, every
automorphism of © extends canonically to a homeomorphism of S*.

Suppose the infinite cyclic group, Z, has an archimedean action on the totally ordered
set, T. Given z € T and n € Z, we shall write x + n for g"x, where g is the positive
generator of the action. Let © be the quotient, and m : T — © be the quotient map.
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Now, © admits a cyclic order. One way to define this is to say that o(z,y,z) = 1 if
T <y < zZ < I+ 1, for suitable lifts of Z,7y,z of z,y,z to T. Alternatively, embed
T canonically in R, extend the action of Z to R, and take the induced cyclic order on
© =T/Z from S' = R/Z.

Conversely, if (0, 0) is a cyclically ordered set, we can express © as a quotient T'/Z,
where T' is a totally ordered set with an archimedean action of Z. (For example, embed ©
in S!, and lift to R.) Any automorphism, g, of © lifts to an automorphism, g, of T'. Now,
¢ commutes with the action of Z. Moreover, if ¢’ is another lift, then §’ o §~! has the form
[z — 2 + n] for some n € Z.

In this way, we can define the rotation number, rot(g) € R/Z, of an automorphism,
g, of © in the usual dynamical fashion (as for maps of the circle). In the case of interest
here, namely where ¢ has finite order, then rot(g) € Q/Z. This can be described explicitly
as follows. Let ¢ be a lift of g to T'. If g™ = 1, then §" = [x — x + m)] for some m € Z, and
we set rot(g) = m/n. Note that for any p € Z, rot(g?) = prot(g). If I" acts on ©, we get a
map rot : ' — R/Z. In general this need not be a homomorphism. However, restricted
to any cyclic subgroup, it is. Moreover, it is conjugacy invariant: rot(hgh~!) = rot(g) for
any h € I.

Note that if T" is a torsion group acting effectively on ©, (i.e. every element has finite
order and only the identity acts trivially), then the induced action on the circle also has
this property, and so the action must be free. Note also that any finite group acting freely
on the circle is cyclic.

We note the following well known result:

Proposition 8.1 : Any group acting freely on the circle is abelian.

Proof : One way to see this is to represent the group as a quotient, G/Z, of a group G

which acts freely on the real line by an infinite cyclic group. From an earlier observation,
G is abelian. &

Putting this together with the previous observation, we conclude:
Corollary 8.2 : Suppose that ' is a torsion group acting effectively on a countable
cyclically ordered set. Then I is locally cyclic. &

Thus, I" is abelian, and in this case, rot : I' — Q/Z is a homomorphism.

9. Rotational parts.

Suppose X is a planar 2-complex, and that w is an integer valued winding number
satisfying properties (W1)—(W3), with separation constant, rq.

Let M be the set of pairs (M, K), where K C X is compact and connected, M C X is
connected with M ¢ compact, and with MAK (i.e. p(M, K) > rg). Given (M, K), (M', K") €]}
M, we write (M, K) > (M’, K') to mean that M C M" and K’ C K. Given that X is
one-ended (by Proposition 3.8) it is clear that M is a directed set with this order.
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We shall frequently suppress explicit mention of the set K. Thus, we speak of an
element M € M, and assume that it has associated with it a compact set K, denoted Ky,
as described above. We have a cocycle, uys : H1(M;Z) — Z defined on the generating
set £ by [ — w(Kn,B)]. (The primary function of Kj; is to define this cocycle.) If
M,M" € M, and M’ > M, then pys restricted to Hy(M';Z) agrees with .

Given M € M, we write M for the infinite cyclic cover of M given by par- The positive
generator of this action corresponds to a loop 8 € L(M) with up(8) = 1. We shall denote
the action of this generator by [z — x + 1], and of its mth power by [z — x + m]. Thus,
if x € M and ~ is any path connecting = to x +m in M, then v projects to a loop, ¢, in
M with pp(8) = 1. If M’ > M, then we can identify M’ as a subset of M.

Suppose now that g is a finite order orientation preserving automorphism of X. Recall
that this means that w(gz,g8) = w(z,B) for all x € X and g € L(X) with x A 5. Let
M(g) be the set of g-invariant elements of M, i.e. {M € M | gM = M,gKy = Ky}
Clearly in this case, uas(g8) = ur(5) for all 5.

Lemma 9.1 : M(g) is cofinal in M.

Proof : Given M € M, let K be any compact g-invariant set containing | J,, g" K»s. Since
X is one-ended, there is some connected P C X with P¢ compact, and with K A P. Let
Q=0,9"P. Set Kg =K. Thus Q € M(g), and Q > M. &

Suppose ¢ is orientation preserving of order n. Choose any M € M(g). Thus, g lifts
toamap §: M — M, so that §" projects to the identity. Note that § commutes with the
generator h = [z — x + 1]. (Since the commutator, [g, h], projects to the identity, it must
equal h? for some p, and since [§", h] = 1, we deduce that p = 0.) Now, g has the form
[z +— x + m] for some m € Z. Set rotp(g) = m/n € Q/Z. This is clearly independent
of the choice of lift, §. Now, if P € M(g) with P > M, then j|P is a lift of g|P, so we
see that rotp(g) = rotys(g). We thus get a well defined number rot(g) € Q/Z. Note that
rot(g) = 0 if and only if some lift of g has finite order (equal to n).

Definition : We call rot(g) the rotational part of the finite order orientation preserving
automorphism g.

A more direct way to define the rotational part is as follows. Choose any compact
connected subset K C X with gK = K, and let 8 be any path with K A 8 which connects
some point x € X to gx. Then rot(g) = w(K,~) where v is the loop SUgBUg?BU- - -Ug™ 1.

Note that if g, h are finite order orientation preserving automorphisms and p € Z,
then rot(g?) = prot(g) and rot(gh) = rot(hg).
Given an automorphism, g, define a map D, : X — [0, 00) by Dy(z) = p(z, gz).

Lemma 9.2 : Suppose g is orientation preserving with finite order and with rot(g) # 0.
Then Dy(z) — 00 as x — oo (i.e. {x € X | Dy(x) < r} is compact for all r > 0).
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Proof : Let the order of g be n, and suppose » > 0. Now, using Lemma 3.4, we see
that there is some M € M, such that if v € £(M) with length(v) < nr, then u(vy) = 0.
Suppose x € M with Dy(z) < r. Let 8 be an arc of length at most r connecting = to gx.
Let v = BUgBU---Ug™ 3. Then length(y) < nr, and so rot(g) = u(y) = 0. &

10. Constructing orders.

In this section, we describe how certain classes of subsets of a planar 2-complex, (X, p),
have a natural cyclic order.

Recall the definition of the directed set, M, from Section 9. Suppose M € M. A
generating loop is a loop v € L£L(M) with pas(y) = 1. This lifts to a bi-infinite path, 4 € M.
By a long path in M, we mean a path which remains a bounded distance from the lift of
some (hence every) generating loop in M. Note that if we alter a long path over any finite
subpath, then it remains long.

We say that a connected subset, A C M, is separating if it intersects every generating
loop but does not contain any generating loop. (As usual, we are tacitly assuming that A
is a subcomplex of M.) The preimage of A in M is a disjoint union of sets of the form
A+nfor n € Z, where A is a connected lift of A to M. One can show that A meets every
long path in M, and that if m,n € Z, then any path connecting A — m to A + m meets
A. We shall omit proof of these statements, since they follow easily in the specific cases
where separating sets arise.

For example, suppose A is a p-cycle with | J.A = M (as defined in Section 4), so that
s is identically zero on AU B for any A, B € A. We can lift A to an “co-cycle”, A, in
M (i.e. Q(A) is a graph homeomorphic to the real line). It follows easily that each A € A
is separating, and satisfies the properties of the previous paragraph.

A particular example of this is where « is a bi-infinite geodesic (or uniform path) and
x € a. In this case, for any r > rg, we get a 4-cycle, & = {A~,Cp, A", Cr} as defined
at the end of Section 5. (This depends on a “radius” parameter, , though this will not
matter in the construction we use. For definiteness, we can set r = rq.) Let M = [J€&.
Then X = AY U M, where A° is compact, and indeed has diameter bounded (in terms
of r and the functions of uniformity). Let Ky = {x}. This gives us an element of M,
which we denote by M(«,z). Since £ is a 4-cycle, we see that the sets AT and A~ are
both separating in M. Note that they are also both one-ended. We shall denote them by
A (a, z).

Suppose now that A is a collection of one-ended subsets of X. Suppose that to each
A € A there is associated some M4 € M such that A C My, and A is separating in M 4.
We shall write p4 for the cocycle ppr,. Let’s assume in addition that:

() Given distinct A, B € A, there is some M € M such that M N AN B = 0.
We shall put a cyclic order on the set A.
Given A € A, let S(A) be the set of lifts of A to M4. If P € M with M4 < P, then

we identify P as a subset of M4, and write S(A, P) = {SNP | S € S(A)}. (Note that the
elements of S(A, P) need not be connected.)
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Now, let F(A) be the set of finite subsets of .A. This can be viewed as a directed set
under inclusion. Suppose B € F(A). Since M is a directed set, we can find some P € M
with M4 < P for all A € B. We can view P as being (simultaneously) a subset of M4
for each A € B. Set Sp(B) = UacpS(A, P). Thus, Sp(B) is a Z-invariant collection of

subsets of P.
Lemma 10.1 : Any long path in P meets every element of Sp(B).

Proof : If it misses a lift of A € B, then it misses it also in M4 contrary to the assumption
that A is separating in M 4. O

Note that using property (*), we can choose P so that PN AN B = {) for all distinct
A, B € B. In this case, the elements of Sp(B) will all be disjoint.

Since each element of B is one-ended, we can find ) € M with Q > P, so that if
A € B, then AN Q lies in the unbounded component of AN P. Lifting to Q C P, we see
that if S € Sg(B), then S = Sp N Q for some Sp € Sp(B), and that any two points of S
are connected by a path in Sp.

We aim to put a Z-invariant archimedean total order on Sg = Sg(B). This then
descends to a cyclic order on Sg(B)/Z which can be canonically identified with B.

To this end, let § be a long path in @), and write < for the order of points on g. (If
B is not embedded, we should more properly pull back to the domain of 8, but this will
only confuse the notation.) If S € Sg, then 8 NS is a nonempty compact set, and we
write initg(S) and finalg(S) respectively for the initial and final points of 8 N S. Given
R,S € Sg, we write R <g S to mean that initg(R) < initg(S). Clearly, (Sg, <g) is a
discrete total order (i.e. all intervals are finite).

Lemma 10.2 : IfR,S € Sg, then R <g S if and only if finalg(R) < finalg(S).

Proof : By symmetry, it’s enough to prove “only if”. Suppose, to the contrary, that
finalg(S) < finalg(R). Now, S = SpNQ and R = Rp N Q. Connect initg(R) to finalg(R)
by a path € C Rp, and let v = 8~ (initg(R)) Ue U S (finalg(R)). Thus, v is a long path in
P,and v C QU Rp. Since Sp N Rp = 0, we see that ¥ N Sp = @ contrary to Lemma 10.1.

¢

Lemma 10.3 : Suppose 3 and ~ are long paths in Q and R, S € Sg. Then R <g S if
and only if R <, S.

Proof : Suppose, for contradiction, that R <g S and S <, R. Let € be a path in Rp
from initg R to finalg(R). Let 6 = B (initg(R)) U e U~y T (final,(R)). Thus, J is a long
path and § C Q U Rp. By Lemma 10.2, v (final,(R)) NS = (). Tt follows that N Sp = 0
contradicting Lemma 10.1. &

This shows that the order <z is independent of the choice of long path g in Q. We
thus get an order, denoted <g, on Sg(B). Taking /5 to be the lift of a generating loop,
we see immediately that the order is Z-invariant, and that S <g S + n for all n > 0.
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This is archimedean, and so gives rise to a cyclic order, o g on Sg(B)/Z and hence on
B. Clearly, if Q" € M, with Q" > @, then o5, = 0p,¢/. Since the set of such @ is cofinal
in M, we get a well-defined cyclic order, og, on B. There was some choice involved in the
identification of P as a subset of the various M4 for A € B. However the identifications
are canonical up to the action of Z, and so any set of choices will give rise to the same
cyclic order on B.

Now, if B,C € F(A) with C C B, then working with B and restricting to C, we
see that op restricted to C agrees with oc. We thus get a direct limit system of cyclic
orders giving rise to a cyclic order, o, on A. Formally, we can define o by o(A, B,C) =
U{A,B,C’}<A7 B, C)

In retrospect, we see that we can define the cyclic order more directly as follows.
Given A, B,C € A, choose P € M with P > M, Mp, M and so that ANP, BNP,CNP
are mutually disjoint, and choose @ € M with Q > P so that ANQ,BNQ,CNQ lie in
the unbounded components of AN P, BN P,C'N P respectively. Let # be a generating loop
in Q. Now, there is a unique subpath, a C 3, with a N A = 0« such that if we connect
the endpoints of a by a path o’ in AN P, then o U &’ is a generating loop in P. Let §4
be the complementary arc of o in 3. (We can alternatively define 34 as the projection of
the subpath 6[1nltﬂ(A) final 5 ( 1)] € B C Q to B.) We similarly define the subpaths 8z
and Bc. Now, Lemma 10.2 tells us that the subpaths {84, 85, 8¢} are “unnested” in the
sense that none is contained in any other. Now, three unnested arcs in the circle have a
cyclic order, namely the cyclic order of the three initial points, which is necessarily the
same as the cyclic order of the three final points. This therefore determines the value of
o(A, B,C).

We shall need a variation of this construction. Given any subsets, A, B C X, we write
A ~ B to mean that the Hausdorff distance from A to B is finite, i.e. there is some r > 0
such that A C N(B,r) and B C N(A,r). Note that this is an equivalence relation on the
set of subsets of X.

Let’s again suppose that A is a collection of connected one-ended subsets of X, with
A separating in M 4, where M 4 is the associated element of M for all A € A. If place of
(%), we assume:

(xx) If A, B € A and A # B, then for all r > 0, there is some M € M with p(ANM,BnN
M) >r.

This time, we shall put a cyclic order on the quotient, A/~.

In other words, we want to define a map, o : {(A4,B,C) € A| A & B £ C #
A} — {0,1} which is a cyclic order on any transversal to ~, and with the property that
if A~ A Lt Bt CA A, then o(A,B,C)=0c(A’,B,C). Now, we can define o(A, B,C) =
o(a,B,c}(A, B,C) exactly as before. This gives a cyclic order on any transversal. We
therefore need only verify the second property.

This is probably best seen using the second description of the cyclic order. Choose
P> Ma, My, Mg, Mc so that p(ANP,BNP), p(ANP,CNP), p(A’nP,BN P) and
p(A" N P,C N P), are all greater than r. Now choose a distant generating loop, 3, and
let Ba,Bas, BB, Bc be the subpaths described above. Now we can assume that the initial
point, x 4, of B4 is within a distance r along 54 from the initial point of 84, for otherwise,
we could divert 8 by adjoining an arc in P of length at most r from the initial point of
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A to some point of A’, or from the initial point of A’ to some point of A. Now the initial
points, xp and z¢ of the subpaths S and B¢ are each a distance greater than r from
either x4 or x 4-. Thus the cyclic order of x4, xp,xc on 3 is the same as that x4, x5, x¢.
Thus determines the cyclic order on o(A, B,C) = o(A’, B,C). This shows that o gives a
cyclic order on A/~ as required.

As an example of this construction, we consider a set, B, of directed (uniformly)
uniform bi-infinite paths. Given «, 8 € B, we write a ~* g if a(z) ~ 87 (y) for some
(hence every) x € o and y € 3. We see that ~T is an equivalence relation on B. Suppose
the set B satisfies condition (xx). We put a cyclic order on B/~ as follows.

Given a € B choosing some x € a, we have a separating set AL = AT (o, z) in M («, x)
as described above. Now, each set A} is one-ended, and the collection A = {A} | a € B}
also satisfies (xx). We therefore get a cyclic order on A/~ which we can identify with
B/~t.

We need to check that this order doesn’t depend on the choice of basepoints, = € .
This is best done by observing that we can define the same order by considering the set of
all pairs (a, z) with € a € B simultaneously. The quotient of {A*(a,z) | 2z € a € B} by
the relation of finite Hausdorff distance can again be identified with B/~%.

By the same argument, we also see that the cyclic order we have defined doesn’t
depend on the “radius” involved in the definition of the sets AT. (Consider all radii
simultaneously.) The cyclic order we have defined is therefore quite natural.

11. Parallel geodesics.

Let (X, p) be a planar 2-complex with integral winding numbers. The main objective
of this and the next section will be to show that a group, I', acting properly discontinuously
cocompactly on X must contain an element of infinite order. After passing to a subgroup
of index at most 2, we may as well assume that I" is orientation preserving. The argument
proceeds by analysing the way that I" displaces a given bi-infinite geodesic. We shall assume
that any bi-infinite geodesic, «, is parameterised by arc-length, i.e. p(a(t), a(u)) = |t — u]
for all t,u € R. The main result on which the remainder of the argument rests is:

Proposition 11.1 : There is some constant, r1 > 0, and an increasing function, kg :
[0,00) — [0,00) such that the following holds. Suppose g € T' has finite order n, and
that rot(g) = 0. Suppose that o is a bi-infinite geodesic in X. Let d = D,(a(0)) =
p((0), ga(0)). Then, there exist t,u € [r1, ko(nd)] such that p(a(t), ga(u)) < r1.

Proof : We choose 71 > 0 so that N(«,r9) C A C N(«,r1/2), where A is the neighbour-
hood of « defined at the end of Section 5. The definition of the function k¢ will become
apparent during the course of the proof.

Recall that AT = AT (a, a(0)) is a separating set in M = M (a, a(0)) € M as defined
in Section 10. Note that if 2,5 € AT then x and y can be connected by a path in
AT N N(a(0),a — )¢ N N(a(0),b+ r1), where a = min{p(a(0),z), p(x(0),y)} and b =
max{p(a(0),x), p(a(0),y)}. We can suppose that AT C N(a([r1,o0)),71).
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Now choose P € M(g) with P > ¢g'M for all i. Choose Q € M(g) with Q > P,
and N(Q,r1) C P. Note that diam(|J; g?M¢) is bounded up to an additive constant by
nd, where d = Dgy(c(0)). Thus, by the uniformity of these constructions (in particular,
the one-endedness of X is described in Section 3), we see that we can construct @ so that
Q¢ C N(a(0),11), where [y is some function of nd. Note that At NQ lies in the unbounded
component of AT N P.

Now let v be a generating loop in ). Again by the uniformity of the construction, we
can assume that v C N(QY,ly), where Iy depends only on diam(Q%), and hence ultimately
on nd. Let I3 = 2(Iy +15)+71. Thus any pair of points in ATNQNN(QY, l,) are connected
by a path in AT N PN N(Q®,l3). Now let k = I; + I3+ 2r;. Thus, AT N N(Q%,13) C
N(a([ry,k]),r1/2). By g-invariance, we have also gAt N N(Q¢,13) C N(ga([r1,k]),r1/2).
We claim that there exist t,u € [r1, k] with p(a(t), ga(u)) < ry.

Suppose, for contradiction that p(a([r1,k]), ga([r1,k])) > ri. It follows that AT N
gA+ n N(QC, lg) = (Z)

In what follows we shall take indices mod n, noting that g" = 1. Let B = {g’A™ |
i € Z,}. We define Sg = Sg(B) and Sp = Sp(B) exactly as in Section 10. These are
Z-invariant collections of subsets of Q and P respectively, which project to sets of the form
g'AT N Q or g'AT N P. As before, we have arranged that if S € Sp, then S lies in the
unbounded component of some Sp € Sp. Let 3 be the lift of the generating loop v to Q.

Now since rot(g) = 0, there is a lift, h, of g to P with h™ = 1. Now, given i € Z,,
we define an order, <; = <jig on Sg = Sp as in Section 10, namely, we write R <; S to
mean that inityig(R) < initjig(S). This is a partial order on Sg. (It’s conceivable that
distinct elements of Sg might have identical initial points on h'8. We're not assuming
a-priori that these sets are disjoint.)

Now choose any S € Sg which projects to ATNQ. We have arranged that SNhSNS =
(), and so either S <qg hS or hS <g S. Without loss of generality, we can suppose that
S <o hS.

We now claim that S <; hS for all i € Z,,. The argument is essentially the same as
that of Lemmas 10.2 and 10.3 combined. We know that we can connect any pair of points
in NS and A NS by a path € in Sp. Moreover, we can choose € so that it projects
to a path in AT N PN N(QY,I3). But we have arranged that AT N gAT N N(Q%,13) = 0.
Thus, e N hSp = (). Similarly, we can connect any two points of 5N S and '3 N S by a
path in ASp which does not meet Sp. These facts are all we need to make the arguments
of Lemmas 10.2 and 10.3 work to show that S <; hS as claimed.

Now, by the g-invariance of the constructions, we see that h/S <;i; hi*1S for all
i,j € Z,. Putting i = —j, we get that h/S <o h/T1S for all j. By transitivity of <g, we
conclude inductively that S <o h/.S, so we get the contradiction S <g h"S = S.

We have contradicted the assumption that p(a([r1, k], ga([r1, k])) > r1. In other words
there exist ¢, u € [rq1, k] with p(a(t), ga(u)) < r1. Here 71 is universal, and k depends only
on nd. &

Clearly, by translating the parameterisation of o, we see that for any s € R, there
exist t,u > s with p(a(t), ga(u)) < r. By replacing a by —a, we see likewise that there
exist t',u’ < s with p(a(t’), ga(u’)) < r1. We conclude:
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Corollary 11.2 : With the hypotheses of Proposition 11.2, we can find bi-infinite
sequences, (t;)icz and (u;);cz, with t;,u; — oo as i — oo and t;,u; — —00 as i — —00,
with p(a(t;), ga(u;)) < rq for all i € Z. &

In fact, we can say more. First some definitions.

Definition : Suppose «, 8 are bi-infinite geodesics. We say that « and 8 are r-parallel if
pla(t),5(t)) < r for all t € R. We say that «, 8 are parallel, and write « || 3, if they are
r-parallel for some r > 0.

Clearly parallelism is an equivalence relation on geodesics.

Proposition 11.3 : Suppose that g € I' has finite order, n, and that rot(g) = 0. Suppose
« is a bi-infinite geodesic in X. Then, o and ga are k-parallel, where k is bounded above
by some function of nDy(a(0)) (and hence of nDy(«(t)) for any t € R).

Proof : This follows directly from the fact that the points, ¢; and u; in Corollary 11.2 can
be chosen so the gaps, |t;+1 —t;| and |u;11 —u;| are all bounded above by some function of
nDy(a(0)). This follows inductively from Proposition 11.1, and the following observation
(Lemma 11.4) which ensures that the displacements Dgy(«(¢;)) are uniformly bounded in
terms of the initial displacement, Dg4(c(0)). &

Lemma 11.4 : Suppose «, 5 are geodesics with p(B(t), B(u)) < r. Then p(a(t), 5(t)) <
p(a(0), 5(0)) + 2.

Proof : p(a(t), 5(t)) < pla(t), B(u)) + p(B(1), B(u)) < r+ [t —u| =+ [p(a(0), a(t)) —

p(B(0), B(u))| <7+ p(e(0), 5(0)) + ple(t), B(u)) < 2r + p((0), 5(0)) Y
Now, Lemma 9.2 tells us that if g € I" has finite order and rot(g) # 0, then for any

bi-infinite geodesic, o, we have Dgy(a(t)) — 0o as t — oo and as t — —oo. Thus, we see:

Corollary 11.5 : If g € T is of finite order and « is any bi-infinite geodesic in X, then
a || ga if and only if rot(g) = 0. O

Let us now assume that I' is a torsion group. We eventually aim to derive the con-
tradiction that I' is finite, which we shall get to in Section 12. We can begin by drawing
some immediate conclusions.

Let T'g = {y € T | rot(g) = 0}.

Lemma 11.6 : T’y is a normal subgroup of I.

Proof : The fact that I'y is a subgroup follows from Lemma 6.1 and Corollary 11.5. The
fact that it is normal follows from the conjugacy invariance of rotational part. &

Now let’s choose a bi-infinite geodesic (using Lemma 6.1), and let B be the set of I'-
images. Let 7 = B/|| be the set of parallel classes. Thus, I'/T'y acts on 7. By Lemma 9.2,
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we see that this action is effective, and that if o, 5 € B belong to distinct parallel classes,
then p(a(t),B(t)) — oo ast — oo and as t — —oo. Thus, the relation || agrees with
the relation ~* defined in Section 10. Moreover, the condition () is satisfied, so that
T = B/|| = B/~" admits a canonical cyclic order. Since I is orientation preserving, I'/T
must preserve this order. By Corollary 8.2, I'/T'y is locally cyclic. But I" acts cocompactly
on X. Thus I and hence I'/T'y is finitely generated. It follows that I'/T'y is finite cyclic.
In particular, we conclude:

Proposition 11.7 : Iy has finite index in I'. &

Thus, I'y itself acts cocompactly on X, and is therefore also finitely generated. Since
X is one ended, so is I'y.

Thus, for the purposes of deriving a contradiction in Section 12, we can assume that
every element of I' has zero rotational part.

12. Displacement of geodesics.

In this section we aim to prove one of the central results of this paper, namely Theorem
12.9. To this end, we shall need to define the “displacement” of geodesics. As in Section
11, let (X, p) be a planar 2-complex, with integral winding numbers.

Suppose that «, 5 are geodesics and that ¢, u, tg, ugp € R with ¢t > tg and u > ug. Now,

|(t — ) = (to — wo)| = [(£ = to) — (u — uo)|
= |p(a(t), a(to)) = p(B(u), B(uo))l
< pla(t), Bu)) + p(alto), B(uo)).

Now if t/ > tg and v’ > ug, then

((t—u) = (' — )] < |(t ) — (to — uo)| + |(t' — ') — (to — uo)|
< pla(t), Bu) + p(a(t'), B)) + 2p(alto), Bluo)).

Definition : We say that bi-infinite geodesics, «, 8 are r-close if there exist bi-infinite
sequences, (t;)icz and (u;);ez with t; — oo and u; — oo as i — oo and t; — —oo and
u; — —00 as i — —oo, so that p(a(t;), f(u;)) < r for all i € Z.

From the above calculation, choosing ¢y and wug sufficiently negative, we see that if
t,u,t’,u’ € R with p(a(t), B(u)) < r and p(a(t’), B(u')) < r, then |[(t —u) — (t' —u')| < 4r.
Thus, the quantity, ¢ — u, is well defined up to the additive constant 4r. For definiteness,
let’s define A(a, B) = Ay(a, B) = sup{t — u | p(a(t), B(u)) < r}. Thus, for any ¢, u with
p(a(t), B(u)) < r we have |(t —u) — A(a, B)] < 4r. In fact:

Lemma 12.1 : If a, (3 are r-close, and t,u € R, then |(t — u) — A(a, )| < 3r +
pla(t), B(u)).
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Proof : Choose t',u' € R with p(a(t'),5(v')) < r and with ¢ — « arbitrarily close to

A(a, B), and apply the above inequality using any sufficiently small ¢y and wuy. &
Lemma 12.2 : If o, are r-close, then for some t € R, we have p(a(t),(t)) <
51+ [A(e, B)].

Proof : Choose any t,u € R with p(a(t), 8(u)) < r. Then p(a(t), 5(t)) < pla(t), 8(u)) +
p(B(t), B(u)) <7+ |t —ul < 5r+|Aa, B). %

Of course, we do not expect closeness to be an equivalence relation, unlike the notion
of parallelism defined in Section 11. However, we note:

Lemma 12.3 : Suppose «, B, are bi-infinite geodesics, and that « is r-close to both [
and vy. Suppose that  and v are k-parallel, then |A(a, ) — A(a,y)| < 8r + k.

Proof : Choose t,u € R with p(a(t), B(u)) < r. Thus, |(t —u) — Ae, 5)| < 4r and,
applying Lemma 12.2, we have

|(t = u) = Ala, )| < 3r + p(a(t), y(u))
< 3r+ pla(t), B(w) + p(B(u), y(u))
<3r+(r+k)=4r+k.

¢

Now suppose that I' is a torsion group acting properly discontinuously cocompactly
on X. Let’s suppose, in addition, that I' is orientation preserving and that every element
has zero rotational part.

Let « be any bi-infinite geodesic in X (using Lemma 6.1). By Corollary 11.2, if
g € I, then ga is ri-close to «, for some fixed constant r; (independent of g). Set
A(g) = Ay, (@, ga). This gives us a map, A: I' — R.

Lemma 12.4 : Ifg €T, then |A(g) + A(g™1)| < 8ry.

Proof : Choose t,u € R with p(a(t),ga(u)) < ri. Thus, p(a(u),g ta(t)) < ri, and so
|A(g) — (t —u)| < 4ry and |[A(g™Y) — (u —t)| < 4rq, and the result follows. &

Since I acts properly discontinuously cocompactly on X, it must be finitely generated.
Let A C T be a finite symmetric generating set. Now, by Proposition 11.3, « || ga for all
g € I'. In particular, there is some ro > 0 such that for all h € A, « is ro-parallel to ha.

Lemma 12.5: Ifge T and h € A, then |A(g) — A(gh)| < 8r1 + 72.
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Proof : Now, ha is ro-parallel to a. Thus, gha is ro-parallel to ga. By Corollary 11.2,
ga and gha are both ri-close to a. Thus, by Lemma 12.3, we have |A(g) — A(gh)| =
A (a, ga) — Ay (o, gha)| < 8rp + 7o &

Let r3 =8r1 + 1. Let B={g €T ||A(g)| <rs}.
Lemma 12.6 : B is infinite.

Proof : Let Y be the Cayley graph of I' corresponding to the generating set, A. It has
vertex set I', and g, h € I are adjacent if and only if g~ 'h € A. Lemma 12.5 tells us that
if g, h are adjacent, then |A(g) — A(h)| < r3. Now, I and hence Y is one-ended. Thus, if
B C T were finite, Y \ B would have precisely one unbounded component. The vertex set
of this component must map under A into either [r3, c0) or (—oo, —r3]. Let’s assume the
former. Then {g € ' | g < —r3} is finite. But this is seen to contradict Lemma 12.4. We
conclude that B must be infinite as claimed. &

We now proceed to show that B is finite, thereby deriving a contradiction.

Suppose that ¢ € B. By Lemma 12.2, there is some ¢ € R such that Dy(a(t)) =
pla(t),ga(t)) < br1 + |A(g)| < 5r1 + r3. Now, since I' acts cocompactly on X, some
[-image of a(t) must lie a bounded distance from any given point of X, say «(0). Thus,
some I'-conjugate of g moves the point «(0) a bounded distance. Since X is locally finite,
there are only finitely many possibilities for such a conjugate. In other words, B lies in a
finite union of conjugacy classes in I'. In particular, we conclude:

Lemma 12.7 : There is some n € N such that g" =1 for all g € B. &

Now, by Proposition 11.3, given any g € B and t € R, « is k-parallel to ga, where
k is bounded by some function of nDgy(c(t)). By Lemma 12.2, as above, we can choose
this ¢ so that Dy(a(t)) < 5r; +r3. It follows that k is, in fact, independent of g € B. In
particular, Dy((0)) < k for all g € B. Now, since X is locally finite, we conclude:

Lemma 12.8 : B is finite. &

This is somewhat at odds with Lemma 12.6, so we are forced to admit that I' cannot
be a torsion group after all.

Now, it was shown at the end of Section 11 that any torsion group acting properly
discontinuously cocompactly on X has a finite index subgroup with zero rotational parts.
We have thus shown:

Theorem 12.9 : Suppose I' acts properly discontinuously cocompactly on a planar
2-complex with integral winding numbers. Then I' contains an element of infinite order.

o
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13. Virtual Surface groups.

Suppose (X, p) is a planar 2-complex with integral winding numbers. Suppose T
acts properly discontinuously cocompactly on X. We have seen (Theorem 12.9) that I’
contains an element of infinite order. (We do not need to assume for the moment that I'
is orientation preserving.)

If G < T is a subgroup, we say that G has strict codimension-one if Y/G has more
than one end, where Y is some Cayley graph of I'. One can show that this is independent
of the choice of Y. Indeed one could take Y to be any space on which I' acts properly
discontinuously cocompactly (for example X). We say that G has codimension-one if
some finite index subgroup of G has strict codimension-one. (This is a slight variant on
the terminology of [DuSw| — they use “codimension-one” for what we have called “strict
codimension-one”.)

Proposition 13.1 : Any infinite cyclic subgroup of I' has codimension-one.

Proof : Suppose g € I'. Let 3 be any (g)-invariant path (so that 5/(g) is compact). Such
a path is necessarily uniform, so we can construct the sets A = A(a,r), C, = Cpr(a,r)
and Cr = Cr(a, ) as defined in Section 4. These sets are all {(g?)-invariant, and A/{g?) is
compact. Writing X/(g?) as a union of A/{g?), C1,/{g?) and Cr/{g?), and noting that the
latter two sets are disjoint and unbounded, we see that X/(g?) has more than one end. <

(In fact, by taking an increasing sequence of radii, r, in the above argument, we see
that X/{g?) has precisely two ends.)
In summary, we we have shown:

Proposition 13.2 : T is finitely generated, one-ended, contains an element of infinite
order, and every infinite cyclic subgroup has codimension-one. &

Now it is shown in [Bo] that a group with the properties described by Proposition 13.2
has to be planar. In the case of almost finitely presented groups (i.e. F'Py over Zs) this
can be deduced from the results and methods of [DuSa] and [DuSw]. Moreover, Graham
Niblo has suggested how these arguments might be adapted to deal with the general case.

In the present situation, we have some additional information, namely the winding
number which gives us directly the cyclic orders which feature in [Bo]. In the remainder of
this section we sketch a direct argument to complete the proof, referring to [Bo] for details.

Our argument makes use of ideas from [DuSw| and [Sw]. (Instead of the “tracks” of
[DuSw], we will speak in terms of “periodic paths”. The separation properties of these
tracks are expressed in terms of the planarity of the complex X.)

We thus aim to show:

Theorem 13.3 : Suppose a group, I', acts properly discontinuously cocompactly on a
planar 2-complex with integral winding numbers. Then I' is a virtual surface group.

The essential facts we will need about I' will be that it satisfies the conclusion of
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Proposition 13.2, together with certain cyclic order properties of ends of two-ended sub-
groups.

As usual, one of the key steps will be in separating the “euclidean” case (where I is
virtually Z @ Z) from the “hyperbolic” case (where I' is fuchsian). Unlike the approach of
Kleiner, we won’t make explicit use of hyperbolicity. However, as with all approaches to
date, we shall deal with the fuchsian case by appealing to the result of Tukia, Gabai and
Casson and Jungreis:

Theorem 13.4 : [T,Ga,CJ] If a group, T', acts as a convergence group on the circle,
S, then it also admits a properly discontinuous isometric action on the hyperbolic plane
(such that the induced action on the boundary is topologically conjugate to the original).

o

Thus, if T" is finitely generated and one-ended, then it is a virtual surface group as
required.

We shall recognise convergence actions on the circle via a result of Swenson [Sw]. Let
d(S1) be the space of distinct unordered pairs in S!. (Thus, ®(S!) is topologically an
open Mobius band.) Suppose that G is a two-ended (i.e. virtually cyclic) group acting on
S1. We say that G is lozodromic if it acts as a convergence group with limit set consisting
of a pair of distinct ponts, {x,y}. (In other words, there is some g € G with ¢g"|S! \ {x}
converging to y, and g~"|S! \ {y} converging locally uniformly to z.)

The following is a simple consequence of the main result of [Sw]:

Theorem 13.5 : Suppose II C ®(S?) is a discrete I'-invariant with ANy = () for distinct
A, 1 € 11, and with II/T" finite. Suppose that the stabiliser of each element A € II is two-
ended and loxodromic (with limit set \). Suppose also that every pair of points in S\ |JTI
are separated by an element of II. Then I acts as a convergence group on S*.

Proof : The hypothesis on the separation property of II is just a convenient way of
expressing the fact that [ JII is dense in S!, and that II is “cross-connected” as described
below. The result thus follows from [Sw]. O

We shall in turn recognise this property by using cyclic orders on ends of periodic
paths in X. (A similar idea was used by Scott in his proof of the Torus Theorem for
3-manifolds.) We begin by introducing some general terminology and notation relating to
cyclic orders. (More general constructions of this type are discussed in [Bo]).

Let (E, o) be a cyclically ordered set. Let ®(EF) = {{z,y} | ,y € E,z # y} be the set
of “pairs” in E. Given two disjoint pairs, A = {x,y} and pu = {z,w}, they either cross (so
that {x,y} separates z from w in the cyclic order) in which case we write A x por x —p—vy
or z — A — w, or else the don’t cross, in which case, we write A : . Given A, B C E and
A € O(F), we write A — X\ — B to mean that t — A —y for all z € A and all y € B.

Now let ®(E) = {{z,y} | z,y € E,x # y}. A pattern on E is a subset II C ®(F) such
that AN p = 0 for all distinct A\, u € II. We say that II is full if | JF = II. We define the
following three finiteness conditions on a pattern, II:

(FO): If z,y, z,w € E are distinct, then {v € II | {z,y} — v — {z,w}} is finite.
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(F1): If A\, € E with X : p, then {v € IT | A — v — p} is finite.
(F2): If \, p € E with X\ # pu, then {v € I | v x A\, v x u} is finite.

The following is easily verified:

Lemma 13.6 : IfII is full, then (F1) and (F2) implies (FO0). &
We say that a full pattern is discrete if it satisfied (F0) (or equivalently (F1) and

(¥2)).

If I1 is a pattern in S, then (FO0) is equivalent to II being discrete in ®(St). If [JII
is dense in S!, then if II satisfies (F0) in (JII, then it satisfies (F0) also in S*.

Following [Sw|, we say that a pattern, II, is cross-connected if given any A, pu € II,
there is a finite sequence, A = Ao, A1,..., A\, = p, of elements of IT with \; x \; 41 for all
i. Any pattern can be decomposed into cross-connected components. Moreover, it is not
hard to see [Bo]:

Lemma 13.7 : IfIl is a discrete pattern, then the set, P, of cross-connected components
of Il can be canonically embedded in the vertex set of a simplicial tree, 33, in such a way
that if P,Q), R € P then P separates ) from R in X if and only if there is some A\ € P
such that () — A — R. %

We now introduce group actions. Suppose that E is a cyclically ordered set, and that
I acts on E by order-preserving maps. Suppose that II is a I'-invariant pattern. Given
A € II, we write I'(\) for the (setwise) stabiliser of A\. We say that II is a I'-pattern if I1/T’
is finite and I'(\) is two-ended for all A € II.

Lemma 13.8 : Suppose Il is a discrete full I'-pattern on E. Suppose that for all A € I1
there is some p € 11 with p x X and some g € T'(\) with gy : . Then, E is a dense cyclic
order.

Proof : Let x € E. Given y, z € E, we show that there is some v € II with z — v — {y, z}.
Let X\ be the element of II containing x, and let © and g be as in the hypotheses. Without
loss of generality, we have u — gu — x. We must have y — ¢g"u — x for all sufficiently large
n, otherwise {n € N | u — ¢"u — {z,y}} would be infinite, contradicting discreteness.
Similarly z — ¢"u — x for all sufficiently large n. We thus set v = ¢"u for large enough n.

o

It follows that if £ is countable then it admits a conical completion to a circle, S*.
The action of I' extends to an action by homeomorphism on S!. A simple extension the
argument of Lemma 13.8 shows:

Lemma 13.9 :  With the hypotheses of Lemma 13.8, if E is countable, then in the
induced action of T on S, T'(\) is a loxodromic convergence group for all A € II. &

Thus, if II is cross-connected, then it follows by Theorem 13.5 that I' acts as a con-
vergence group on S!. If T is finitely generated and one-ended, then it is a virtual surface

group.

36



Planar groups

We now move on to more geometric considerations. Suppose I' is a group, and that
g, h € T have infinite order. We say that g and h are commensurate if there exist m,n €
Z\ {0} with ¢™ = h"™. We define the commensurator, Comm(g), of g to be the set of
h € T such that hgh~! is commensurate with g. We see that Comm(g) is a subgroup of I'
containing g.

Suppose, now, that I' acts properly discontinuously on a metric complex, (X, p). We
say that a bi-infinite path, a C X, is periodic if there is some infinite order g € I' such
that ga = a. It follows that a/(g) is compact, and that « is a uniform path. We refer to
g as a period of a, and to o as an axis of g. Clearly, two periods of the same axis will be
commensurate, and every infinite order element has an axis.

Definition : We say that two uniform paths a and [ are parallel if they are at finite
Hausdorft distance, i.e. there is some r > 0 such that o C N(5,r) and 8 C N(a,r).

Note that unlike the definition of “parallel” for geodesics in Section 11, we are not taking
account of parameterisations or of direction. If @ and f are directed, we say they are
consistently directed if the positive rays are at a finite Hausdorff distance and the negative
rays are at finite Hausdorff distance.

Definition : We say that two uniform paths a and § are divergent if for all » > 0, there
is some compact K C X such that p(a N K¢, 3N K®) > r.

The following is easily verified:

Lemma 13.10 : If a and B are periodic paths with periods g and h, then either a and
B are parallel and g and h are commensurate, or else a and 3 are divergent and g and h
are not commensurate. &

Now, given g € T', define D(g) = inf{z € X | p(x,gx)}. Clearly, D is a conjugacy
invariant, and D(¢") < nD(g) for all n > 0. It’s easily seen that some (hence every)
axis of g is quasigeodesic if and only if D(g™) is bounded below by some increasing linear
function of n. If I' acts cocompactly on X, then this is the same as saying that (g) is
quasiisometrically embedded in I". If h € Comm(g), then it’s easily seen that h? commutes
with g™ for some n. Thus, either Comm(g) is two-ended or it contains an isometric copy
of Z®7Z.

Suppose that o C X is a directed uniform path. We set A(a) = A(a, o) for fixed
sufficiently large ro, as described in Section 5. Note that A(«) lies inside a uniform neigh-
bourhood of a. Let Cr(a) = Cpr(a,19) and Cr(a) = Cr(a,r9) be the left and right
deep complements. (This construction is only really needed where « is periodic with some
period, g. The important facts are that all three sets are connected and (g)-invariant,
that Cp(a) NCr(a) = 0 and that A(«)/{g) is compact, and CL(«)/(g) and Cr(«)/{g) are
unbounded.)

Suppose that & and § are directed uniform paths, and that A(e) N A(S) is compact.
By the constructions of Section 10, we see that there is a well-defined cyclic order on
{a, 5, —a, —E}, which is better thought of as a cyclic order on the set of positive and
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negative rays or “ends” of a and f3, i.e. {a™,8%,a™, 57 }. We say that a and 3 cross if
{a=,at} crosses {87, 8"} in this cyclic order, and we write a x 3. Otherwise, we write
« : [. In the latter case, @ and E may be consistently or oppositely directed, depending
on the cyclic order on their endpoints. Note that A(a) N CL(B) consists of 0,1 or 2 ends
of A(a) (up to a compact set), depending on the above cyclic order. We shall say that «
and 8 are strictly disjoint if A(a) N A(B) = (. This clearly implies « : 3.

Suppose again that I' acts properly discontinuously on (X, p). Suppose that « is a
uniform path, and that h € I' with ha strictly disjoint from «, and such that « and ha
are consistently directed. Then it’s easy to see that h must have infinite order, and any
axis, 3, of h must cross a. If x € X, then any path connecting x to h™x must cross n — 1
disjoint images of A(a). We see that D(h™) is bounded below by a linear function of n.
Thus S is quasigeodesic.

Suppose that A is a [-invariant collection of periodic arcs in X, with A/I" finite.
Thus, A is locally finite in X. Note that, up to the action of I', there are only finitely
many non-empty sets of the form A(a) N A(B) for a, 8 € A. There is therefore a uniform
bound on the diameters of those which are compact. In this way we can imagine the
“crossings” of the elements of A as being local in X. Note that if A(a) N A(5) is compact
and non-empty, then o and [ must diverge.

Suppose that a € A with period g. We see that {8 € A | A(a) N A(B) # 0}/{g) is
finite. If B : a with 5 N Cp(a) compact, then there is a bound on how deeply § can enter
Cr(a). Using these facts, we see that if h € I with ha : « and ha and « consistently
directed, then either ha is strictly disjoint from « or else a and ha diverge and h™« is
strictly disjoint from « for some n > 0. Either way, we see that h has infinite order, and
any axis of h is quasigeodesic and crosses a.

Now suppose that I' acts properly discontinuously cocompactly on X. We can also
suppose (passing to a subgroup of index at most 2) that I is orientation preserving (in the
sense that it preserves winding numbers, and hence also the cyclic orders defined earlier).
The following lemma will get us started.

Lemma 13.11 : Suppose « is a periodic arc in X. Then there is some periodic arc [3
which crosses a (so that o and (3 are divergent).

Proof : Let g be a period of «, and let A be the set of I'-images of . We can suppose
that no two elements of A cross — otherwise we are done. Now since A is locally finite,
we can find some h € T' with p(a, ha) > r for arbitrarily large r. In particular, we can
assume, without loss of generality, that A(ha) C Cgr(«). If a and ha are consistently
directed, then h has infinite order, and its axis crosses a. If not, we need to try harder.
Now, Cr(a)/(g) is unbounded. Since the action of I' on X is compact, we can find some
k € T with ka N Cr(a) N N(a,s)¢ # 0 for s arbitrarily large. By the compactness of
A(a)/{g), we can assume that A(ka) meets A(«) in a (possibly empty) compact set. Now,
ka cannot cross a, so we must have ka : «. Also choosing r sufficiently large, we can
suppose that ka and ha are strictly disjoint. Also « separates (in the sense of cyclic order)
ha from ka. In other words, the paths {«, ha, ka} are nested, and so some pair of them
must be consistently directed. From the previous discussion, we see that at least one of h,
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k or h~1k must be of infinite order, with its axis crossing . &

Now let’s suppose that A is a I-invariant collection of periodic arcs with A/I" finite.
As already observed, any two elements of A are either parallel or divergent. Two elements
that cross are necessarily divergent. The following lemma is essentially the same as Lemma
4.5 of [DuSw|:

Lemma 13.12 : Suppose a € A with period g. If B € A crosses « then g3 does not
cross 3.

Proof : Suppose g3 does cross 3. By induction, g™ crosses 3 for all n > 0. Also g"™113
crosses ¢g" 3 within a bounded distance of . Beyond this, the paths ¢!/ and ¢" 3 diverge.
By considering the order of the crossings of ¢"( along (3, we derive a contradiction (cf.
[DuSw] or [Bo]). O

Note that 8 and gf are necessarily consistently directed. Since g is not commensurate
with the period of £, we see that for sufficiently large n, ¢” 5 must be strictly disjoint
from (. From the earlier discussion, we see that a must be quasigeodesic, and so (g) is
quasigeodesic.

Lemma 13.13 : Every infinite cyclic subgroup of I" is quasiisometrically embedded.

Proof : Suppose g € I" has infinite order, and let o be an axis of g. By Lemma 13.11,
there is a periodic path, 3, which crosses a. Let A be the set of I'-images of o and 3. By
Lemma 13.12 and the subsequent discussion, we see that (g) is quasigeodesic. &

We are now in a position to deal with the “euclidean” case:

Proposition 13.14 : Suppose that I" contains an infinite order element with [Comm(g), (g)] =}
o0o. Then I' contains a subgroup of finite index isomorphic to Z @ Z.

Proof : Let a be an axis of g. We can find h € Comm(g) with ha strictly disjoint from
a and with a and ha consistently directed. Since (g) is quasiconvex, there is some n > 0
such that G = (¢", h) = Z @ Z.

Now it’s fairly easy to see that G must have finite index in I". For example, if [I', G| =
00, then we can find some k£ € I' such that h«a and kh"« are strictly disjoint for all
m,n € Z. Now it’s easily seen that any three arcs from the set {h™«, kh"a | m,n € Z}
must be nested (since some pair of them will be parallel). We see that a and ko are
separated by an infinite set of disjoint images of A(«) which is clearly a contradiction. <

We can now assume that [Comm(g) : (g)] < oo for every infinite order element, g € T

Let A be a I'-invariant set of directed periodic arcs with A/I" finite. Let E be the set
of strict parallel classes in A (i.e. taking account of directions). Thus, £ = A/~ where
~T is the relation defined in Section 10. We see that E admits a natural cyclic order, as
defined in Section 10. Since we are assuming that I' is orientation preserving, it follows that
I preserves this order. Each & € A determines an ordered pair, ([—a],[a]) C E (where
[.] denotes equivalence class). An undirected element, «, determines an unordered pair
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m(a) = {[—a],[a]} € ®(F). Let Il = {n(a) | « € A}. The stabiliser, I'(7), of 7 = 7(«) is
precisely the commensurator of any period of a. Thus, I'(7) is two-ended. We see that II
is a full I'-pattern on F.

By Lemma 13.12, we deduce immediately that:

Lemma 13.15 : Suppose that A € Il and that g € I'(\) has infinite order. If p € T with
A X p, then gu : . O

Lemma 13.16 : If )\ € 1I, then {p € IT | u x A}/T'(\) is finite.

Proof : Let A = (). If p = m(8) crosses A, then o x 3, and so A(a) N A(B) # 0. Since
the quotient of A(«a) by any period of a is compact, the result follows. &

Lemma 13.17 : The pattern II satisfies property (F1).

Proof : Suppose that A = m(a) and p = 7(F) are distinct elements of II with A : u. Let
d be any path connecting « to 8 in X. Suppose that v = 7(y) € I with A — v — u. Now
there is a bound on how deeply v can cross a or 3, and so it’s not hard to see that v must
enter some bounded neighbourhood of §. By local finiteness of A, the set of possible v and
hence v is finite. &

Lemma 13.18 : The pattern II satisfies (F2).

Proof : This uses Lemmas 13.15, 13.16 and 13.17, exactly as in [Bo]. The idea is that if
there exist A # p € Il with II" = {v € I | ¥ x A\, v X p} infinite, then one uses Lemma 13.15
to interpolate between the different elements of II’. Thus, using Lemma 13.16 applied
to the axes A and pu, and the fact that the axes corresponding to different elements of II
diverge in X, one can find two fixed elements of Il which are separated by arbitrarily many
other elements, contradicting (F1). &

Proof of Theorem 13.3 : By Lemma 13.14, we can assume that the commensurator of
every infinite order element is two-ended. By Theorem 12.9, X contains a periodic arc, .
By Lemma 13.11, there is a periodic arc, 3, which crosses a. Let A be the set of I'-images
of @ and . Let E be the cyclically ordered set and let II C ®(E) be the full I'-pattern
constructed above. By Lemmas 13.15, 13.17, 13.18 and 13.6 we see that II satisfies the
hypotheses of Lemma 13.9. If II is cross-connected, we can thus apply Lemma 13.5 and
Theorem 13.4 to deduce that I' is a virtual surface group.

If IT is not cross-connected, we have to work a bit harder. Let P be a cross-connected
component of II, and let {gi1,...,9,} be a finite generating set of I'. Now, by Lemma
13.7, we can canonically embed the set of cross-connected components to a simplicial tree
Y. Now, I' acts simplicially on X, and it is readily checked that this action is non-trivial.
Now, by a standard argument of Bass-Serre theory, we see that if g;P # P, then there is
an infinite order element, h; € I', such that g; P separates P from h; P. Let +; be an axis
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of h;. It is easily seen that 7; crosses elements of A corresponding to both P and g;P.
Now, let B consist of A together with all I'-images of each ~; arising in this way. This
gives us a larger I'-pattern on a new cyclically ordered set. This time, we can be sure that
the pattern is cross-connected, so Lemma 13.5 applies. &

14. Characterisations.

In this section we bring together various results from previous sections and describe a
number of characterisations of virtual surface groups. In particular, we give proofs of the
main results stated in the introduction.

Recall that by a wvirtual surface group we mean a group, I', with a finite index sub-
group isomorphic to the fundamental group of a closed surface other than the 2-sphere or
projective plane.

Here are some other descriptions which turn out to be equivalent:

(S): T is a virtual surface group.

(G): T acts isometrically, properly discontinuously cocompactly on either the euclidean or
the hyperbolic plane.

(C): T is either virtually Z @ Z or else acts as a uniform convergence group on the circle.
(R): T is finitely generated and quasiisometric to a complete (riemannian) plane.

(L): T is finitely generated and one-ended, contains an element of infinite order, and every
infinite order element of I' has codimension-one.

(I): T is finitely presented, one-ended and semistable at infinity with 7°(I") = Z.

(E): T is quasiisometric to a locally finite uniformly acyclic 2-complex which is homologi-
cally semistable over Z, and whose end homology over Z is infinite cyclic.

(P): T is quasiisometric to a locally finite 2-complex which is planar over Z.
(Dq): I''is PD(2) over Q.
(Hq): T is FP, over Q and H*(T', QI') contains a 1-dimensional I'-invariant subspace.

In either of the properties (D) and (H), we can replace Q by an arbitrary field, F, to
get properties which are, in general, stronger than (S). Note, in particular, (Hg) = (S) is
precisely Theorem 0.1, from which most of the implications will follow.

We should begin by commenting on some of the above conditions.

Note that a consequence of property (G) is that I" has a unique maximal finite normal
subgroup — namely the kernel of the action of I'. The quotient of I' by this subgroup is
an orbifold group, i.e. the orbifold fundamental group of a closed (euclidean or hyperbolic)
2-orbifold. Such orbifolds are easily classified, and the topological type is determined by
the fundamental group, and hence by I'.

In (C), the term “uniform convergence group” means that I' by homeomorphism on
S1 such the induced action on the space of distinct triples (i.e. ST x S* x S*\{(z,y, 2) | x #
y # z # x}) is properly discontinuous and cocompact. (The general theory of convergence
groups was developed by Gehring and Martin [GeM].)

41



Planar groups

In (R), “complete riemannian plane” means any complete riemannian 2-manifold
homeomorphic to R2. In fact, any complete path-metric space homeomorphic to R? will
do. Such a metric is necessarily proper, i.e. closed bounded sets are compact. We can get
away with even less. An analysis of the argument shows that all we really require is a
proper metric such that any pair of points lies in some connected subset whose diameter
is bounded by some function of the distance between them. One certainly needs some
hypothesis of this nature: one can always put a stupid proper metric on the plane so that
it is quasiisometric to any given one-ended group.

Condition (L) is the same as the conclusion of Proposition 13.2. We say that an infinite
order element, g € I', has “codimension-one” if the subgroup (g) does, i.e. if X/(g™) has
more than one end for some n and some (hence any) Cayley graph, X, of I'. (In fact we
can take n = 2 in the present situation.)

In (I), the term “semistable at infinity” was defined by Mihalik [Mi]. For a one-ended
group, I', it means that some (hence any) simply connected 2-complex on which I' acts
properly discontinuously cocompactly has the property that any two rays are properly
homotopic. Here, 77°(I") denotes the fundamental group at infinity. We shall elaborate on
these notions shortly.

In properties (E) and (P), we use the term “quaiisometric” to mean that I is finitely
generated, and that some (hence every) Cayley graph of I' is quasiisometric to the 1-
skeleton of a locally finite 2-complex X with the given properties. We always assume that
there is some bound on the lengths of the boundaries of 2-cells of X. All the properties
mentioned can be seen to be quasiisometry invariant, or more precisely, the property that
a graph is the 1-skeleton of some 2-complex satisfying these conditions is quasiisometry in-
variant. Moreover they are also invariant under the addition of extra 2-cells. Thus, starting
with a Cayley graph of I' and adding cells to all circuits of length at most some sufficiently
large constant, there is no loss in assuming that I' in fact acts properly discontinuously
cocompactly on X itself.

In both (E) and (P) we are assuming that X is uniformly acyclic over Z, as defined
in Section 4. To say that X is planar over Z, we mean that it admits an integral winding
number satisfying axioms (W1)—(W3). What we call “homological semistability at infinity”
is the obvious homological equivalent of semistability, which we describe later. By the end
homology of X, we mean the inverse limit of the groups H;(K%,Z) as K varies over all
compact subsets of X.

We can obtain variations of properties (E) and (P), denoted (Eg) and (Pg), by replac-
ing Z everywhere by an arbitrary field F. In (Eg), the clause about semistability becomes
redundant (Lemma 14.3). We have (Er) = (Pr) = (S), and the converses hold if F = Q.

The fact that (S) = (G) uses the solution to Nielsen realisation problem for finite
groups [Ke|. The converse can be seen using Selberg’s Lemma, or by a direct geometric
argument.

It’s more or less clear that (S) implies all the other properties listed. (One can get
from (S) to (C) bypassing (G) using the fact that, in the non-euclidean case, I' is hyperbolic
with boundary S1.) The implication (C) = (S) is the result of the analysis of convergence
actions on the circle pioneered by Tukia [T], and completed independently by Gabai [Ga]
and Casson and Jungreis [CJ]. (In fact, the argument of [Ga] proves (G) directly, without
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passing via (S).) The proofs that the other properties imply (S) all pass via this result.

The fact that (R) = (S) was shown by Mess [Me]. In that paper, the euclidean case
is separated from the hyperbolic case by the recurrence or transience of Brownian motion
on the riemannian plane. The euclidean case is dealt with using the result of Varopoulos
(see [V] and the references therein, or [W]), namely that the random walk on a finitely
generated group is recurrent if and only if it virtually abelian of rank at most 2. This in
turn relies on Gromov’s result [Gr] on groups of polynomial growth, which rests ultimately
on the solution to Hilbert’s fifth problem [MoZ]. In other words, it calls for some high-
powered machinery. An approach to Mess’s result which uses [Gr] directly has recently
been described by Maillot [Ma].

The fact that (L) = (S) is shown in [Bo| using results and ideas from [DuSa], [DuSw]
and [Sw].

The main result of this paper shows that (Hp) = (Pr) = (C). The remaining impli-
cations are all fairly elementary as we describe shortly.

We note that an alternative approach to (Pq) = (C) (at least in the finitely presented
case) has been proposed by Kleiner. This approach also makes use of [Gr], though given
the existence of an infinite order element (Theorem 12.9 of this paper) this can be avoided.
It has also been observed by Dunwoody and Swenson [DuSw] that their result also proves
(Dq) = (C), in the finitely presented case, again under the assumption of the existence of
an element of infinite order.

In the rest of this section, we set about explaining the proofs of the remaining impli-
cations. We begin with:

Proof of Theorem 0.1 : Suppose I satisfies (Hg). By Proposition 2.2, " acts properly
discontinuously on a a metric 2-complex which is planar over F. In other words I' admits
a winding number with values in F satisfying (W1)-(W3). By the results of Section 7,
we can lift to a rational integral winding number. Thus, by Theorem 13.3, T" is a virtual
surface group. &

Note that we have passed via (Pg). In other words, we have shown also that (Pg) =
(S).

Next, we move on to property (I). Let X be any locally finite 2-complex with a bound
on the lengths of boundaries of 2-cells. We assume that X is uniformly simply connected,
i.e., every closed curve in X bounds a disc whose diameter is bounded as a function of
the diameter (or equivalently, length) of the curve. We shall restrict attention to the case
where X is one-ended. Thus X is semistable at infinity if and only if every two rays are
properly homotopic. This is equivalent to the statement that for all compact K C X, there
is a compact L O K such that for all compact M D L, the images of 71 (M%) and 71 (L)
in 1 (K¢) are equal (see [Mi]). This allows us to define the fundamental group at infinity,
79°(X) as the inverse limit of the system (71 (K©))x as K varies over all compact subsets
of X. The proper homotopy equivalence of rays in X tells us that we don’t have to worry
about basepoints. These definitions are all quasiisometry invariant (for the 1-skeleton in
the sense described earlier). We therefore get a definition of semistability for any finitely
presented group, I', and of 7°(T"). (It is an open problem as to whether every finitely
presented group is semistable at infinity.)
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Let (K;)ien be a compact exhaustion of X. Write G; = 71 (KE) and Go = 75°(X).
Thus, G, is the inverse limit of the system (G;);. By semistability, we can assume that
for all 4, the images of G; in G; are all equal for j > i. Putting H; equal to this image, we
can express G, as the inverse limit of the system (H;);, where all the connecting maps
are surjective. If Go, = Z, we see that H; = Z for all sufficiently large i. (Otherwise each
H; would be finite, giving the contradiction that Z is profinite.) We conclude:

Lemma 14.1 : If X is semistable at infinity and n{°(X) = Z, then there exist compact
sets, K C L C X such that for all M D L, the image of m1(M®) in 7, (KY) is infinite
cyclic. %

One can also define homological versions of semistability. Suppose A is a ring and that
X is a locally finite one-ended uniformly acyclic 2-complex (with a bound on the lengths
of boundaries of 2-cells). We say that X is homologically semistable (at infinity) over A if
for all compact K C X, there is some compact L O K such that for all compact M O L,
the image of H;(MY%; A) in H;(K“; A) equals the image of H;(LY; A) in H;(K“; A). We
define the end homology as the inverse limit of the system (Hy(K%; A))x as K ranges over
all compact subsets of X. We denote it by H{°(X;A). (Note that the definition of end
homology makes sense even if the semistability condition is dropped — for homology, we
don’t have to worry about basepoints.) Also these properties are again quasiisometry in-
variant, and so make sense for any group which acts property discontinuously cocompactly
on an A-acyclic 2-complex (which is the same as F' P, over A if A is Z or any field).

From Lemma 14.1, we deduce immediately:

Lemma 14.2 : If X is uniformly simply connected and semistable at infinity with
m°(X) 2 Z, then it’s also homologically semistable over Z, and H{*(X;Z) = Z. &

Lemma 14.3 : Suppose F is any field, and X is uniformly acyclic. Then X is homolog-
ically semistable over F.

Proof : Suppose K C X is compact. Applying Mayer-Vietoris to X = K U K%, we see
that Hy(K¢;F) is finite-dimensional. Choose L O K so as to minimise the dimension of
the image of H;(LY; F) in H;(K“;F). If M O K is compact, then the image of H;(M%; F)
in H,(K%;F) is equal to that of H,(LY;F). &

Given compact K C X, let Vi denote the image of H{*(X;F) in Hy(K;F) under
that natural map. Suppose H°(X;F) is finite dimensional. Choose K so as to maximise
the dimension of Vx. We see that the natural map of H{°(X;F) into Hy(KY;F) is
injective, so that Vi can be naturally identified with H{°(X;F). The same goes for any
compact set containing K. Putting this together with semistability (Lemma 14.2), we
conclude that:

Lemma 14.4 : Suppose that X is F-acyclic and H{°(X;F) is finite-dimensional. Then
(HKo)(VKl D) Ko)(HLO D) K1)<VL1 D) Lo) with K07K17L07L1 - X compact, the image of
Hy(L1;F) in Hi(K1; F) is naturally identified with H{°(X; F). &
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Now, if H1(X;Z) = 0, then by the universal coefficient theorem, H;(X;F) = 0 for
any field, F. Suppose X is homologically semistable over Z. If H{*(X;Z) = Z, then
since Z is not profinite, by the same argument as for fundamental groups, we see that the
same conclusions as Lemma 14.4 holds with Z replacing F. Now, again using the universal
coefficient theorem, we deduce:

Lemma 14.5 : If X is Z-acyclic and homologically semistable over Z, and H{*(X;Z) =
Z, then H*(X;F) = F for any field F. &

We shall now gather these facts together to deduce (R) = (I) = (E) = (Er) = (Pr)
= (C) = (S) for any field F. Of course it will be clear that one can pass more directly
from any of (R), (I) or (E) to a planar complex with integral winding numbers.

To prove (R) = (I), we first make some preliminary observations. Recall that a
path-metric space is taut if every point lies on (or equivalently, is a bounded distance
from) a uniform biinfinite path with uniform parameters. (Here we need only consider
quasigeodesics.) We say that a space is uniformly simply connected if it satisfies some
isodiametric inequality; in other words, every loop, v, bounds (the continuous image of) a
disc whose diameter is bounded as a function of the diameter of 7. Clearly, the property
of being taut is a quasiisometry invariant of path-metric spaces, whereas that of being
uniformly simply connected is not.

Every simply connected complex which admits a cocompact group action is both taut
and uniformly simply connected. Also, any taut path-metric on the plane is uniformly
simply connected. To see that latter statement, first note that it is enough to consider
simple closed curves 7. Now any such curve, v, bounds an embedded disc, D. If z € D,
then z lies on a biinfinite uniform path, «, with fixed parameters. Each ray of o emanating
from x must intersect . The distance between these intersections is bounded by diam(D),
and hence places an upper bound on the distance between = and ~.

Now suppose that I is a finitely generated group which is quasiisometric to a plane, R,
with a complete path-metric. It is a simple exercise to triangulate R such that diameters
of the 2-simplexes are bounded — start with any topological triangulation and take a
sufficiently fine subdivision. (We do not assume that the edges of the triangulation are
rectifiable, or that there is any lower bound on the distance between distinct vertices.
However, this can be achieved, at least in the riemannian case [Ma].)

Let K be a Cayley graph of I', and let ¢ : K — R and ¢ : R — K be quasiinverse
quasiisometries. We can assume that ¢ and i) both map vertices to vertices.

Suppose that § is a loop in K. Now ¢f is a bounded distance from a loop, 7, in
the 1-skeleton of R. This bounds a simplicial disc, D, in R. We map the vertices of this
disc back to K using v, and then extend over the 1-skeleton by mapping edges of D to
geodesics in R. The image of 0D will be a bounded distance from the original loop S.
After connecting vertices of this image with nearby vertices of 5, we end up spanning [
by the continuous image of the 1-skeleton of a triangulation of the disc, in such a way that
the length of the boundary of each 2-simplex is bounded, by some constant, k, say. We
deduce that if we attach a 2-cell to each circuit of K of length at most k, then we construct
a (locally finite) 2-complex, ¥, which is simply connected. Now I' acts cocompactly on 3.
We have thus shown that I' is finitely presented. From this point on, we can assume that

45



Planar groups

Y is a simplicial complex, and that K is the 1-skeleton of .

We now know that ¥ is taut and uniformly simply connected. Thus R is taut, and
since it is a plane, it is also uniformly simply connected.

Now we can realise the quasiisometry 1) : R — X as a proper simplicial map, possibly
at the cost of subdividing R. We can do this by first mapping in the vertices, then mapping
each edge of R to a geodesic in the 1-skeleton of ¥, and then extending to each 2-simplex
of R using the fact that X is uniformly simply connected to bound the diameter of their
images. This modified map is a bounded distance from the original, and hence also a
quasiisometry. At this point, we need the fact that R is complete to see that v is proper.

Now we know that R is semistable at infinity and that 77°(R) = Z (since these are
just topological notions). It is now a simple exercise to check that these properties are also
true of X, using the fact that R is uniformly simply connected to push homotopies in 3
a bounded distance into R. We have shown that 79°(I') = 79°(X) = Z as required. This
finally shows that (R) = (I).

Now, (I) = (E) and (E) = (Ep) follow respectively from Lemmas 14.2 and 14.5.

To deduce (Ep) = (Pg), let X be an F-acyclic 2-complex on which I" acts properly
discontinuously cocompactly. Thus, H{°(X;F) = F. For simplicity, let’s assume that
there is only one I'-orbit of vertex. Given any vertex, x € X, applying Lemma 14.4, we
find that there exist » > s > 0 such that the image of Hy(N(A4,7)%;F) in H;(N(A4,5)%; F)
can be canonically identified with H{°(X;F), where A can be z, or any edge incident on
x. By I'-equivariance, we see that the same is true for any vertex of X.

Now choose any non-zero element ( € H°(X; F). Given a vertex € X then a loop, 3,
with p(z, p) > r determines an element of Hy (N (x,7)%; F) whose image in H;(N(z,s)%;F)
gives us an element, w(, of H°(X;F). We define w(z, f) = w.

Properties (W1) and (W3) are immediate. To see (W2), suppose that z,y € X are
adjacent vertices, connected by an edge, e. Suppose ( is a loop with p(x,5) > r and
p(y,8) > r. Then, B determines an element of H;(N(e,7);F). The images of this
element in Hy(N(e,s)°;F), H(N(z,s);F) and H;(N(y,s)%;F) all correspond to the
same element of H{°(X;F). Thus, by definition, w(zx, 8) = w(y, 5).

We see that w is a winding number with separation constant, ». Thus X is planar,
proving property (Pg).

This discussion leaves open the question as to whether the implication (E) = (S)
remains true if we drop the assumption of homological semistability from (E).

15. The Seifert Conjecture.

The Seifert conjecture, proved in [T,Me,Ga,CJ], states that if M is a closed (ori-
entable) irreducible 3-manifold whose fundamental group contains an infinite cyclic normal
subgroup, then M is a Seifert fibred space. The results of Section 14 enable us to give
a homological version of this result. Applying the result of [Scol], one can recover the
original Seifert conjecture.

Specifically, we shall show:
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Theorem 15.1 : Let F be a field, and suppose that I is a group which is F'Ps over
F, and such that H3(T; FT') contains a 1-dimensional invariant subspace. Suppose that T’
contains an infinite cyclic normal subgroup. Then the quotient of I' by this subgroup is a
virtual surface group.

The proof Theorem 15.1 uses the LHS spectral sequence (see for example [Br]). A
very similar argument is used in [H2]. T am grateful to Ian Leary for explaining to me how
this works.

Proof of Theorem 15.1 : Suppose N is a normal subgroup of a group, I', with quotient
G =T/N. If M is any left FI'-module, the LHS spectral sequence for cohomology has
second page By = H'(G;H?(N;M)) and converges to H**/(I'; M). Moreover, if M is
a bimodule, so that H*(I', M) is a right F[-module, then we get a spectral sequence of
right FT-modules. In our case, N & Z and M = FI'. Thus H/(N; M) = HI(Z;FT)
which, as a right FI'-module, is easily seen to be equal to FG if j = 1 and 0 if j # 1.
Thus, the spectral sequence stabilises immediately, with H*(G;FG) in row j = 1, and
0 everywhere else. Thus, for all j > 0, we obtain H'(G;FG) = H*(I';FT). This is
an isomorphism of right FI-modules. In particular, we deduce that H?(G;FG) has a
1-dimensional G-invariant subspace.

Now it is shown in [Bi] (making similar use of the LHS spectral sequence for homology,
and applying the Bieri-Eckmann finiteness criterion) that G must be F P, (in fact, F'Ps)
over F (see [Bi, Proposition 2.7]). Thus, the hypotheses of Theorem 0.1 are satisfied, and
we deduce that G is a virtual surface group. &

As a result, we may deduce:

Corollary 15.2 : IfT is a torsion-free group satisfying the hypotheses of Theorem 15.1,
then it is the fundamental group of a Seifert fibred 3-manifold. &

In the non-orientable case, we are using the general definition of a Seifert fibred 3-
manifold, as found in [Sco2] for example. In other words, we are allowing for the possibility
of a neighbourhood of a fibre being a solid Klein bottle, so that the base orbifold may have
circular mirrors.

To deduce Corollary 15.2 from Theorem 15.1, we need the following:

Lemma 15.3 : Suppose I' is a torsion-free group with infinite cyclic normal subgroup,
N « T, such that I'/N is planar. Then I' is the fundamental group of a Seifert fibred
3-manifold.

This result seems to be folklore, and can be proven by explicit construction (if we
start from the characterisation (G) of planar groups in Section 14). In the orientable case,
it is stated in [Scol]. The case where N is central, and the quotient is fuchsian is given
in [Z] (see Theorem 63.1). However, since I know of no explicit reference for the general
case, I outline an argument below. We shall make much use of the fact that a torsion free
virtually cyclic group is infinite cyclic.
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Proof of Lemma 15.3 : First, we note that we can assume that the quotient group
is an orbifold group. To see this, let ¢ : I' — G be the quotient map. Let K be the
maximal finite normal subgroup of G, and let ¢ : G — G/K = H be the quotient map.
Now, H is an orbifold group, and ker ¢ had finite index in ¢~ ' K = ker(¢0 ). Now, ¢~ 1 K
is torsion-free and two-ended, and thus infinite cyclic. Thus, replacing ¢ : ' — G by
1 o¢ — H, we get an orbifold group quotient as claimed. Note that any finite subgroup
of the quotient must be cyclic (since its preimage in I' is infinite cyclic).

Now, let ¢ : I' — G =T'/N be the quotient map, and let G = m1(Q) be the orbifold
fundamental group of a closed orbifold (). Now since G has no dihedral subgroups, the
singularities of () consist of (at most) a finite set of cone points, and finite set of circular
mirrors. Let Z(N) be the centraliser of N in I'; and let Gog = ¢(Z(N)) < G. Thus, Gy has
index at most 2 in GG. Note that a loop around any cone-point lies in Gy.

Let g ...y, be the mirrors of @, and let P C Q \ ;- o; be a finite non-empty set
containing all the cone points of Q. Let Qo = Q \ (PUJ., a;), and let z € Qo be a
fixed basepoint. For each i, let §; an arc connecting x to oy, and let v1,...,7, be a set
of embedded loops based at x, such that the interiors of all the 3; and «y; are disjoint,
and such that each component of Q \ (-, 5; U U?:1 7;) is a disc containing precisely one
point of P.

We now construct a 2-complex, D, as follows. Let A be a circle. For each i € {1,...m},
let A; be an torus or Klein bottle depending on whether or not «; lies in Gy. Let u; be
a 2-sided simple closed curve on A;, and let B; be a Mobius band, whose core curve is
identified with p;, and whose boundary is identified with A. For each j € {1,...,n}, let
C; be a torus or Klein bottle depending on whether or not v; lies in Gy. We identify a
2-sided simple closed curve on C; with A. The union of the A;, B; and C; now gives us our
2-complex, D. Note that D had a natural projection, p, to (Ji—; v UU;Z; 8i U UG-, -

We now thicken up D to give us a 3-manifold, V', and extend p to V. We can assume
that the complement of pV in @ is a disjoint union of open discs each containing one point
of P, and that p|p~1Qq is a fibration with circular fibres. Now, if § is any simple closed
curve in @, then p~1¢ is a torus or Klein bottle depending on whether or not § lies in
Gy. In particular, we see that each boundary component of V is a torus. We can define
a surjective homomorphism, 0 : 71 (V) — I', with ker = 71(\) < 71 (V), and such that
0 o ¢ is the homomorphism from I'" to GG induced by p.

Suppose T is a boundary component of V. Now, T is incompressible, so 71(T') is a
subgroup of 71 (V). Moreover, 6(m1(1")) is infinite cyclic (being the preimage in I" of a finite
cyclic subgroup of G). We can thus glue a solid torus to 7" so as to kill ker(8|m1(7T)). Per-
forming this construction for each boundary component of V', we get a closed 3-manifold,
M, with a projection map p: M — @, so that the preimage of every point is a circle, and
the preimage of each cone point is a singular fibre. In other words, M is a Seifert fibred
space. Now, 6 descends to a homomorphism from 71 (M) to I'; which is easily verified to
be an isomorphism. &

Now, if I" is PD(3) over Z, then it’s necessarily torsion-free. It is also F'Ps over Z
and hence also over Q. Moreover, H3(I'; ZT') = Z and so H3(T'; QI') = Q. Thus Corollary
15.2 applies. We have therefore proven Corollary 0.5.

In the case where the abelianisation of I' is infinite, Corollary 0.5 was proven by
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Hillman [H1]. The main obstacle to generalising this was the issue of whether a torsion
group could be PD(2) over Q — a matter resolved in the negative in this paper. (See also
[K1].)

As a result of Corollary 0.5, we get another proof of the Seifert conjecture.

Corollary 15.4 : If M is a closed orientable irreducible 3-manifold and 7 (M) contains
an infinite cyclic normal subgroup, then M is a Seifert fibre space.

Proof : Since my(M) = 0, m1(M) is PD(3) over Z. By Corollary 0.5, M is homotopy
equivalent to a Seifert fibre space, and hence homeomorphic to one by [Scol]. &

Scott’s theorem [Scol] is only stated in the orientable case, so we have reproduced
this hypothesis above. However, the difficult (non Haken) case dealt with in [Scol] is
necessarily orientable, so it would seem that this result will generalise without difficultly
to the non-orientable case.

In the original proof, Mess [Me] showed that the quotient space was quasiisometric to
a complete riemannian plane, and reduced the problem to classifying convergence actions
on the plane. This had been partially achieved in [T], and was subsequently completed in

[Ga,ClJ].
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