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0. Introduction.

In this paper, we describe a number of characterisations of virtual surface groups.
One of the principal results will be:

Theorem 0.1 : Suppose F is a field, and that Γ is a group which is FP2 over F. If
H2(Γ;FΓ) has a 1-dimensional Γ-invariant subspace, then Γ is a virtual surface group.

Recall that the FP2 condition means that the trivial FΓ-module, F, admits a partial
resolution P2 −→ P1 −→ P0 −→ F, where P0, P1 and P2 are finitely generated projective
FΓ-modules. The cohomology group H2(Γ;FΓ) has the structure of an FΓ-module, or
equivalently, a vector space over F with a linear Γ-action. We are therefore assuming
that it has an FΓ-submodule which is isomorphic to the trivial module. By a virtual
surface group, we mean a group with a finite index subgroup which is isomorphic to the
fundamental group of a closed surface other than the 2-sphere or projective plane. Note
that it follows that, in fact, H2(Γ;FΓ) ∼= F, and that Hn(Γ,FΓ) = 0 for all n 6= 2.

Theorem 0.1 applies in particular to 2-dimensional rational Poincaré duality groups:

Corollary 0.2 : A group Γ is PD(2) over Q if and only if it is a virtual surface group.

This answers affirmatively a conjecture of Dicks and Dunwoody (see [DiD] Chapter
V, Conjecture 4.6).

For definitions and further discussion of Poincaré duality groups, see for example
[Br,DiD]. The result of Eckmann, Müller and Linnell [EM,EL] characterises surface groups
as PD(2) groups over the integers. In view of the fact that torsion-free virtual surface
groups are surface groups (following, for example, from [EM,EL]), Corollary 0.2 can be
viewed as a generalisation of this result. In fact, Corollary 0.2 had already been established
in the case where Γ is assumed to contain an infinite order element (see [DuSw]). In fact,
much of the proof of Theorem 0.1 will be aimed at the elimination of the possibility that Γ
might be a torsion group. Another approach to these results, which avoids this particular
difficulty, has been given by Kleiner [Kl] (at least in the finitely presented case).

Another corollary of Theorem 0.1 is:

Corollary 0.3 : If Γ is finitely presented, one-ended, semistable at infinity, and π∞
1 (Γ) ∼=

Z, then Γ is a virtual surface group.
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The notion of “semistability at infinity” was defined in [Mi]. Here π∞
1 (Γ) denotes the

fundamental group at infinity.

This, in turn, leads to another proof of the result originating in the work of Mess:

Corollary 0.4 : [T,Me,Ga,CJ] If Γ is finitely generated and quasiisometric to a complete
riemannian plane, then Γ is a virtual surface group.

In fact, it’s enough for Γ to be quasiisometric to any complete path-metric space
homeomorphic to R2.

The logical interconnections between these various characterisations, along with sev-
eral others, will be described in Section 14.

Our proof of Theorem 0.1 involves interpreting the homological condition in terms of
a kind of “coarse planarity” of the Cayley graph of Γ. A number of different formulations
might be given for this. We shall focus on one involving winding numbers, as described in
Sections 1 and 2. This condition will easily be seen to be a quasiisometry invariant. Much
of this material can be interpreted in terms of the theory of “coarse Alexander duality”.
This theory was introduced in [FarbS], and some related ideas can be found in the work
of Higson and Roe (see [R]). It has been developed extensively in a more general context
by Kapovich and Kleiner [KaK]. However, for the specific cases in which we deal here, it
will be easy to give direct arguments.

One of the main intermediate goals in the proof will be to show that Γ has an infinite
order element, and that every infinite cyclic subgroup is codimension-one. The argument
can then be completed using a result from [Bo]. Graham Niblo has observed that this
can also be deduced from the results and methods of [DuSa], [DuSw] and [Sw], at least
in the case where Γ is almost finitely presented, and has suggested how the arguments
might be adapted to deal with the finitely generated case. We shall also outline a more
direct argument in Section 13. Both these approaches depend on the classification of
convergence actions on the circle by Tukia, Gabai and Casson and Jungreis [T,Ga,CJ].
All the arguments involved are essentially geometric, and can, in principle be interpreted
combinatorially.

In the original proof of Corollary 0.4, Mess makes use of Varopoulos’s theorem (see
[V] or [W]). This relies on Gromov’s result [Gr] on groups of polynomial growth which
in turn relies on the solution to Hilbert’s fifth problem [MoZ]. Recently, Maillot [Ma] has
given a more direct geometric proof of Corollary 0.4 which byepasses Varopoulos’s result,
though still requires that of Gromov. Kleiner’s approach to Corollary 0.2 also depends on
Gromov’s result. However, this can be eliminated using results of the present paper (in
particular Theorem 12.9), thereby giving another essentially combinatorial proof. All of
these arguments rely on [T,Ga,CJ].

We note that conditions of the type appearing in Theorem 0.1 are discussed in the
papers of Farrell [Farr1,Farr2]. For example, in [Farr2], he shows that if F = Z2 and Γ is
not torsion, then any finite dimensional Γ-invariant subspace of H2(Γ;FΓ) is 1-dimension.
It would be interesting to know if this can be extended to other fields, and whether the
non-torsion hypothesis can be eliminated. If so, this would give a stronger version of
Theorem 0.1.
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In retrospect, we see from Theorem 0.1 that the “orientation preserving” subgroup
of Γ, i.e. that fixing H2(Γ;FΓ) pointwise, has index at most 2 in Γ. One can similarly
define the orientation preserving subgroup of a Poincaré duality group in any dimension,
n (replacing H2(Γ;FΓ) by Hn(Γ;FΓ)). It seems to be an open question as to whether this
subgroup must always have index at most 2.

One of the main motivations of Mess’s paper [Me] was to reduce the Seifert Conjecture
to Corollary 0.4. The Seifert Conjecture states that if M is a closed irreducible 3-manifold
such that π1(M) contains an infinite cyclic normal subgroup, then M is a Seifert fibred
space. Theorem 0.1 allows us to give a version of this for PD(3) groups:

Corollary 0.5 : Suppose that Γ is PD(3) over Z, and contains an infinite cyclic normal
subgroup. Then, Γ is the fundamental group of a closed Seifert fibred 3-manifold.

This answers a question attributed to Scott in the problem list compiled by Kirby
[Ki] (No. 3.77(B)). It was already known in the case where Γ is assumed to have infinite
abelianisation [H1]. This result will be discussed further in Section 15. In view of the
result of Scott [Sco1] that there are no “fake” Seifert fibre spaces with infinite fundamental
group, we recover the Seifert conjecture as a corollary.

The main result of this paper also has applications to 4-manifolds. In particular, the
fact that H2(Γ,ZΓ) ∼= Z implies that Γ is a virtual surface group, for Γ FP2 over Z, can
be used to streamline or strengthen a number of results in [H3] (for example, by eliminat-
ing hypotheses demanding the non-vanishing of first cohomology). Such applications are
described in [H4].

I am indebted to several people, in particular, Michel Boileau, Warren Dicks, Martin
Dunwoody and Jonathan Hillman for bringing these questions to my attention. I have
profited particularly from discussion with Bruce Kleiner, who first suggested using some
notion of “rotation number” in this context, and who explained to me the principles of
coarse Alexander duality which have helped to streamline some of the arguments of this
paper. I would also like to thank Ian Leary for his help with some of the more algebraic
aspects of this paper. Discussions with John Crisp, Warren Dicks, Martin Dunwoody and
Graham Niblo have also been helpful.

1. Notation and conventions.

Before starting properly, we describe some conventions and terminology used through-
out this paper.

We shall use A and F to denote a commutative ring with a one and a field respectively.
We write F× for the multiplicative group F \ {0}. If Γ is a group, we write AΓ and FΓ
for the corresponding group rings.

Suppose X is a locally finite 2-dimensional CW complex. We put a path-metric ρ on
the 1-skeleton, X1, by assigning unit length to every 1-cell. If there is a bound on the
length of the boundary of each 2-cell, then we shall refer to (X, ρ) as a metric 2-complex .
It is sometimes convenient to imagine ρ extended to all of X , in such a way that the 1-
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skeleton is geodesically embedded, and such that there is a bound on the diameter of each
2-cell. However, only the metric on X1 is strictly relevant.

We shall write V (X) for the set of vertices of X . However, we shall take the statement
x ∈ X to mean implicitly that we are choosing a vertex of X . Similarly, we shall assume
that all the subsets of X with which we are dealing are subcomplexes. Also paths in X
are always assumed to map into the 1-skeleton. The only purpose in these conventions is
to avoid having to worry about nasty subsets.

Suppose Q is a subset (i.e. subcomplex) of X . We write ρQ for the induced path-
metric on (the 1-skeleton of) Q. We write QC for the closure of the complement of Q.
Given r ∈ N, we write N(Q, r) for the subcomplex of X whose 1-skeleton, K, is the r-
neighbourhood of the 1-skeleton of Q, and where a 2-cell of X lies in N(Q, r) if and only if
its boundary lies in K. We shall generally use this notation without bothering to specify
that r ∈ N.

We can think of a path in X formally as a cellular map of a subinterval of the real
line into X1. A loop is a closed path, and a circuit is an embedded loop. We shall speak
of finite paths , rays and biinfinite paths , if the domain is compact, one-ended, or 2-ended
respectively. We shall always assume rays and biinfinite paths to be proper maps. We
shall frequently abuse notation, by identifying a path with its image in X , even if it is
not embedded. A finite path is a geodesic if its length equals the distance between its
endpoints. In general, a path is geodesic if every finite subpath is. If the direction of a
path is important, we shall sometimes denote it by ~α where α is the underlying undirected
path. We shall write −~α for the same path directed in the opposite direction. We use ∪
for concatenation of paths.

We shall write L(X) for the set of loops in X . Note that there is natural map of
L(X) into H1(X ;A) for any ring A. We shall write 〈., .〉 for the Kronecker pairing on
H1(X ;A)×H1(X ;A) −→ A. If A = F is a field, then this is a non-degenerate bilinear
form, so we can identify H1(X ;F) as the dual space of H1(X ;F).

We shall refer to a map µ : L(X) −→ F as a cocycle if it factors through a linear map of
H1(X ;F) to F (i.e. an element of H1(X ;F)). This linear map is uniquely determined, and
we shall also denote it by µ. The cocycle condition can be expressed more combinatorially
as follows. If r is a bound on the length of the boundary of any 2-cell, then µ : L(X) −→ F

is a cocycle if and only if:

(1) µ(γ1) + µ(γ2) + µ(γ3) = 0 whenever γ1, γ2, γ3 ∈ L(X) form a theta-curve, and

(2) µ(γ) = 0 whenever length(γ) ≤ r.

We say that γ1, γ2, γ3 form a theta curve if there are finite paths α1, α2, α3 sharing the
same pair of endpoints, such that γi = αi∪−αi+1, taking subscrips mod 3. We shall speak
of an integral cocycle to mean a map µ : L(X) −→ Z which extends to a cocycle with
values in Q. Such a map is also characterised by properties (1) and (2).

We shall say that X is A-acyclic if H1(X ;A) = 0. We say that X is uniformly A-
acyclic if for all r ≥ 0 there exists s ≥ r such that for all x ∈ X , the image ofH1(N(x, r);A)
in H1(N(x, s);A) is 0. Note that these properties remain unchanged if we add additional
2-cells to X . We can thus speak of a locally finite graph as being stably (uniformly) acyclic
if there is some t ≥ 0 such that if X is the complex obtained by attaching a 2-cell to every
loop in X of length at most t, then X is (uniformly) acyclic. We see that if a 2-complex is
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(uniformly) acyclic, then its 1-skeleton is stably uniformly acyclic. Moreover the property
of stable (uniform) acyclicity is easily seen to be a quasiisometry invariant.

2. End cohomology and winding numbers.

In this section, we mention some basic facts regarding “end cohomology” and, in the
1-dimensional case, relate this to the more geometric notion of “winding number”.

Let A be a ring, and let X be a locally finite n-dimensional CW complex, with
Hi(X ;A) = 0 for all i < n. Suppose Γ acts freely cocompactly on X . Let C∗ = C∗(X ;A)
denote the cellular chain complex with coefficients inA, thought of as a gradedAΓ-module.
We get a finitely generated partial free resolution of A:

Cn −→ Cn−1 −→ · · · −→ C1 −→ C0 −→ A,

which we can extend arbitrarily to free resolution:

· · · −→ Cn+1 −→ Cn −→ · · · −→ C1 −→ C0 −→ A.

Let Ci = Hom(Ci;A) denote the cochain module, and let Ci
C denote the submodule

of finitely supported cochains. Let δ : Ci −→ Ci+1 be the coboundary map. Now,
δ(Ci

C) ⊆ Ci+1

C , so (Ci
C , δ)i is a sub chain complex. We denote its homology by H∗

C . Now,
since the cochain complex (Ci)i is exact, for any m, the submodule, Zm of cochains in Cm

is also the module of coboundaries Bm = δ(Cm−1). Let Zm
C = Cm

C ∩ Zm and let Bm
C =

δ(Cm−1

C ) ⊆ Zm−1

C . By definition, Hm
C (X ;A) = Zm

C /B
m
C = (Cm

C ∩ δ(Cm−1))/δ(Cm−1

C ).
Now, for m < n, Hm

C is the “compactly supported cohomology” of X . Here we are
interested in the group Hn

C which depends only on the complex X . We denote it by
Jn(X).

Now, if M is any AΓ-module, then AΓ-module homomorphisms from M into A can
be identified with finitely supported A-module homomorphisms fromM into A. This gives
rise to a natural identification of Jn(X) with Hn(Γ;AΓ). (See [Br] for details.)

We can also interpret this in terms of the “end cohomology” of X . Let D be the
directed set of compact subcomplexes of X , ordered by inclusion. This gives a direct
limit system of cohomology groups (Hi(KC ;A))K∈D (where KC denotes the closure of
the complement of K). We denote the direct limit by Hi

∞(X ;A), and refer to it as the
end cohomology of X . We can identify Jn(X) with Hn−1

∞ (X ;A) as follows.
Suppose σ ∈ Jn(X). Now, σ is represented by compactly supported coboundary,

δt ∈ Cn
C where t ∈ Cn−1. Choose some K ∈ D such that δt ≡ 0 on KC . Thus, t

defines an element of Hn−1(KC ;A) which gives rise to an element, f(σ), in the direct
limit Hn−1

∞ (X ;A). It is easily verified that f is an abelian group isomorphism from Jn(X)
to Hn−1

∞ (X ;A). If A = F is a field, then f is F-linear.
Let us now restrict to the case where n = 2, and F is a field.
The following result was shown to me by Ian Leary. For more details, see [L].
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Lemma 2.1 : Let F be any field. Then Γ is FP2 over F if and only if Γ acts properly
discontinuously cocompactly on a locally finite 2-complex, X , with H1(X ;F) = 0.

Only the “only if” part is relevant here. (The “if” part is easy.) We begin by showing
the result is true if F is replaced by the integers, Z. Note that FP1 over Z, or indeed any
non-trivial ring, is equivalent to finite generation [Br]. Thus, if Γ is FP2 over Z we obtain
an exact sequence of ZΓ-modules, 0 −→ K −→ C1(Y ;Z) −→ C0(Y ;Z) −→ Z −→ 0,
where K is finitely generated, and Ci(Y ;Z) are the chain modules of some Cayley graph,
Y , of Γ. Now, the image of K is C1(Y ;Z) is generated, as an abelian group, by the set
of Γ-images of a finite set of circuits in Y . By attaching 2-cells to circuits we obtain the
desired 2-complex, X .

Now, the same argument works with Z replaced by Zn for any n, or by Q. In the case
of Q we need to note that some multiple of any element of H1(Y ;Q) is a represented by
a finite sum of circuits.

To complete the argument, we show that a group is FP2 over a field, F, (if and) only
if it is FP2 over its prime subfield, E. To see this, consider the sequence 0 −→ K −→
C1(Y,E) −→ C0(Y ;E) −→ E −→ 0 as above. This time, K is an EΓ-module such that
K ⊗EΓ FΓ if is finitely generated as an FΓ-module. If {

∑ni

j=1
kij ⊗ λij | i = 1, . . . , m}

generates K ⊗EΓ FΓ, where kij ∈ K and λij ∈ F, then {kij} generates K. To see
this, let L be the submodule of K thus generated, so that we have an exact sequence
0 −→ L −→ K −→ M −→ 0, where M is the cokernel. Since FΓ is faithfully flat as an
EΓ-module, it follows that M = 0. We thus deduce that K is finitely generated as an
EΓ-module as required. (The converse of the above statement is easy.)

In summary, if Γ is FP2 over F, then it’s FP2 over the prime subfield, E. Thus Γ acts
properly discontinuously cocompactly on a 2-complex, X , with H1(X ;E) = 0. It follows
by the Universal Coefficient Theorem that H1(X ;F) = 0.

More elaboration of this will be given in [L]. We remark that not all finiteness prop-
erties of large fields pass to subfields. For example, there are examples of groups that are
FL over C but not over Q — see [L].

Now, suppose that E ⊆ H2(Γ;FΓ) is a Γ-invariant subspace. This gives us a 1-
dimensional subspace of H1

∞(X ;F), which we also denote by E. We shall explain how this
gives rise to a “winding number” in F. Firstly we should give some definitions.

Suppose (X, ρ) is a locally finite metric 2-complex, and that r0 ≥ 0 is some constant.
We assume that the boundary of every 2-cell in X has length at most r0. Suppose that
H1(X ;F) = 0. Given two subsets P,Q ⊆ X , we shall write P ∧Q to mean that ρ(P,Q) ≥
r0. Let W =W (r0, X) = {(x, β) ∈ X ×L(X) | x ∧ γ}. (We are tacitly assuming that x is
vertex of X .)

Definition : A winding number on X with values in F (and with separation constant r0)
is a map ω :W −→ F satisfying the following:

(W1) Given x ∈ X , the map [γ 7→ ω(x, γ)] : L(N(x, r0)
C) −→ F is a cocycle in N(x, r0)

C

(i.e. factors through a linear map on homology),

(W2) if x, y ∈ X are adjacent vertices (in the 1-skeleton of X), and γ ∈ L(X) with x ∧ γ
and y ∧ γ, then ω(x, γ) = ω(y, γ), and
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(W3) (∃x ∈ X)(∀r ≥ r0)(∃γ ∈ L(X)) ρ(x, γ) ≥ r and ω(x, γ) 6= 0.

Note that the above definition makes no reference to the group action. However, the
winding number we construct will have an additional invariance property, namely:

(W4) There is a character θ such that for all that for all g ∈ Γ, x ∈ X and γ ∈ L(X) with
x ∧ γ, we have ω(gx, gγ) = θ(g)ω(x, γ).

(By a character we mean a homomorphism from Γ to F×.)

We shall eventually see that it is necessarily the case that the image of θ lies in {−1, 1},
beyond which point we can pass to a subgroup of index at most 2 so that ω(gx, gγ) =
ω(x, γ) for all g.

We now describe how to construct such a winding number. Suppose Γ is FP2 over F,
and X is an F-acyclic 2-complex on which Γ acts freely and cocompactly. Note that X is
necessarily uniformly F-acyclic as defined in Section 1. Let E ⊆ H1

∞(X ;F) is an invariant
1-dimensional subspace. As an intermediate step, we have:

Lemma 2.2 : There is a compact set K ∈ D, a linear map µ : H1(K
C ;F) −→ F, and

a character θ : Γ −→ F× such that for every g ∈ Γ, there is a compact set L(g) ∈ D with
K∪g−1K ⊆ L(g) such that if γ, gγ ∈ L(L(g)), then µ(gγ) = θ(g)µ(γ). Moreover, if L ∈ D
with K ⊆ L, then there is some γ ∈ L(LC) with µ(γ) 6= 0.

(Here we are using the convention of using the same symbol to denote a linear map on
H1(Q;F) and the induced map on L(Q) where Q ⊆ X .)

Proof : Choose any element φ ∈ E\{0}. We have a homomorphism, θ : Γ −→ F×, defined
by g.φ = θ(g−1)φ, where [(g, φ) 7→ g.φ] denotes the action of Γ on E ⊆ H1

∞(X ;F). Now,
we can find a compact K ∈ D so that φ corresponds to some element ψ ∈ H1(KC ;F).
Given any element s ∈ H1(K

C ;F), we set µ(s) = 〈ψ, s〉, where 〈., .〉 denotes the Kronecker
product.

Now, since φ 6= 0, for any L ∈ D with K ⊆ L, we have ψ|LC 6≡ 0. Since L(LC) spans
H1(L

C ;F), and the Kronecker product is non-degenerate, there is some γ ∈ L(LC) with
µ(γ) 6= 0.

Suppose g ∈ Γ. Now, g−1.φ = θ(g)φ, so, by the definition of the Γ-action on
H1

∞(X ;F), we have that g−1.ψ ∈ H1(g−1KC ;F) and θ(g)ψ ∈ H1(KC ;F) pull back to
the same element of H1(L(g);F) for some L(g) ∈ D with K ∪ g−1K ⊆ L(g). Thus, if
γ, gγ ∈ L(L(g)C), then µ(gγ) = 〈ψ, gγ〉 = 〈g−1.ψ, γ〉 = 〈θ(g)ψ, γ〉 = θ(g)〈ψ, γ〉 = θ(g)µ(g)
as required. ♦

We can now go on to construct a winding number having properties (W1)–(W4) as
follows.

Fix an orbit transversal, A, of the set of vertices of X . Thus, A is finite. Let S ⊆ Γ
be a finite symmetric set such that if some element of A is adjacent to some vertex of gA,
then g ∈ S. Choose r0 ≥ 0 big enough so that for any x ∈ A and g ∈ S, then K ⊆ N(x, r0)
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and L(g) ⊆ N(x, r0). Thus, if x ∈ A, γ ∈ L(X) and g ∈ S with x ∧ γ and x ∧ gγ, then
µ(gγ) = θ(g)µ(γ).

Now, given a vertex x ∈ X , there is a unique g ∈ Γ, such that g−1x ∈ A. If γ ∈ L(X)
with x ∧ γ, then g−1x ∧ g−1γ and so µ(g−1γ) is defined. We set ω(x, γ) = θ(g)µ(g−1γ).

Note that if y ∈ A, then ω(y, γ) = µ(γ) and ω(gy, gγ) = θ(g)µ(γ) for all g ∈ Γ. We
deduce that for any vertex x ∈ X with x ∧ γ and any g ∈ Γ, ω(gx, gγ) = θ(g)ω(x, γ). In
other words, property (W4) holds.

Suppose now that x, y ∈ X are adjacent vertices, and that x, y ∧ γ. Let g, h ∈ Γ be
such that x ∈ gA and y ∈ ghA. Now A and hA contain adjacent vertices (namely g−1x and
g−1y), so h ∈ S. Now, g−1x∧g−1γ and h−1g−1y∧h−1g−1γ and g−1x, h−1g−1x ∈ A. Thus,
µ(h−1g−1γ) = θ(h−1)µ(g−1γ), and so ω(y, γ) = θ(gh)µ(h−1g−1γ) = θ(gh)θ(h−1)µ(g−1γ) =
θ(g)µ(g−1γ) = ω(x, γ). This proves property (W3).

Finally we note that properties (W1) and (W2) are immediate, so we have constructed
our winding number as claimed.

Definition : We say that a locally finite metric 2-complex, (X, ρ), is homologically planar
over a field F, if it is uniformly F-acyclic over F, and there is some r0 ≥ 0 such that the
boundary of every 2-cell has length at most r0, and such that X admits a winding number
satisfying axioms (W1), (W2) and (W3).

Note that this property remains invariant under attaching additional 2-cells of bounded
boundary length. It can thus be viewed as a property of graphs, and as such is easily seen
to be a quasiisometry invariant. It thus makes sense to speak about a finitely generated
group as being “planar” in the sense that some (hence every) Cayley graph has this prop-
erty. Note that planarity implies FP2 over F. We shall eventually see that it implies that
Γ is a virtual surface group.

We can summarise the construction of this section in the following way:

Proposition 2.3 : Suppose that Γ is a group and F is a field. Suppose Γ is FP2 over
F and that H2(Γ;FΓ) has a 1-dimensional Γ-invariant subspace. Then Γ admits a free
cocompact action on a metric 2-complex which is homologically planar over F. ♦

Indeed the construction gave us axiom (W4) as well for free. We shall see in Section
6 how one can recover (W4) by purely geometric arguments, starting with assumption of
planarity.

3. Uniform acyclicity and straight sets.

The kinds of ideas we describe here are related to “coarse Alexander duality”. Similar
ideas feature in [FarbS] and have been developed extensively in [KaK]. However, we shall
only be using fairly simple properties which are easily derived from first principles.

Let F be a field and (X, ρ) be a metric 2-complex. Suppose Q ⊆ X , and r ≥ 0.
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Definition : We say thatQ is r-straight (over F) if the image ofH1(Q;F) inH1(N(Q, r);F)
is 0.

We say that Q is straight if it is r-straight for some r.

Thus, we can define uniformly acyclicity by saying that X is uniformly acyclic over F
if there is some function h : [0,∞) −→ [0,∞), such that if Q ⊆ X with diam(Q) ≤ r, then
Q is h(r)-straight.

We note that it is enough to verify this for circuits in X . Indeed, if the complex is
uniformly locally finite, then it’s enough that any circuit γ should bound an F-cycle in X
whose diameter is controlled as a function of length(γ).

Here are a couple of trivial observations about straightness.

Lemma 3.1 : Suppose Q ⊆ P ⊆ X are such that the natural mapH1(Q;F) −→ H1(P ;F)
is surjective. If Q is r-straight, then so is P . ♦

Given Q ⊆ X , let C(Q) be the set of connected components of QC . As an immediate
corollary of Lemma 3.1, we have

Lemma 3.2 : Suppose X is acyclic, Q ⊆ X and E ⊆ C(Q). If Q is r-straight, then so is
Q ∪

⋃
E . ♦

Examples of straight subsets arise from the following construction. Suppose (Y, σ)
and (X, ρ) are metric complexes. Suppose f : (Y, σ) −→ (X, ρ) is a cellular map.

Definition : We say that f is a uniform map if for all t ≥ 0 there is some s ≥ 0 such that
if x, y ∈ Y with σ(x, y) ≥ s, then ρ(f(x), f(y)) ≥ t.

The following is easily verified (cf. [KaK]):

Lemma 3.3 : Suppose (Y, σ) and (X, ρ) are both uniformly acyclic, and f : Y −→ X is
a uniform map. Then, for all r ≥ 0, N(f(Y ), r) is s-straight, where s depends only on r
and the functions of uniformity. ♦

We now want to apply these ideas to planar complexes. Recall that a “planar complex”
is a uniformly F-acyclic metric 2-complex, (X, ρ), with a winding number ω satisfying
axioms (W1)–(W3).

Suppose Q ⊆ X is connected. If x, y ∈ Q and γ ∈ L(X) with Q∧ γ, then axiom (W2)
tells us that ω(x, γ) = ω(y, γ). We shall denote this quantity by ω(Q, γ).

Lemma 3.4 : For all t ≥ 0, there is some r ≥ r0 such that if x ∈ X and γ ∈ L(X) with
ρ(x, γ) ≥ r and diam(γ) ≤ t, then ω(x, γ) = 0.

Proof : By uniform acyclicity of X , there is some s ≥ 0 depending on t such that γ is
F-homologous to 0 in N(γ, s). Let r = r0 + s. If ρ(x, γ) ≥ r, then N(γ, s) ∩N(x, r0) = ∅.
Thus, γ is null F-homologous in N(x, r0)

C , so ω(x, γ) = 0. ♦

9
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Corollary 3.5 : For all t ≥ 0 there is some u ≥ 0 such that if Q ⊆ X is connected and
γ ∈ L(X) with Q ∧ γ, diam(Q) ≥ u and diam(γ) ≤ t, then ω(Q, γ) = 0.

Proof : Let u = t + 2r, where r is given by Lemma 3.4. Now, we can find x ∈ Q with
ρ(x, γ) ≥ r. Thus, ω(Q, γ) = ω(x, γ) = 0. ♦

As an immediate consequence, we have:

Lemma 3.6 : Suppose Q ⊆ X is connected and unbounded, and that γ ∈ L(X) with
Q ∧ γ. Then ω(Q, γ) = 0. ♦

Definition : A sequence (γn)n∈N of loops in X is big if for some (hence every) x ∈ X ,
ρ(x, γn) → ∞ and ω(x, γn) 6= 0 for all sufficiently large n.

A subset Q ⊆ X is big if it contains a big sequence of loops.

Thus, Axiom (W3) tells us that X itself is big.

Lemma 3.7 : If Q ⊆ X is big and r-straight, then X = N(Q, r + r0).

Proof : Suppose x ∈ X with ρ(x,Q) > r + r0. If γ ∈ L(Q), then γ is null F-homologous
in N(Q, r) ⊆ N(x, r0)

C . Thus ω(x, γ) = 0 contradicting bigness. ♦

As a consequence, one can show:

Proposition 3.8 : A planar metric 2-complex is one-ended.

Proof : Suppose K ⊆ X is compact. Since X is locally finite, C(K) is finite. Let (γn)n be
a big sequence in X . Passing to a subsequence, we can assume that each γn lies in C for
some C ∈ C(K). Thus C ∪K is big. Since X is uniformly acyclic, K is r-straight for some
r ≥ 0. Thus, by Lemma 3.2, C∪K is also r-straight. By Lemma 3.7, X = N(C∪K, r+r0).
It follows that K is the only unbounded element of C(K). This shows that X is one-ended.

♦

4. Systems of connected sets.

For the moment, we shall allow (X, ρ) to be any metric 2-complex. Let A be a
collection of connected subsets of X . By the nerve, Ω = Ω(A), of A, we mean the graph
with vertex set V (A) ≡ A, and with two such vertices connected by an edge in Ω if and
only if the corresponding sets have non-empty intersection. We shall adopt the convention
of denoting elements of A by upper case letters, A,B,C, . . ., and the corresponding vertices
of Ω by the corresponding lower case letters, a, b, c, . . .. We shall denote a path in Ω by
listing the vertices through which it passes.

10
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Given a loop, β ∈ L(
⋃
A), we shall say that a path a1a2 . . . an is a coding for β if we

can write β = α1∪α2∪· · ·∪αn, with αi ⊆ Ai∪Ai+1 for all i (subscripts mod n). We shall
frequently write β̄ for such a coding (even though it need not be uniquely determined).

By a p-cycle we mean a system A of connected sets such that Ω(A) is a p-gon (a
circuit of length p), which we typically denote by a1a2 . . . ap, so that A = {A1, . . . , Ap},
taking subscripts mod p.

Lemma 4.1 : Suppose A = {A1, · · · , Ap} is a p-cycle with p ≥ 4, and β ∈ L(
⋃
A) has

coding a1a2 . . . ap. Then β represents a non-zero element of H1(
⋃
A;A) for any ring A.

Proof : This follows from the following observation. Suppose C and D are connected
complexes, and x, y ∈ C ∩D lie in different components of C ∩D. If γ ⊆ C and δ ⊆ D
are paths each with endpoints x and y, then γ ∪ δ is non-trivial in H1(C ∪D;A).

We now apply this to C = A1 ∪ A2 ∪ A3 and D = A3 ∪ A4 ∪ · · · ∪ Ap ∪ A1. Then
C ∩D = A1 ⊔ A3. Let γ = α1 ∪ α2 and δ = α3 ∪ · · · ∪ αp where αi ⊆ Ai ∪ Ai+1. Thus,
β = γ ∪ δ. ♦

Now, fix a field, F, and recall the definition of “straightness” from Section 3.

Lemma 4.2 : Suppose that A = {A1, A2, A3, A4} is a 4-cycle in X , and that
⋃
A is

r-straight in X . Then, either ρ(A1, A3) ≤ 2r, or ρ(A2, A4) ≤ 2r.

Proof : Suppose not. Let Bi = N(Ai, r). Then B = {B1, B2, B3, B4} is a 4-cycle. Choose
any loop β ∈ L(

⋃
A) with coding sequence a1a2a3a4 in Ω(A) and hence b1b2b3b4 in Ω(B).

By straightness, β is trivial in H1(
⋃

B;F), contrary to Lemma 3.1. ♦

Lemma 3.3 : Suppose A is a system of connected sets. Suppose that I ≤ H1(
⋃
A;F)

is an F-subspace with the property that for A,B ∈ A, the image of H1(A ∪ B;F) in
H1(

⋃
A;F) lies in I. Then, there is a natural map j : H1(Ω;F) −→ H1(

⋃
A;F)/I such

that if β ∈ L(
⋃
A) with coding sequence β̄ then the homology class of β̄ maps to the

representative of the homology class of β. ♦

Proof : If π = a1 . . . an is a loop in Ω then choose β ∈ L(
⋃
A) with coding π, and set j(π)

to be the class of β. If β′ were another such path, then it is easily seen that the homology
class of β− β′ can be represented by

∑n
i=1

γi, where γi ∈ L(Ai ∪Ai+1), and thus lies in I.
This shows that j(π) depends only on the loop π.

Now, if π is homologically trivial, then it’s homotopically trivial, and so can be reduced
to the trivial loop by a series of reductions of the form aba → a, where aba is a subpath.
Now, shortcutting β by cutting away a loop in A ∪B, we similarly reduce β to the trivial
loop, and so β represents an element of I.

We now extend j F-linearly over H1(Ω;F). ♦

11
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Lemma 4.4 : Suppose F is a field. Suppose µ ∈ H1(
⋃
A;F) and that the restriction of

µ to A ∪ B is trivial for all A,B ∈ A. Then, there is a (unique) µ̄ ∈ H1(Ω;F) such that
β ∈ L(X) and β̄ is a coding for β, then µ̄(β̄) = µ(β).

Proof : Let I ≤ H1(
⋃

A;F) be the subspace mapped to 0 by µ under the Kronecker
pairing. Let j be as given by Lemma 3.3. Given ζ ∈ H1(Ω;F) set µ̄(ζ) = µ(j(ζ)). This
defines an element of H1(Ω;F). ♦

5. Planar separation by paths.

Any properly embedded arc in the plane, R2, separates it into two components. In
this section, we shall describe an analogous course separation property for uniform bi-
infinite arcs in planar 2-complexes. In the setting of riemannian geometry, a similar coarse
separation property can be found in [Sch] (see also [FarbS]).

We shall fix a field, F, and use the term prime subring for the ring of integers in the
prime subfield. This is Z if char(F) = 0 and Zp if char(F) = p.

Let (X, ρ) be a metric 2-complex. A uniform path is a map α : I −→ X , where
I is a subinterval of the real line, satisfying f(|t − u|) ≤ ρ(α(t), α(u)) ≤ |t − u|, where
f : [0,∞) −→ [0,∞) is a fixed function tending to infinity (the “function of uniformity”).
In this section, we won’t worry much about parametrisation, but keep track of the direction
of the path. We shall abuse notation by writing α for the image of α. Note that the notion
of a uniform path can be defined without explicit reference to the parametrisation by
saying that the diameter of any finite subarc is bounded above by some function of the
distance between its endpoints. A uniform bi-infinite path is necessarily proper.

Given x, y ∈ α, we write α[x, y] for the subarc α([t, u]), where x = α(t) and y = α(u).
Given a finite subarc, δ ⊆ α, we write α−(δ) = α((−∞, t]) and α+(δ) = α([u,∞)) where
δ = α([t, u]). We use the same notation, α±(x) if x = δ is just a point of α.

The following is a simple consequence of uniformity:

Lemma 5.1 : Suppose that α is a uniform bi-infinite path, x ∈ α and r ≥ 0. There
there is a finite subpath δ ⊆ α such that ρ(x, α−) ≥ r, ρ(x, α+) ≥ r, ρ(α−, α+) ≥ r and
δ ⊆ N(x, l), where l depends only on r and the functions of uniformity. ♦

The following is immediate from Lemma 4.3:

Lemma 5.2 : If X is uniformly acyclic, and α is a uniform arc, then N(α, r) is s-straight,
where s depends only on r and the functions of uniformity. ♦

Now, let’s suppose that (X, ρ) is a planar metric 2-complex, with winding number
ω with separation constant r0. Let’s fix a uniform bi-infinite arc α. Let r ≥ r0, and
set Y = N(α, r). Note that Y is topologically two-ended. Let C = C(Y ) be the set of
components of Y C .

Suppose δ ⊆ α. Write α± = α±(δ). Set K = K(δ) = N(δ, r) and set A± = A±(δ) =
N(α±, r). We shall want to assume that ρ(A+, A−) > 0 is sufficiently large depending on
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Lemmas 5.2 and 4.2 as we shall explain in due course.

We note that the following two observations are both simple consequences of the
uniformity of α.

Lemma 5.3 : For all t ≥ 0 there is some u ≥ 0 such that if x, y ∈ A± with ρ(δ, x) ≥ u
and ρ(δ, y) ≥ u, then x and y are connected by a path ǫ ⊆ A± with ρ(δ, ǫ) ≥ t. ♦

Lemma 5.4 : For all t ≥ 0 there is some u ≥ 0 such that if γ is a path connecting A+

to A− in N(Y, t), then ρ(x, γ) ≤ u for all x ∈ δ. ♦

In both cases, u depends only on t and the functions of uniformity.

Now, let C0 = {C ∈ C | C ∩ A− 6= ∅ and C ∩ A+ 6= ∅}. Let B = C ∪ {A−, A+} and
let B0 = C0 ∪ {A−, A+}. Let Ω = Ω(B) and let Ω0 be the subgraph Ω(B) (as defined in
Section 4). We recall the convention of using upper and lower case letters for corresponding
elements of B and Ω.

Now, Ω0 is the complete bipartite graph on the sets {a−, a+} and {c | C ∈ C0}. The
remainder of Ω consists of a number (possibly 0) of free edges attached to either a− or a+,
and a (finite) number of isolated vertices.

Now, by Lemma 5.2, Y is s-straight for some fixed s ≥ 0. Moreover, by Lemma 3.2,
if E ⊆ C, then Y ∪

⋃
E is s-straight.

We shall now assume that ρ(A−, A+) > 2s.

Lemma 5.5 : If C ∈ C0, then ρ(K,C) ≤ 2s.

Proof : Suppose ρ(K,C) > 2s. Then, {K,A−, C, A+} is a 4-cycle in X . Moreover,
K ∪ A− ∪ C ∪ A+ = Y ∪ C is s-straight. Since ρ(A−, A+) > 2s, this contradicts Lemma
4.2. ♦

By the local finiteness of X , it follows that C0 is finite. Hence, Ω0 is finite.

Now, let µ be the cocycle on
⋃
B defined by [γ 7→ ω(δ, γ)].

Lemma 5.6 : If B,C ∈ B and γ ∈ L(B ∪ C), then µ(γ) = 0.

Proof : We can assume that B ∩ C 6= ∅. Thus, without loss of generality, B,C 6= A+,
and so (B ∪C)∧ (δ∪α+). But δ ∪α+ is connected and unbounded. Thus, by Lemma 3.6,
µ(γ) = ω(δ, γ) = 0 for all γ ⊆ B ∪ C. ♦

Thus, by Lemma 4.4, we get an element µ̄ ∈ H1(Ω;F), such that if β ∈ L(
⋃
B) with

coding β̄, then µ(β) = µ̄(β̄).

Now suppose β ∈ L(
⋃
B) with µ(β) 6= 0. Let β̄ be a coding for β. Now, from the

form of Ω described above, we see that there must be subpaths of β̄ of the form a−c1a
+

and a+c2a
−, where C1, C2 ∈ C0 are distinct, and with µ̄(a−c1a

+c2) 6= 0. It follows that
β contains subarcs β1 ⊆ C1 connecting A− to A+ and β2 ⊆ C2 connecting A+ to A−.
Let ǫ± be a path in A± connecting the corresponding endpoints of β1 and β2, and set
β′ = ǫ−∪β1∪ ǫ

+∪β2 ∈ L(
⋃
B). Now, β′ has coding sequence a−c1a

+c2, and so µ(β′) 6= 0.

13
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Note that, using Lemma 3.5, we can arrange that if ρ(δ, β) ≥ u, then ρ(δ, β′) ≥ t, where u
depends only on t.

Now, let (βn)n be a big sequence in X . We can assume that βn ∈ L(
⋃
B) for all n,

and so we get a sequence β′
n constructed as above. Clearly, (β′

n) is also big. Moreover,
since C0 is finite, passing to a subsequence, we can assume that β′

n has coding a−c1a
+c2

for fixed C1, C2 ∈ C0 with C1 6= C2. It follows that Y ∪ C1 ∪ C2 ⊇ A− ∪ C1 ∪ A
+ ∪ C2 is

big.
Now, Y is s-straight, and so, by Lemma 3.3, Y ∪ C1 ∪ C2 is s-straight. Thus, by

Lemma 3.7, we have X = N(Y ∪ C1 ∪ C2, r0 + s). Now, if C ∈ C \ {C1, C2}, the nearest
point in Y ∪ C1 ∪ C2 to any point in C must lie in Y . It follows that C ⊆ N(Y, r0 + s).

Suppose that C1 ⊆ N(Y, t) for some t ≥ 0. Lemma 5.4 tells us that any path from
A− to A+ in C1 must lie a bounded distance from δ. But this contradicts the existence of
our big sequence (β′

n)n. We conclude that C1 \ N(Y, t) 6= ∅ for all t ≥ 0. The same goes
for C2.

In summary, we have shown:

Proposition 5.7 : Suppose (X, ρ) is a planar metric 2-complex, α ⊆ X is a uniform
bi-infinite path, and r ≥ r0. Let Y = N(α, r). There is a constant k ≥ r, depending
only on r and the functions of uniformity, and distinct elements C1, C2 ∈ C(Y ) such that
C1 \N(α, t) 6= ∅ and C2 \N(α, t) 6= ∅ for all t ≥ 0 and C ⊆ N(α, k) for all C ∈ C\{C1, C2}.

♦

In particular, C1 and C2 are canonically determined by Y . We shall refer to them as
the deep complements of Y . The remaining elements of C are shallow .

Now, by Lemma 5.4, we may as well choose k so that any path from A− to A+

must intersect N(x, k) for any x ∈ δ. Suppose that β ∈ L(
⋃
B) has coding β̄, and that

ρ(δ, β) > k. Now if β̄ contains a subpath a−ca+ or a+ca−, then if follows that c ∈ {c1, c2}.
Thus, by the description of Ω given earlier, we see that β̄ is homotopic in Ω to some integral
multiple, deg(β̄), of a−c1a

+c2. In fact, the quantity deg(β̄) can be read off combinatorially
from β as follows.

Let d±i be the number of subpaths, γ, of β with the property that γ ⊆ C1 and with γ
meeting A∓ precisely in its initial point, and meeting A± precisely in its final point. Then
it’s easy to check that deg(β̄) = d+1 (β) − d−1 (β) = d−2 (β) − d+2 (β) ∈ Z. We denote this
quantity by deg(β) = degα,δ(β).

Now, writing ω0(α, δ) = µ̄(a−c1a
+c2), we see that if β ∈ L(X) with ρ(δ, β) ≥ k, then

ω(δ, β) = µ(β) = deg(β)ω0(α, δ). In other words, ω(δ, β) can be read off combinatorially.
We next show that ω0(α, δ) is, in fact, independent of δ. Suppose that δ′ is another

such subarc of α. Since δ and δ′ are contained in a common subarc, we may as well
suppose that δ ⊆ δ′. Thus, A±(δ′) ⊆ A±(δ). Choose β ∈ L(X) with ρ(δ′, β) > k, and with
degα,δ′(β) = 1. Since β ∩ Y ⊆ A−(δ′) ∪ A+(δ′), we see that degα,δ(β) = degα,δ′(β) = 1.
Thus, ω0(α, δ) = ω(δ, β) = ω(δ′, β) = ω0(α, δ

′). We can therefore write ω0(α, δ) = ω0(α).
In summary, we see that ω0(α) depends only on the direction of the path α, and on

an ordering on the pair of deep complements. We shall refer to the latter as an orientation
on α. Given such an orientation, we shall write CR = C1 and CL = C2 for the right and
left deep components respectively. Note that we can find a big sequence, (βn)n such that
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ω(δ, βn) = ω0(α) for all n.
Next, we consider what happens if we choose a different uniform path α′ with r′ and

k′ corresponding constants. Choose a sufficiently large finite subarc, δ′ ⊆ α′. Let (βn)n be
a big sequence with ω(δ, βn) = ω0(α) for all n. Now, for all sufficiently large n, we have
ω(δ′, βn) = ω(δ, βn) and that ω(δ′, βn) is an integral multiple of ω0(α

′). In other words,
ω0(α) is an integral multiple of ω0(α

′). Conversely, swapping the roles of α and α′, we
see that ω0(α

′) is an integral multiple of ω0(α). We thus conclude that ω0(α
′) = λω0(α)

where λ is a unit in the prime subring of F, i.e. λ = ±1 if the characteristic of F is 0, and
λ is a non-zero element of the prime subfield in general.

In summary, we have shown:

Proposition 5.8 : Suppose (X, ρ) is a planar metric 2-complex over F. There, there
is a non-zero element, ω0 ∈ F, with the following property. Suppose α ⊆ X is a directed
oriented uniform bi-infinite path. Then, there is some λ ∈ F, which is a unit in the prime
subring, satisfying the following. Suppose that r ≥ r0, then there is a constant k ≥ r,
depending only on r and the function of uniformity of α, such that if δ ⊆ α is a sufficiently
large finite subarc, and β ∈ L(X) with ρ(δ, β) ≥ k, then ω(δ, β) = deg(β)λω0, where
deg(β) ∈ Z is the combinatorial degree of β as defined earlier. ♦

Of course, we haven’t yet said anything about the existence of uniform bi-infinite
paths, so the above result may be vacuous for all we know. If some bi-infinite uniform
path exists, then the constant, ω0, is determined up to a unit in the prime subring.

Definition : A metric 2-complex, (X, ρ), is taut , if there is some function f : [0,∞) −→
[0,∞) tending to infinity, and some r ≥ 0, such that every point of X lies within a distance
r of some f -uniform bi-infinite path.

Note that by incorporating r into f , we may as well assume that every point of X lies
on an f -uniform bi-infinite path.

Now, suppose that (X, ρ) is a taut planar metric 2-complex. Given x ∈ X , we can
find a uniform α containing x. By Lemma 5.3, we can find a finite subpath δ ⊆ α, such
that ρ(α−(δ), α+(δ)) is sufficiently large for the above constructions to work, and with
δ ⊆ N(x, t), where t depends only on the parameters of planarity and tautness. Putting
this together with Proposition 5.8, we conclude:

Proposition 5.9 : Suppose (X, ρ) is a taut planar 2-complex. Then there is some l ≥ r0,
depending only on the parameters of planarity and tautness, and some non-zero ω0 ∈ F,
such that if x ∈ X and γ ∈ L(X) with ρ(x, γ) ≥ l, then ω(x, γ) is an integral multiple of
ω0. ♦

Thus, by enlarging r0 to l, we may as well assume that the image of the winding
number is precisely Zω0. Dividing throughout by ω0, we can also assume that ω0 = 1.
Thus, we will not loose any generality in assuming that either F = Q, and that the winding
number takes precisely integral values, or that F = Zp for some prime p. In the latter case,
we shall show in Section 7, how one can “lift” the winding number to Z. Thus, ultimately,
we will be able to assume that all winding numbers take values in Z.
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The following definition will be useful in later sections to avoid having to deal with
shallow components.

Suppose α is a uniform bi-infinite path, and r ≥ r0. Let k = k(r) ≥ r be the constant
described by Proposition 5.7. Let Y = N(α, r) and let Λ = Λ(α, r) = Y ∪

⋃
(C(Y ) \

{CL, CR}). Thus, N(α, r) ⊆ Λ ⊆ N(α, k(r)). Clearly, Λ has precisely two ends.

Suppose δ ⊆ α is a finite subarc. Now N(α+(δ), k(r)) contains an end of Λ. Let Λ+

be the unique unbounded connected component of Λ∩N(α+(δ), k(r)). We similarly define
Λ−. Let Λ0 be the closure of Λ \ (Λ+ ∪ Λ−). Thus, Λ0 is compact.

Now, applying Lemma 5.3, given any x ∈ α, and t ≥ 0, we can choose δ appropriately
so that ρ(x,Λ−) ≥ t, ρ(x,Λ+) ≥ t, ρ(Λ−,Λ+) ≥ t and Λ0 ⊆ N(x, u), where u depends on
r, t, and the parameters of uniformity.

Thus, Λ± and Λ0 play similar roles to A± and K in the previous discussion. Moreover,
we have that E = {Λ−, CL,Λ

+, CR} is a 4-cycle in X , and that X = Λ0 ∪
⋃

E . However,
Λ0 need not be connected.

6. Consequences for the action of Γ on winding numbers.

Let’s begin with a general observation:

Lemma 6.1 : Suppose Γ is infinite and acts properly discontinuously cocompactly on a
metric 2-complex, (X, ρ). The (X, ρ) contains a bi-infinite geodesic.

Proof : This is a standard fact. Choose a sequence of longer and longer finite geodesic
segments, translate their centres to a fixed vertex, and take a diagonal subsequence. ♦

In particular, we see that (X, ρ) is taut. Now suppose that (X, ρ) is planar over the
field F. Let U(F) be the multiplicative group of units in the prime subring (i.e. the ring
of integers in the prime subfield). As described towards the end of last section, without
loss of generality, we may suppose:

(W5) The image of the winding number is precisely the prime subring of F.

It follows that for all x ∈ X , there is an arbitrarily large loop β with ω(x, β) = 1.

Now, given x ∈ X , choose a directed oriented uniform bi-infinite path, α through
x. Let Y = N(α, r0), and let CL(α) and CR(α) be the left and right deep complements.
We can suppose that we have chosen r0 so that if β ∈ L(X) with x ∧ β, then degα(β) is
defined (using a smaller neighbourhood of α). Thus, ω(x, β) = λ degα(β), where λ ∈ U(F)
depends only on α.

Now, suppose g ∈ Γ. We choose the orientation on gα by setting CL(gα) = gCL(α)
and CR(gα) = gCR(α). Now, since degα(β) is defined combinatorially, we see that it must
be invariant under g, i.e. deggα(gβ) = degα(β). It follows that there is some element
λx(g) ∈ U(F) such that for all β with x ∧ β, ω(gx, gβ) = λx(g)ω(x, β). Clearly, λx does
not depend on α.
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Suppose y ∈ X . Let γ be a path connecting x to y, and choose β with γ ∧ β and
ω(x, β) = ω(y, β) = ω(γ, β) = 1. Now, gγ ∧ gβ, so ω(gx, gβ) = ω(gy, gβ) = ω(gγ, gβ).
Thus, λx(g) = λy(g). We can therefore set λ(g) = λx(g). This gives a map λ : Γ −→ U(F),
so that if g ∈ Γ, x ∈ X and β ∈ L(X) with x ∧ β, then ω(gx, gβ) = λ(g)ω(x, β). Now, it’s
clear that this λ must be a homomorphism. In summary, we have shown:

Proposition 6.2 : Suppose that Γ acts properly discontinuously cocompactly on a planar
2-complex (X, ρ). Then, assuming that we have chosen the separation constant sufficiently
large, there is a homomorphism λ : Γ −→ U(F) such that if g ∈ Γ, x ∈ X and β ∈ L(X)
with x ∧ β, then ω(gx, gβ) = λ(g)ω(x, β). ♦

In particular, we see that the winding number automatically satisfies (W4).
In the case where F has characteristic 0 so that U(F) = {−1, 1}, we derive the

following conclusion:

Proposition 6.3 : Suppose that Γ is a group, and F is a field of characteristic 0. Suppose
that Γ is FP2 over F, and that E ⊆ H2(Γ,FΓ) is a 1-dimensional Γ-invariant subspace.
Then, the subgroup of Γ which fixes E pointwise has index at most 2 in Γ.

Proof : By Proposition 2.2, Γ admits a free cocompact action on a planar 2-complex.
By Lemma 6.1, this complex is taut. Let ω be the winding number arising in this way.
The constructions of Section 5 tell us that we can assume property (W5) and that one can
define combinatorial degrees of loops. Thus, by Proposition 6.2, we get a homomorphism
λ : Γ −→ {−1, 1}, giving property (W4).

On the other hand, we get a character θ : Γ −→ F×, arising out of the action of Γ on
E, giving us property (W4) directly. Thus, θ = λ, and so the subgroup fixing E, namely
ker θ = kerλ, has index at most 2. ♦

In this case, we shall refer to the subgroup fixing E pointwise as the orientation
preserving subgroup of Γ. At the moment, it is still conceivable that this may depend
on the choice of subspace E. A different subspace might give rise to a different winding
number. Ultimately however we shall see that, in fact, H2(Γ;FΓ) = E.

7. Lifting winding numbers.

We saw in Section 5 how to reduce winding numbers to the prime subring, A, of the
field, F. If char(F) = 0, this is Z, and we are happy. If char(F) = p, this gives us Zp, and
in order to make the arguments of later sections work, we shall need to lift it to Z. This
will require some refinement of the geometric constructions of Section 5. We can allow F

to be any field, though the construction is a bit pointless if its characteristic is 0. Apart
from the main result, the constructions of this section are not required elsewhere in this
paper.

Let (X, ρ) be a planar metric 2-complex with separation constant r0. We shall con-
struct our integral winding numbers by identifying a kind of “circular structure” at infinity.
The idea can be summarised more formally as follows.
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Let D be the set of compact connected subsets of X , viewed as a directed set under
inclusion. We fix a constant, k, to be chosen appropriately. Suppose K ∈ D, and Q ⊇ K
is any complex. Let IQ(K) be the image of H1(N(Q, k)C ;Z) in H1(K

C ;Z). Let I(K) =⊕
{IQ(K) | Q ⊇ K is unbounded}. In other words, I(K) may be defined as the subgroup

of H1(K
C ;Z) generated by those loops, β, for which there is some ray, γ, connecting K to

infinity, with ρ(β,K ∪ γ) ≥ k. Let J(K) = H1(K
C ;Z)/I(K).

Note that if K ⊆ L ∈ D, then the natural map of H1(L
C ;Z) into H1(K

C ;Z) sends
I(L) into I(K), and so we get an induced map J(L) −→ J(K). We thus get an inverse
limit system of abelian groups, (J(K))K∈D, and we set J to be the inverse limit.

Now, using Lemma 2.6, it’s easy to see that if x ∈ K ∈ D, then the map ωx = ω(x,−)
vanishes on I(K), and so induces a homomorphism of J(K) to the additive group, A.
This map respects the maps J(L) −→ J(K), so we get a homomorphism ωx : J −→ A.
Moreover, there is an element ζ of J defined (up to sign if char(F) = 2) by taking a big
sequence, (βn)n∈N in X with ω(x, βn) = 1 for all n. Now the arguments of Section 5 show
fairly easily that this is well-defined: if K ∈ D, then βm − βn ∈ I(K) for all sufficiently
large m,n. Moreover we see that this element generates J , and that ωx maps ζ to 1 in
A. In summary, this shows that ωx maps J surjectively to A. Of course, this gives us
nothing essentially new. The aim of this section will be to use the combinatorial notion of
degree defined in Section 5, to lift this to a surjective map of J to Z, thus showing that
J is infinite cyclic. Furthermore, observing that the constructions are uniform (in that
the various constants involved depend only on the parameters of X) this gives rise to a
rational integer valued winding number satisfying properties (W1), (W2) and (W3).

To this end, it will help if we assume that X admits a cocompact group action. From
this it follows immediately that every point of X is a bounded distance from a bi-infinite
geodesic. Moreover, given any r ≥ r0, we can find some l0(r) ≥ r, so that if x ∈ X , there
is some β ∈ L(N(x, l0(r))) with ρ(x, β) ≥ r and ω(x, β) = 1. (Our arguments work more
generally, but it’s not worth introducing unnecessary complications here.)

We begin by elaborating on the combinatorial notion of degree defined in Section 5.
We shall simplify the discussion by confining our attention to geodesics. Let α be a bi-
infinite geodesic, and fix some point, x0 ∈ α. Let Y (r) = N(α, r) and let CL(r) and CR(r)
be the left and right deep complements. Given r ≥ 0, let δ(r) be the subarc α∩N(x0, 2r).
Let α±(r) = α±(δ(r)) and set A±(r) = N(α±(r), r). There is some l1(r) such that every
shallow complement of Y (r) lies in N(α, l1(r)). We can assume that l1 is an increasing
function of r. Given β ∈ L(X) with ρ(x, β) ≥ l1(r), we set degα,r = d+R(β) − d−R(β) =

d−L (β)− d+L(β), where d
±
L is the number of subpaths in β \ (A+(r)∪A−(r)) which connect

A∓(r) to A±(r) and which lie in CL, and where d±L is defined similarly. Note that this
definition also makes sense for any path with endpoints in A+(r) ∪A−(r).

Now suppose s ≥ r. We see that CL(s) ⊆ CL(r) and CR(s) ⊆ CR(r). Moreover,
ρ(CL(s), Y (r) ∪ CR(r)) ≥ s − r, and similarly swapping r and s. Suppose γ is a path in
CR(r) with ∂γ = L(r) ∩ γ, ρ(x, γ) ≥ l1(s) and with initial endpoint in A−(r) and final
endpoint in A+(r). Now, γ can only cross between A−(s) and A+(s) in CR(s). Clearly
there is precisely one more forward crossing than backward crossing, i.e. degα,s(γ) = 1.

It now follows that if β ∈ L(N(x0, l1(s))
C), then degα,r(β) = degα,s(β). We thus get a

fairly robust notion of degree which we shall denote by degα(β). Of course, we can’t use
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it directly as a definition of winding number, since, a-priori, it may depend on α. Note
that we can assume that we have chosen r0 large enough so that ω(x0, β) equals degα(β)
modulo char(F).

The key step in using this notion of degree will be a coarse analogue of the following
elementary fact of planar topology.

Lemma 7.1 : Let β be a (piecewise differentiable) loop in the plane, R2, with non-zero
winding number about the origin 0 = (0, 0) /∈ image(β). Then, there is a loop, γ, with
winding number 1 about 0, with image γ ⊆ imageβ.

Proof : Consider the boundary of the component of R2 \ image(β) containing 0. ♦

We aim to prove:

Lemma 7.2 : There is a constant, l5 ≥ r0 (depending only on the parameters of X) such
that if α is a bi-infinite geodesic in X , x0 ∈ α, and β ∈ L(N(x0, 2l5)

C) with degα(β) 6= 0,
then there is a loop γ ⊆ N(β, l5) with degα(γ) = 1.

Let’s fix a bi-infinite geodesic α, and a point x0 ∈ α. Let A± = A±(2r0), Y = Y (2r0),
CL = CL(2r0) and CR(2r0) etc. By an L-path, we mean a path β ⊆ Y ∪CL with endpoints
in α, so that β∩Y consists of two geodesic segments each of length 2r0, and with β∩CL a
non-empty subpath. Thus, ∂β = β ∩α. We similarly define an R-path where β ⊆ Y ∪CR.
We say that a path is an LR-path if it is either an L-path or an R-path.

Given a sequence, β1, . . . , βn of LR-paths, we define σ(β1, . . . , βn) to be the loop
β1∪ δ1 ∪β2∪ δ2 ∪· · ·∪βn∪ δn, where δi is the subpath of α connecting the final point of βi
to the initial point of βi+1. We refer to a loop arising in this way as a σ-loop. Now, each
shallow complement of Y lies inside N(α, l2) where l2 = l1(2r0). From this, it follows easily
that if β ∈ L(X) with ρ(x0, β) ≥ l2, then there is some σ-loop, σ, lying in N(β, l2) with
degα(β) = degα(σ). To see how to obtain σ, consider a component, δ, of β with the union
of Y and all the shallow complements. Thus, δ is a subarc, with endpoints, x, y ∈ ∂Y . We
replace this with an arc, δ′, which goes directly from x to α, runs along a segment of α,
and then returns to y. The arcs connecting x and y to α we can take to be geodesics, each
of length 2r0. Thus, δ′ ⊆ N(δ, l0). We replace each such subarc, δ, by an arc, δ′, in this
way. Note that degα(σ) is the number of positive R-paths minus the number of negative
R-paths making up σ. By a “positive” R-path we mean one connecting α− to α+, whereas
a “negative” R-path connects α+ to α−. (Of course an R-path might be neither.)

Given x, y ∈ α, we write x < y if x = α(t) and y = α(u) with t < u. If x < y < z,
we say that y interlocks {x, z}. If x < y < z < w, we say that {x, z} interlocks {y, w}.
If γ is an LR-path and x ∈ α, we say that x interlocks γ if it interlocks ∂γ. If γ and δ
are LR-paths, we say that γ interlocks δ if ∂γ interlocks ∂δ, and γ and δ are either both
L-paths or both R-paths.

Now let l3 = l0(l2 + 2r0). Thus, if x ∈ α, then (by the definition of the function l0,
some loop, β with ω(x0, β) 6= 0, with β ⊆ N(x, l3) ∩N(x, l2 + 2r0)

C . From this it follows
that there is some L-path, δ, interlocking x, with δ ⊆ N(x, l2)

C ∩N(x, l3), and a similar
R-path, ǫ. Note in particular that ρ(x0, ∂δ) ≥ l2 and ρ(x0, ∂ǫ) ≥ l2.
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We shall need the following observation:

Lemma 7.3 : Suppose β is an L-path and that γ is an R-path with ρ(∂β, ∂γ) ≥ 5r0.
Then ρ(β, γ) ≥ r0.

Proof : Let C0
L = CL(r0), C

0
R = CR(r0) and Y

0 = Y (r0). Then, ρ(CL, Y
0∪C0

R) ≥ r0 and
ρ(CL, Y

0 ∪ C0
R) ≥ r0. Now, ρ(β ∩ Y, γ ∩ Y ) ≥ 5r0 − 2(2r0) = r0. Since β ⊆ Y 0 ∪ C0

R and
γ ⊆ Y 0∪C0

R, we have ρ(β∩CL, γ) ≥ r0 and ρ(γ∩CR, β) ≥ r0. This covers all possibilities,
and so ρ(β, γ) ≥ r0 as claimed. ♦

Now let l4 = l3 + 5r0.

Lemma 7.4 : Suppose β and γ are interlocking LR-paths. Then ρ(β, γ) ≤ l4.

Proof : Suppose that β and γ are both L-paths and that ρ(β, γ) > l4. Let ∂β = {x, z}
and ∂γ = {y, w}. We can assume that x < y < z < w. Note, in particular, that
ρ(y, w) > ρ(z, w) > l4. By the observation before Lemma 7.3, we can find an R-path,
δ, with ∂δ = {a, b} with a < y < b, and l2 ≤ ρ(y, a) ≤ l3 and l2 ≤ ρ(y, b) ≤ l3. Now,
ρ(b, w) ≥ ρ(y, w)− ρ(y, b) ≥ l4 − l3 = 5r0. Thus, ρ(w, ∂δ) ≥ 5r0, and so ρ(∂γ, ∂δ) ≥ 5r0.
By Lemma 7.3, ρ(γ, δ) ≥ r0. Also ρ(β ∪ δ, α+(w)) ≥ r0 (where α+(w) is the positive ray
of α based at w).

Now let σ = σ(β, δ). We see that ρ(σ, γ ∪ α+(w)) ≥ r0. But, γ ∪ α+(w) is a path
connecting y to infinity. Therefore, by Lemma 3.6, ω(y, σ) = 0. However, degα(σ) =
1, where degα here represents the combinatorial degree about y. By Proposition 5.8,
ω(y, σ) = degα(σ). We therefore derive the contradiction that 0 = 1. ♦

Proof of Lemma 7.2 : Let l5 = l2 + l4. Suppose that x0 ∈ X and β ∈ L(N(x0, 2l5)
C)

with degα(β) 6= 0. As we have observed, there is a σ-loop, σ = σ(β1, . . . , βn) = β1 ∪ δ1 ∪
· · · ∪ βn ∪ δn in N(β, l2) with degα(σ) = degα(β). We now use Lemma 7.4 to shortcut σ
and obtain the desired loop, γ. The argument is essentially combinatorial, but it is easier
to express it geometrically as follows.

Let α′ = R×{0} ⊆ R2. Let C′
L = R× [0,∞) and C′

R = R×(−∞, 0]. We parametrise
α by arc-length so that α(0) = x0. Given an L-path, ǫ, let ǫ′ be the semicircle in C′

L with
endpoints (t, 0) and (u, 0), where ∂ǫ = {α(t), α(u)}. We similarly define ǫ′ for an R-path ǫ.
Now, let σ′ be the loop β′

1 ∪ δ
′
1 ∪ · · · ∪β′

n ∪ δ′n, where δ
′
i ⊆ α′ is the segment connecting the

final point of β′
i with the initial point of β′

i+1. Clearly, the winding number of σ′ about the
origin equals degα(σ), which is non-zero. Thus, by Lemma 7.1, there is a loop, γ′, with
image(γ′) ⊆ image(σ′), and with winding number 1 about the origin.

We now use this to construct the loop γ by following the corresponding segments
of βi and δi. The only complication is that γ′ may cross between different semicircles,
β′
i and β′

j . However in this case, the corresponding paths βi and βj interlock. Thus,
Lemma 7.4 allows us to cross from βi to βj along a path of length at most l4. Thus,
γ ⊆ N(σ, l4) ⊆ N(β, l4 + l2) = N(β, l5). Since ρ(x0, γ) ≥ 2l5 − l5 = l5 > l2, it follows that
degα(γ) is defined and equal to 1. ♦
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Now let k = l5 + r0.

Corollary 7.5 : Suppose that β ∈ L(X), with ρ(x, β) ≥ 2k. Suppose that there is a
path ǫ connecting x0 to infinity with ρ(ǫ, β) ≥ k. Then degα(β) = 0.

Proof : Suppose not. Let γ ⊆ N(x, l5) be the loop given by Lemma 7.2. Thus ω(x0, γ) =
degα(γ) = 1. Also ρ(ǫ, γ) ≥ k − l5 = r0. Thus, by Lemma 3.6, ω(x0, γ) = 0. Therefore
0 = 1. ♦

Lemma 7.6 : The map degα extends to a homomorphism, degα : H1(N(x0, l2)
C ;Z) −→

Z.

Proof : Clearly, if β ∈ L(N(x0, l2)
C) has diameter at most r0, then degα(β) = 0. We

need also to verify that if γ1, γ2, γ3 ∈ L(N(x0, l2)
C ;Z) form a theta curve then degα(γ1)+

degα(γ2) + degα(γ3) = 0. We can write γi = βi ∪ −βi+1 where β1, β2, β3 are paths
with the same endpoints. By attaching paths to these endpoint if necessary, we can
assume that both endpoints lie in α. This means that degα(βi) is defined, and that
degα(γi) = degα(βi)− degα(βi+1). ♦

Let D(x0) = {K ∈ D | N(x0, l2) ⊆ K}. Note that D(x0) is cofinal in D. Also, if
K ∈ D, then, by Lemma 7.6, we have a homomorphism degα : H1(K

C ;Z) −→ Z. By
Lemma 7.5, this is identically zero on a generating set of I(K). We thus have:

Lemma 7.7 : If K ∈ D(x0), then the map degα : H1(K
C ;Z) −→ Z is identically zero

on I(K). ♦

We thus get a homomorphism, also denoted degα, from J(K) to Z for all such K.
Moreover, degα clearly commutes with all maps in the direct limit system, so we get an
induced homomorphism degα : J −→ Z.

Now, let (βn)n be a big sequence in X , with degα(βn) = 1 for all n. Suppose that
K ∈ D(x0). There is some r ≥ 0 such that K ⊆ N(x0, r) ⊆ N(α, r). Now, the argument
of Lemma 4.3 shows that for all sufficiently large m and n, βm − βn ∈ I(K). Thus, the
sequence defines an element, ζK ∈ J(K). Since D(x0) is cofinal, we thus get an element,
ζ ∈ J . By definition, degα(ζ) = 1. In particular, the map degα : J −→ Z is surjective.

Again, the argument of Lemma 4.3 shows that there is some L ∈ D(x0), containing
K, such that if β ∈ L(LC), then β− (degα(β))βn ∈ I(K), for all sufficiently large n. Thus
β is represented by (degα(β))ζK in J(K). In other words, the image of J(L) in J(K) is
generated by ζK . This shows that J is generated by ζ.

In particular, we have shown:

Proposition 7.8 : The group J is infinite cyclic. ♦

We are assuming that X admits a cocompact group action, so that every point lies a
bounded distance from a bi-infinite geodesics, and all the above constructions are uniform.
We see that there are constants, l7 > l6 > l2, such that if x ∈ X and L ∈ D with
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L ⊇ N(x0, l7), then the image of J(L) in both J(N(x, l6)) and J(N(x, l6 + 1)) is infinite
cyclic, with the generator naturally identified with ζ.

Now suppose that β ∈ L(N(x, l7)
C). Then, β is represented by some multiple, ω̃(x, β),

of ζ. We check that this satisfies properties (W1)–(W3). Now, (W1) and (W3) are im-
mediate. To see (W2), suppose that x, y ∈ X are adjacent, and suppose ρ({x, y}, β) ≥ l7.
Let L = N({x, y}, l7). Now, the image of J(L) in J(N({x, y}, l6)) is infinite cyclic, so β
is represented by some multiple of ζ in J(N({x, y}, l6)). This multiple must be equal to
both ω̃(x, β) and ω̃(y, β). ♦

Note that ω(x, β) equals ω̃(x, β) modulo char(F). If char(F) = 0, we have achieved
nothing. If char(F) = p, then, at the cost of increasing the separation constant (from r0
to l7) we have lifted the winding number from Zp to Z.

8. Orders and cyclic orders.

Let (T,≤) be a totally ordered set. Suppose that g : T −→ T is an order automor-
phism. We say that g is positive if gx > x for all x ∈ T , and negative if gx < x for all
x ∈ T . We say that g is archimedean if, for all x, y, z ∈ T , {n ∈ Z | x < gnz < y} is finite.
Note that an archimedean map is either positive or negative. Moreover, g is archimedean
if and only if gn is archimedean for all non-zero n ∈ Z.

Suppose a group, Γ, acts by automorphism on T . We say that the action is archimedean
if every non-identity element of Γ is archimedean. Clearly, Γ acts freely on T . In fact, Γ
must be abelian, by the result of Hölder, Frege and Huntington (see for example, [ADN]
for a discussion).

Now, if T is countable, we can embed T canonically in the real line, or more precisely
in a totally ordered set which is order isomorphic to the real line. (For example, first
embed T as T × {0} in T × Q with the antilexicographic order. This a countable dense
order, so we can complete it to give the reals.) Any order automorphism of T extends
canonically to an orientation preserving homeomorphism of R. Thus a group action on T
extends to a group action on R. If the action on T is archimedean, then so is the action on
R. Conversely, any orientation preserving group acting freely on R is archimedean, hence
abelian (in fact a subgroup of the additive reals).

Now let Θ be a set. By a cyclic order on Θ we mean a function from the set of distinct
ordered triples, {(x, y, z) ∈ Θ3 | x 6= y 6= z 6= x}, of Θ, to {−1, 1}, satisfying σ(x, y, z) =
σ(y, z, x) = −σ(y, x, z) for all distinct x, y, z ∈ Θ, and if σ(x, y, z) = σ(x, z, w) = 1, then
σ(x, y, w) = 1. Clearly the circle, S1, admits such an order. One can show inductively
that any finite subset of Θ can be embedded in the circle, so that the standard cyclic order
restricts to the given one. In fact, in a manner analogous to that described for total orders
(i.e. first embedding every point in a copy of the rationals), we can canonically embed a
countable cyclically ordered set in (a set cyclically order isomorphic to) S1. Thus, every
automorphism of Θ extends canonically to a homeomorphism of S1.

Suppose the infinite cyclic group, Z, has an archimedean action on the totally ordered
set, T . Given x ∈ T and n ∈ Z, we shall write x + n for gnx, where g is the positive
generator of the action. Let Θ be the quotient, and π : T −→ Θ be the quotient map.
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Now, Θ admits a cyclic order. One way to define this is to say that σ(x, y, z) = 1 if
x̃ < ỹ < z̃ < x̃ + 1, for suitable lifts of x̃, ỹ, z̃ of x, y, z to T . Alternatively, embed
T canonically in R, extend the action of Z to R, and take the induced cyclic order on
Θ = T/Z from S1 = R/Z.

Conversely, if (Θ, σ) is a cyclically ordered set, we can express Θ as a quotient T/Z,
where T is a totally ordered set with an archimedean action of Z. (For example, embed Θ
in S1, and lift to R.) Any automorphism, g, of Θ lifts to an automorphism, g̃, of T . Now,
g̃ commutes with the action of Z. Moreover, if g̃′ is another lift, then g̃′ ◦ g̃−1 has the form
[x 7→ x+ n] for some n ∈ Z.

In this way, we can define the rotation number , rot(g) ∈ R/Z, of an automorphism,
g, of Θ in the usual dynamical fashion (as for maps of the circle). In the case of interest
here, namely where g has finite order, then rot(g) ∈ Q/Z. This can be described explicitly
as follows. Let g̃ be a lift of g to T . If gn = 1, then g̃n = [x 7→ x+m] for some m ∈ Z, and
we set rot(g) = m/n. Note that for any p ∈ Z, rot(gp) = p rot(g). If Γ acts on Θ, we get a
map rot : Γ −→ R/Z. In general this need not be a homomorphism. However, restricted
to any cyclic subgroup, it is. Moreover, it is conjugacy invariant: rot(hgh−1) = rot(g) for
any h ∈ Γ.

Note that if Γ is a torsion group acting effectively on Θ, (i.e. every element has finite
order and only the identity acts trivially), then the induced action on the circle also has
this property, and so the action must be free. Note also that any finite group acting freely
on the circle is cyclic.

We note the following well known result:

Proposition 8.1 : Any group acting freely on the circle is abelian.

Proof : One way to see this is to represent the group as a quotient, G/Z, of a group G
which acts freely on the real line by an infinite cyclic group. From an earlier observation,
G is abelian. ♦

Putting this together with the previous observation, we conclude:

Corollary 8.2 : Suppose that Γ is a torsion group acting effectively on a countable
cyclically ordered set. Then Γ is locally cyclic. ♦

Thus, Γ is abelian, and in this case, rot : Γ −→ Q/Z is a homomorphism.

9. Rotational parts.

Suppose X is a planar 2-complex, and that ω is an integer valued winding number
satisfying properties (W1)–(W3), with separation constant, r0.

Let M be the set of pairs (M,K), where K ⊆ X is compact and connected, M ⊆ X is
connected withMC compact, and withM∧K (i.e. ρ(M,K) ≥ r0). Given (M,K), (M ′, K ′) ∈
M, we write (M,K) ≥ (M ′, K ′) to mean that M ⊆ M ′ and K ′ ⊆ K. Given that X is
one-ended (by Proposition 3.8) it is clear that M is a directed set with this order.
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We shall frequently suppress explicit mention of the set K. Thus, we speak of an
element M ∈ M, and assume that it has associated with it a compact set K, denoted KM ,
as described above. We have a cocycle, µM : H1(M ;Z) −→ Z defined on the generating
set L by [β 7→ ω(KM , β)]. (The primary function of KM is to define this cocycle.) If
M,M ′ ∈ M, and M ′ ≥M , then µM restricted to H1(M

′;Z) agrees with µM ′ .

GivenM ∈ M, we write M̃ for the infinite cyclic cover ofM given by µM . The positive
generator of this action corresponds to a loop β ∈ L(M) with µM (β) = 1. We shall denote
the action of this generator by [x 7→ x + 1], and of its mth power by [x 7→ x +m]. Thus,
if x ∈ M and γ is any path connecting x to x+m in M , then γ projects to a loop, δ, in
M with µM (δ) = 1. If M ′ ≥M , then we can identify M̃ ′ as a subset of M̃ .

Suppose now that g is a finite order orientation preserving automorphism of X . Recall
that this means that ω(gx, gβ) = ω(x, β) for all x ∈ X and β ∈ L(X) with x ∧ β. Let
M(g) be the set of g-invariant elements of M, i.e. {M ∈ M | gM = M, gKM = KM}.
Clearly in this case, µM (gβ) = µM (β) for all β.

Lemma 9.1 : M(g) is cofinal in M.

Proof : GivenM ∈ M, let K be any compact g-invariant set containing
⋃

n g
nKM . Since

X is one-ended, there is some connected P ⊆ X with PC compact, and with K ∧ P . Let
Q =

⋂
n g

nP . Set KQ = K. Thus Q ∈ M(g), and Q ≥M . ♦

Suppose g is orientation preserving of order n. Choose any M ∈ M(g). Thus, g lifts
to a map g̃ : M̃ −→ M̃ , so that g̃n projects to the identity. Note that g̃ commutes with the
generator h = [x 7→ x+ 1]. (Since the commutator, [g̃, h], projects to the identity, it must
equal hp for some p, and since [g̃n, h] = 1, we deduce that p = 0.) Now, g̃ has the form
[x 7→ x + m] for some m ∈ Z. Set rotM (g) = m/n ∈ Q/Z. This is clearly independent
of the choice of lift, g̃. Now, if P ∈ M(g) with P ≥ M , then g̃|P̃ is a lift of g|P , so we
see that rotP (g) = rotM (g). We thus get a well defined number rot(g) ∈ Q/Z. Note that
rot(g) = 0 if and only if some lift of g has finite order (equal to n).

Definition : We call rot(g) the rotational part of the finite order orientation preserving
automorphism g.

A more direct way to define the rotational part is as follows. Choose any compact
connected subset K ⊆ X with gK = K, and let β be any path with K ∧ β which connects
some point x ∈ X to gx. Then rot(g) = ω(K, γ) where γ is the loop β∪gβ∪g2β∪· · ·∪gn−1β.

Note that if g, h are finite order orientation preserving automorphisms and p ∈ Z,
then rot(gp) = p rot(g) and rot(gh) = rot(hg).

Given an automorphism, g, define a map Dg : X −→ [0,∞) by Dg(x) = ρ(x, gx).

Lemma 9.2 : Suppose g is orientation preserving with finite order and with rot(g) 6= 0.
Then Dg(x) → ∞ as x→ ∞ (i.e. {x ∈ X | Dg(x) ≤ r} is compact for all r ≥ 0).
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Proof : Let the order of g be n, and suppose r ≥ 0. Now, using Lemma 3.4, we see
that there is some M ∈ M, such that if γ ∈ L(M) with length(γ) ≤ nr, then µ(γ) = 0.
Suppose x ∈M with Dg(x) ≤ r. Let β be an arc of length at most r connecting x to gx.
Let γ = β ∪ gβ ∪ · · · ∪ gn−1β. Then length(γ) ≤ nr, and so rot(g) = µ(γ) = 0. ♦

10. Constructing orders.

In this section, we describe how certain classes of subsets of a planar 2-complex, (X, ρ),
have a natural cyclic order.

Recall the definition of the directed set, M, from Section 9. Suppose M ∈ M. A
generating loop is a loop γ ∈ L(M) with µM (γ) = 1. This lifts to a bi-infinite path, γ̃ ∈ M̃ .
By a long path in M̃ , we mean a path which remains a bounded distance from the lift of
some (hence every) generating loop in M . Note that if we alter a long path over any finite
subpath, then it remains long.

We say that a connected subset, A ⊆M , is separating if it intersects every generating
loop but does not contain any generating loop. (As usual, we are tacitly assuming that A
is a subcomplex of M .) The preimage of A in M̃ is a disjoint union of sets of the form
Ã+n for n ∈ Z, where Ã is a connected lift of A to M̃ . One can show that Ã meets every
long path in M̃ , and that if m,n ∈ Z, then any path connecting Ã −m to Ã +m meets
Ã. We shall omit proof of these statements, since they follow easily in the specific cases
where separating sets arise.

For example, suppose A is a p-cycle with
⋃

A =M (as defined in Section 4), so that
µM is identically zero on A ∪ B for any A,B ∈ A. We can lift A to an “∞-cycle”, Ã, in
M̃ (i.e. Ω(Ã) is a graph homeomorphic to the real line). It follows easily that each A ∈ A
is separating, and satisfies the properties of the previous paragraph.

A particular example of this is where α is a bi-infinite geodesic (or uniform path) and
x ∈ α. In this case, for any r ≥ r0, we get a 4-cycle, E = {Λ−, CL,Λ

+, CR} as defined
at the end of Section 5. (This depends on a “radius” parameter, r, though this will not
matter in the construction we use. For definiteness, we can set r = r0.) Let M =

⋃
E .

Then X = Λ0 ∪M , where Λ0 is compact, and indeed has diameter bounded (in terms
of r and the functions of uniformity). Let KM = {x}. This gives us an element of M,
which we denote by M(α, x). Since E is a 4-cycle, we see that the sets Λ+ and Λ− are
both separating in M . Note that they are also both one-ended. We shall denote them by
Λ±(α, x).

Suppose now that A is a collection of one-ended subsets of X . Suppose that to each
A ∈ A there is associated some MA ∈ M such that A ⊆MA, and A is separating in MA.
We shall write µA for the cocycle µMA

. Let’s assume in addition that:

(∗) Given distinct A,B ∈ A, there is some M ∈ M such that M ∩ A ∩B = ∅.

We shall put a cyclic order on the set A.

Given A ∈ A, let S(A) be the set of lifts of A to MA. If P ∈ M with MA ≤ P , then
we identify P̃ as a subset of M̃A, and write S(A, P ) = {S ∩ P̃ | S ∈ S(A)}. (Note that the
elements of S(A, P ) need not be connected.)
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Now, let F(A) be the set of finite subsets of A. This can be viewed as a directed set
under inclusion. Suppose B ∈ F(A). Since M is a directed set, we can find some P ∈ M
with MA ≤ P for all A ∈ B. We can view P̃ as being (simultaneously) a subset of M̃A

for each A ∈ B. Set SP (B) =
⋃

A∈B S(A, P ). Thus, SP (B) is a Z-invariant collection of

subsets of P̃ .

Lemma 10.1 : Any long path in P̃ meets every element of SP (B).

Proof : If it misses a lift of A ∈ B, then it misses it also in M̃A contrary to the assumption
that A is separating in MA. ♦

Note that using property (∗), we can choose P so that P ∩A ∩B = ∅ for all distinct
A,B ∈ B. In this case, the elements of SP (B) will all be disjoint.

Since each element of B is one-ended, we can find Q ∈ M with Q ≥ P , so that if
A ∈ B, then A ∩Q lies in the unbounded component of A ∩ P . Lifting to Q̃ ⊆ P̃ , we see
that if S ∈ SQ(B), then S = SP ∩ Q̃ for some SP ∈ SP (B), and that any two points of S
are connected by a path in SP .

We aim to put a Z-invariant archimedean total order on SQ = SQ(B). This then
descends to a cyclic order on SQ(B)/Z which can be canonically identified with B.

To this end, let β be a long path in Q, and write < for the order of points on β. (If
β is not embedded, we should more properly pull back to the domain of β, but this will
only confuse the notation.) If S ∈ SQ, then β ∩ S is a nonempty compact set, and we
write initβ(S) and finalβ(S) respectively for the initial and final points of β ∩ S. Given
R, S ∈ SQ, we write R <β S to mean that initβ(R) < initβ(S). Clearly, (SQ, <β) is a
discrete total order (i.e. all intervals are finite).

Lemma 10.2 : If R, S ∈ SQ, then R <β S if and only if finalβ(R) < finalβ(S).

Proof : By symmetry, it’s enough to prove “only if”. Suppose, to the contrary, that
finalβ(S) < finalβ(R). Now, S = SP ∩ Q̃ and R = RP ∩ Q̃. Connect initβ(R) to finalβ(R)
by a path ǫ ⊆ RP , and let γ = β−(initβ(R))∪ ǫ∪ β

+(finalβ(R)). Thus, γ is a long path in

P̃ , and γ ⊆ Q ∪RP . Since SP ∩RP = ∅, we see that γ ∩ SP = ∅ contrary to Lemma 10.1.
♦

Lemma 10.3 : Suppose β and γ are long paths in Q̃ and R, S ∈ SQ. Then R <β S if
and only if R <γ S.

Proof : Suppose, for contradiction, that R <β S and S <γ R. Let ǫ be a path in RP

from initβ R to finalβ(R). Let δ = β−(initβ(R)) ∪ ǫ ∪ γ+(finalγ(R)). Thus, δ is a long

path and δ ⊆ Q̃ ∪RP . By Lemma 10.2, γ+(finalγ(R)) ∩ S = ∅. It follows that δ ∩ SP = ∅
contradicting Lemma 10.1. ♦

This shows that the order <β is independent of the choice of long path β in Q̃. We
thus get an order, denoted <Q, on SQ(B). Taking β to be the lift of a generating loop,
we see immediately that the order is Z-invariant, and that S <Q S + n for all n > 0.
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This is archimedean, and so gives rise to a cyclic order, σB,Q on SQ(B)/Z and hence on
B. Clearly, if Q′ ∈ M, with Q′ ≥ Q, then σB,Q = σB,Q′ . Since the set of such Q is cofinal
in M, we get a well-defined cyclic order, σB, on B. There was some choice involved in the
identification of P̃ as a subset of the various M̃A for A ∈ B. However the identifications
are canonical up to the action of Z, and so any set of choices will give rise to the same
cyclic order on B.

Now, if B, C ∈ F(A) with C ⊆ B, then working with B and restricting to C, we
see that σB restricted to C agrees with σC . We thus get a direct limit system of cyclic
orders giving rise to a cyclic order, σ, on A. Formally, we can define σ by σ(A,B,C) =
σ{A,B,C}(A,B,C).

In retrospect, we see that we can define the cyclic order more directly as follows.
Given A,B,C ∈ A, choose P ∈ M with P ≥MA,MB,MC and so that A∩P,B∩P,C∩P
are mutually disjoint, and choose Q ∈ M with Q ≥ P so that A ∩ Q,B ∩Q,C ∩ Q lie in
the unbounded components of A∩P,B∩P,C ∩P respectively. Let β be a generating loop
in Q. Now, there is a unique subpath, α ⊆ β, with α ∩ A = ∂α such that if we connect
the endpoints of α by a path α′ in A ∩ P , then α ∪ α′ is a generating loop in P . Let βA
be the complementary arc of α in β. (We can alternatively define βA as the projection of
the subpath β̃[initβ̃(Ã), finalβ̃(Ã)] ⊆ β̃ ⊆ Q̃ to β.) We similarly define the subpaths βB
and βC . Now, Lemma 10.2 tells us that the subpaths {βA, βB, βC} are “unnested” in the
sense that none is contained in any other. Now, three unnested arcs in the circle have a
cyclic order, namely the cyclic order of the three initial points, which is necessarily the
same as the cyclic order of the three final points. This therefore determines the value of
σ(A,B,C).

We shall need a variation of this construction. Given any subsets, A,B ⊆ X , we write
A ∼ B to mean that the Hausdorff distance from A to B is finite, i.e. there is some r ≥ 0
such that A ⊆ N(B, r) and B ⊆ N(A, r). Note that this is an equivalence relation on the
set of subsets of X .

Let’s again suppose that A is a collection of connected one-ended subsets of X , with
A separating in MA, where MA is the associated element of M for all A ∈ A. If place of
(∗), we assume:

(∗∗) If A,B ∈ A and A 6∼ B, then for all r ≥ 0, there is some M ∈ M with ρ(A ∩M,B ∩
M) ≥ r.

This time, we shall put a cyclic order on the quotient, A/∼.

In other words, we want to define a map, σ : {(A,B,C) ∈ A | A 6∼ B 6∼ C 6∼
A} −→ {0, 1} which is a cyclic order on any transversal to ∼, and with the property that
if A ∼ A′ 6∼ B 6∼ C 6∼ A, then σ(A,B,C) = σ(A′, B, C). Now, we can define σ(A,B,C) =
σ{A,B,C}(A,B,C) exactly as before. This gives a cyclic order on any transversal. We
therefore need only verify the second property.

This is probably best seen using the second description of the cyclic order. Choose
P ≥ MA,MA′ ,MB,MC so that ρ(A ∩ P,B ∩ P ), ρ(A ∩ P,C ∩ P ), ρ(A′ ∩ P,B ∩ P ) and
ρ(A′ ∩ P,C ∩ P ), are all greater than r. Now choose a distant generating loop, β, and
let βA, βA′ , βB, βC be the subpaths described above. Now we can assume that the initial
point, xA, of βA is within a distance r along βA from the initial point of βA′ , for otherwise,
we could divert β by adjoining an arc in P of length at most r from the initial point of
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A to some point of A′, or from the initial point of A′ to some point of A. Now the initial
points, xB and xC of the subpaths βB and βC are each a distance greater than r from
either xA or xA′ . Thus the cyclic order of xA, xB, xC on β is the same as that xA′ , xB, xC .
Thus determines the cyclic order on σ(A,B,C) = σ(A′, B, C). This shows that σ gives a
cyclic order on A/∼ as required.

As an example of this construction, we consider a set, B, of directed (uniformly)
uniform bi-infinite paths. Given α, β ∈ B, we write α ∼+ β if α+(x) ∼ β+(y) for some
(hence every) x ∈ α and y ∈ β. We see that ∼+ is an equivalence relation on B. Suppose
the set B satisfies condition (∗∗). We put a cyclic order on B/∼+ as follows.

Given α ∈ B choosing some x ∈ α, we have a separating set Λ+
α = Λ+(α, x) inM(α, x)

as described above. Now, each set Λ+
α is one-ended, and the collection A = {Λ+

α | α ∈ B}
also satisfies (∗∗). We therefore get a cyclic order on A/∼ which we can identify with
B/∼+.

We need to check that this order doesn’t depend on the choice of basepoints, x ∈ α.
This is best done by observing that we can define the same order by considering the set of
all pairs (α, x) with x ∈ α ∈ B simultaneously. The quotient of {Λ+(α, x) | x ∈ α ∈ B} by
the relation of finite Hausdorff distance can again be identified with B/∼+.

By the same argument, we also see that the cyclic order we have defined doesn’t
depend on the “radius” involved in the definition of the sets Λ+. (Consider all radii
simultaneously.) The cyclic order we have defined is therefore quite natural.

11. Parallel geodesics.

Let (X, ρ) be a planar 2-complex with integral winding numbers. The main objective
of this and the next section will be to show that a group, Γ, acting properly discontinuously
cocompactly on X must contain an element of infinite order. After passing to a subgroup
of index at most 2, we may as well assume that Γ is orientation preserving. The argument
proceeds by analysing the way that Γ displaces a given bi-infinite geodesic. We shall assume
that any bi-infinite geodesic, α, is parameterised by arc-length, i.e. ρ(α(t), α(u)) = |t− u|
for all t, u ∈ R. The main result on which the remainder of the argument rests is:

Proposition 11.1 : There is some constant, r1 ≥ 0, and an increasing function, k0 :
[0,∞) −→ [0,∞) such that the following holds. Suppose g ∈ Γ has finite order n, and
that rot(g) = 0. Suppose that α is a bi-infinite geodesic in X . Let d = Dg(α(0)) =
ρ(α(0), gα(0)). Then, there exist t, u ∈ [r1, k0(nd)] such that ρ(α(t), gα(u)) ≤ r1.

Proof : We choose r1 ≥ 0 so that N(α, r0) ⊆ Λ ⊆ N(α, r1/2), where Λ is the neighbour-
hood of α defined at the end of Section 5. The definition of the function k0 will become
apparent during the course of the proof.

Recall that Λ+ = Λ+(α, α(0)) is a separating set in M =M(α, α(0)) ∈ M as defined
in Section 10. Note that if x, y ∈ Λ+ then x and y can be connected by a path in
Λ+ ∩ N(α(0), a − r1)

C ∩ N(α(0), b + r1), where a = min{ρ(α(0), x), ρ(α(0), y)} and b =
max{ρ(α(0), x), ρ(α(0), y)}. We can suppose that Λ+ ⊆ N(α([r1,∞)), r1).
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Now choose P ∈ M(g) with P ≥ giM for all i. Choose Q ∈ M(g) with Q ≥ P ,
and N(Q, r1) ⊆ P . Note that diam(

⋃
i g

iMC) is bounded up to an additive constant by
nd, where d = Dg(α(0)). Thus, by the uniformity of these constructions (in particular,
the one-endedness of X is described in Section 3), we see that we can construct Q so that
QC ⊆ N(α(0), l1), where l1 is some function of nd. Note that Λ+∩Q lies in the unbounded
component of Λ+ ∩ P .

Now let γ be a generating loop in Q. Again by the uniformity of the construction, we
can assume that γ ⊆ N(QC , l2), where l2 depends only on diam(QC), and hence ultimately
on nd. Let l3 = 2(l1+ l2)+r1. Thus any pair of points in Λ+∩Q∩N(QC , l2) are connected
by a path in Λ+ ∩ P ∩ N(QC , l3). Now let k = l1 + l3 + 2r1. Thus, Λ+ ∩ N(QC , l3) ⊆
N(α([r1, k]), r1/2). By g-invariance, we have also gΛ+ ∩N(QC , l3) ⊆ N(gα([r1, k]), r1/2).
We claim that there exist t, u ∈ [r1, k] with ρ(α(t), gα(u)) ≤ r1.

Suppose, for contradiction that ρ(α([r1, k]), gα([r1, k])) > r1. It follows that Λ+ ∩
gΛ+ ∩N(QC , l3) = ∅.

In what follows we shall take indices mod n, noting that gn = 1. Let B = {giΛ+ |
i ∈ Zn}. We define SQ = SQ(B) and SP = SP (B) exactly as in Section 10. These are

Z-invariant collections of subsets of Q̃ and P̃ respectively, which project to sets of the form
giΛ+ ∩ Q or giΛ+ ∩ P . As before, we have arranged that if S ∈ SQ, then S lies in the

unbounded component of some SP ∈ SP . Let β be the lift of the generating loop γ to Q̃.
Now since rot(g) = 0, there is a lift, h, of g to P̃ with hn = 1. Now, given i ∈ Zn,

we define an order, <i = <hiβ on SQ ≡ SP as in Section 10, namely, we write R <i S to
mean that inithiβ(R) < inithiβ(S). This is a partial order on SQ. (It’s conceivable that
distinct elements of SQ might have identical initial points on hiβ. We’re not assuming
a-priori that these sets are disjoint.)

Now choose any S ∈ SQ which projects to Λ+∩Q. We have arranged that S∩hS∩β =
∅, and so either S <0 hS or hS <0 S. Without loss of generality, we can suppose that
S <0 hS.

We now claim that S <i hS for all i ∈ Zn. The argument is essentially the same as
that of Lemmas 10.2 and 10.3 combined. We know that we can connect any pair of points
in β ∩ S and hiβ ∩ S by a path ǫ in SP . Moreover, we can choose ǫ so that it projects
to a path in Λ+ ∩ P ∩N(QC , l3). But we have arranged that Λ+ ∩ gΛ+ ∩N(QC , l3) = ∅.
Thus, ǫ ∩ hSP = ∅. Similarly, we can connect any two points of β ∩ S and hiβ ∩ S by a
path in hSP which does not meet SP . These facts are all we need to make the arguments
of Lemmas 10.2 and 10.3 work to show that S <i hS as claimed.

Now, by the g-invariance of the constructions, we see that hjS <i+j h
j+1S for all

i, j ∈ Zn. Putting i = −j, we get that hjS <0 h
j+1S for all j. By transitivity of <0, we

conclude inductively that S <0 h
jS, so we get the contradiction S <0 h

nS = S.
We have contradicted the assumption that ρ(α([r1, k], gα([r1, k])) > r1. In other words

there exist t, u ∈ [r1, k] with ρ(α(t), gα(u)) ≤ r1. Here r1 is universal, and k depends only
on nd. ♦

Clearly, by translating the parameterisation of α, we see that for any s ∈ R, there
exist t, u ≥ s with ρ(α(t), gα(u)) ≤ r. By replacing α by −α, we see likewise that there
exist t′, u′ ≤ s with ρ(α(t′), gα(u′)) ≤ r1. We conclude:
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Corollary 11.2 : With the hypotheses of Proposition 11.2, we can find bi-infinite
sequences, (ti)i∈Z and (ui)i∈Z, with ti, ui → ∞ as i → ∞ and ti, ui → −∞ as i → −∞,
with ρ(α(ti), gα(ui)) ≤ r1 for all i ∈ Z. ♦

In fact, we can say more. First some definitions.

Definition : Suppose α, β are bi-infinite geodesics. We say that α and β are r-parallel if
ρ(α(t), β(t)) ≤ r for all t ∈ R. We say that α, β are parallel , and write α ‖ β, if they are
r-parallel for some r ≥ 0.

Clearly parallelism is an equivalence relation on geodesics.

Proposition 11.3 : Suppose that g ∈ Γ has finite order, n, and that rot(g) = 0. Suppose
α is a bi-infinite geodesic in X . Then, α and gα are k-parallel, where k is bounded above
by some function of nDg(α(0)) (and hence of nDg(α(t)) for any t ∈ R).

Proof : This follows directly from the fact that the points, ti and ui in Corollary 11.2 can
be chosen so the gaps, |ti+1− ti| and |ui+1−ui| are all bounded above by some function of
nDg(α(0)). This follows inductively from Proposition 11.1, and the following observation
(Lemma 11.4) which ensures that the displacements Dg(α(ti)) are uniformly bounded in
terms of the initial displacement, Dg(α(0)). ♦

Lemma 11.4 : Suppose α, β are geodesics with ρ(β(t), β(u)) ≤ r. Then ρ(α(t), β(t)) ≤
ρ(α(0), β(0)) + 2r.

Proof : ρ(α(t), β(t)) ≤ ρ(α(t), β(u)) + ρ(β(t), β(u)) ≤ r + |t − u| = r + |ρ(α(0), α(t))−
ρ(β(0), β(u))| ≤ r + ρ(α(0), β(0)) + ρ(α(t), β(u)) ≤ 2r + ρ(α(0), β(0)) ♦

Now, Lemma 9.2 tells us that if g ∈ Γ has finite order and rot(g) 6= 0, then for any
bi-infinite geodesic, α, we have Dg(α(t)) → ∞ as t→ ∞ and as t→ −∞. Thus, we see:

Corollary 11.5 : If g ∈ Γ is of finite order and α is any bi-infinite geodesic in X , then
α ‖ gα if and only if rot(g) = 0. ♦

Let us now assume that Γ is a torsion group. We eventually aim to derive the con-
tradiction that Γ is finite, which we shall get to in Section 12. We can begin by drawing
some immediate conclusions.

Let Γ0 = {γ ∈ Γ | rot(g) = 0}.

Lemma 11.6 : Γ0 is a normal subgroup of Γ.

Proof : The fact that Γ0 is a subgroup follows from Lemma 6.1 and Corollary 11.5. The
fact that it is normal follows from the conjugacy invariance of rotational part. ♦

Now let’s choose a bi-infinite geodesic (using Lemma 6.1), and let B be the set of Γ-
images. Let T = B/‖ be the set of parallel classes. Thus, Γ/Γ0 acts on T . By Lemma 9.2,
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we see that this action is effective, and that if α, β ∈ B belong to distinct parallel classes,
then ρ(α(t), β(t)) → ∞ as t → ∞ and as t → −∞. Thus, the relation ‖ agrees with
the relation ∼+ defined in Section 10. Moreover, the condition (∗∗) is satisfied, so that
T = B/‖ = B/∼+ admits a canonical cyclic order. Since Γ is orientation preserving, Γ/Γ0

must preserve this order. By Corollary 8.2, Γ/Γ0 is locally cyclic. But Γ acts cocompactly
on X . Thus Γ and hence Γ/Γ0 is finitely generated. It follows that Γ/Γ0 is finite cyclic.
In particular, we conclude:

Proposition 11.7 : Γ0 has finite index in Γ. ♦

Thus, Γ0 itself acts cocompactly on X , and is therefore also finitely generated. Since
X is one ended, so is Γ0.

Thus, for the purposes of deriving a contradiction in Section 12, we can assume that
every element of Γ has zero rotational part.

12. Displacement of geodesics.

In this section we aim to prove one of the central results of this paper, namely Theorem
12.9. To this end, we shall need to define the “displacement” of geodesics. As in Section
11, let (X, ρ) be a planar 2-complex, with integral winding numbers.

Suppose that α, β are geodesics and that t, u, t0, u0 ∈ R with t ≥ t0 and u ≥ u0. Now,

|(t− u)− (t0 − u0)| = |(t− t0)− (u− u0)|

= |ρ(α(t), α(t0))− ρ(β(u), β(u0))|

≤ ρ(α(t), β(u)) + ρ(α(t0), β(u0)).

Now if t′ ≥ t0 and u′ ≥ u0, then

|(t− u)− (t′ − u′)| ≤ |(t− u)− (t0 − u0)|+ |(t′ − u′)− (t0 − u0)|

≤ ρ(α(t), β(u)) + ρ(α(t′), β(u′)) + 2ρ(α(t0), β(u0)).

Definition : We say that bi-infinite geodesics, α, β are r-close if there exist bi-infinite
sequences, (ti)i∈Z and (ui)i∈Z with ti → ∞ and ui → ∞ as i → ∞ and ti → −∞ and
ui → −∞ as i→ −∞, so that ρ(α(ti), β(ui)) ≤ r for all i ∈ Z.

From the above calculation, choosing t0 and u0 sufficiently negative, we see that if
t, u, t′, u′ ∈ R with ρ(α(t), β(u)) ≤ r and ρ(α(t′), β(u′)) ≤ r, then |(t−u)− (t′ − u′)| ≤ 4r.
Thus, the quantity, t− u, is well defined up to the additive constant 4r. For definiteness,
let’s define ∆(α, β) = ∆r(α, β) = sup{t − u | ρ(α(t), β(u)) ≤ r}. Thus, for any t, u with
ρ(α(t), β(u)) ≤ r we have |(t− u)−∆(α, β)| ≤ 4r. In fact:

Lemma 12.1 : If α, β are r-close, and t, u ∈ R, then |(t − u) − ∆(α, β)| ≤ 3r +
ρ(α(t), β(u)).
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Proof : Choose t′, u′ ∈ R with ρ(α(t′), β(u′)) ≤ r and with t′ − u′ arbitrarily close to
∆(α, β), and apply the above inequality using any sufficiently small t0 and u0. ♦

Lemma 12.2 : If α, β are r-close, then for some t ∈ R, we have ρ(α(t), β(t)) ≤
5r + |∆(α, β)|.

Proof : Choose any t, u ∈ R with ρ(α(t), β(u)) ≤ r. Then ρ(α(t), β(t)) ≤ ρ(α(t), β(u)) +
ρ(β(t), β(u)) ≤ r + |t− u| ≤ 5r + |∆(α, β)|. ♦

Of course, we do not expect closeness to be an equivalence relation, unlike the notion
of parallelism defined in Section 11. However, we note:

Lemma 12.3 : Suppose α, β, γ are bi-infinite geodesics, and that α is r-close to both β
and γ. Suppose that β and γ are k-parallel, then |∆(α, β)−∆(α, γ)| ≤ 8r + k.

Proof : Choose t, u ∈ R with ρ(α(t), β(u)) ≤ r. Thus, |(t − u) − ∆(α, β)| ≤ 4r and,
applying Lemma 12.2, we have

|(t− u)−∆(α, γ)| ≤ 3r + ρ(α(t), γ(u))

≤ 3r + ρ(α(t), β(u)) + ρ(β(u), γ(u))

≤ 3r + (r + k) = 4r + k.

♦

Now suppose that Γ is a torsion group acting properly discontinuously cocompactly
on X . Let’s suppose, in addition, that Γ is orientation preserving and that every element
has zero rotational part.

Let α be any bi-infinite geodesic in X (using Lemma 6.1). By Corollary 11.2, if
g ∈ Γ, then gα is r1-close to α, for some fixed constant r1 (independent of g). Set
∆(g) = ∆r1(α, gα). This gives us a map, ∆ : Γ −→ R.

Lemma 12.4 : If g ∈ Γ, then |∆(g) + ∆(g−1)| ≤ 8r1.

Proof : Choose t, u ∈ R with ρ(α(t), gα(u)) ≤ r1. Thus, ρ(α(u), g−1α(t)) ≤ r1, and so
|∆(g)− (t− u)| ≤ 4r1 and |∆(g−1)− (u− t)| ≤ 4r1, and the result follows. ♦

Since Γ acts properly discontinuously cocompactly onX , it must be finitely generated.
Let A ⊆ Γ be a finite symmetric generating set. Now, by Proposition 11.3, α ‖ gα for all
g ∈ Γ. In particular, there is some r2 ≥ 0 such that for all h ∈ A, α is r2-parallel to hα.

Lemma 12.5 : If g ∈ Γ and h ∈ A, then |∆(g)−∆(gh)| ≤ 8r1 + r2.
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Proof : Now, hα is r2-parallel to α. Thus, ghα is r2-parallel to gα. By Corollary 11.2,
gα and ghα are both r1-close to α. Thus, by Lemma 12.3, we have |∆(g) − ∆(gh)| =
|∆r1(α, gα)−∆r1(α, ghα)| ≤ 8r1 + r2. ♦

Let r3 = 8r1 + r2. Let B = {g ∈ Γ | |∆(g)| ≤ r3}.

Lemma 12.6 : B is infinite.

Proof : Let Y be the Cayley graph of Γ corresponding to the generating set, A. It has
vertex set Γ, and g, h ∈ Γ are adjacent if and only if g−1h ∈ A. Lemma 12.5 tells us that
if g, h are adjacent, then |∆(g)−∆(h)| ≤ r3. Now, Γ and hence Y is one-ended. Thus, if
B ⊆ Γ were finite, Y \B would have precisely one unbounded component. The vertex set
of this component must map under ∆ into either [r3,∞) or (−∞,−r3]. Let’s assume the
former. Then {g ∈ Γ | g ≤ −r3} is finite. But this is seen to contradict Lemma 12.4. We
conclude that B must be infinite as claimed. ♦

We now proceed to show that B is finite, thereby deriving a contradiction.

Suppose that g ∈ B. By Lemma 12.2, there is some t ∈ R such that Dg(α(t)) =
ρ(α(t), gα(t)) ≤ 5r1 + |∆(g)| ≤ 5r1 + r3. Now, since Γ acts cocompactly on X , some
Γ-image of α(t) must lie a bounded distance from any given point of X , say α(0). Thus,
some Γ-conjugate of g moves the point α(0) a bounded distance. Since X is locally finite,
there are only finitely many possibilities for such a conjugate. In other words, B lies in a
finite union of conjugacy classes in Γ. In particular, we conclude:

Lemma 12.7 : There is some n ∈ N such that gn = 1 for all g ∈ B. ♦

Now, by Proposition 11.3, given any g ∈ B and t ∈ R, α is k-parallel to gα, where
k is bounded by some function of nDg(α(t)). By Lemma 12.2, as above, we can choose
this t so that Dg(α(t)) ≤ 5r1 + r3. It follows that k is, in fact, independent of g ∈ B. In
particular, Dg(α(0)) ≤ k for all g ∈ B. Now, since X is locally finite, we conclude:

Lemma 12.8 : B is finite. ♦

This is somewhat at odds with Lemma 12.6, so we are forced to admit that Γ cannot
be a torsion group after all.

Now, it was shown at the end of Section 11 that any torsion group acting properly
discontinuously cocompactly on X has a finite index subgroup with zero rotational parts.
We have thus shown:

Theorem 12.9 : Suppose Γ acts properly discontinuously cocompactly on a planar
2-complex with integral winding numbers. Then Γ contains an element of infinite order.
♦
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13. Virtual Surface groups.

Suppose (X, ρ) is a planar 2-complex with integral winding numbers. Suppose Γ
acts properly discontinuously cocompactly on X . We have seen (Theorem 12.9) that Γ
contains an element of infinite order. (We do not need to assume for the moment that Γ
is orientation preserving.)

If G ≤ Γ is a subgroup, we say that G has strict codimension-one if Y/G has more
than one end, where Y is some Cayley graph of Γ. One can show that this is independent
of the choice of Y . Indeed one could take Y to be any space on which Γ acts properly
discontinuously cocompactly (for example X). We say that G has codimension-one if
some finite index subgroup of G has strict codimension-one. (This is a slight variant on
the terminology of [DuSw] — they use “codimension-one” for what we have called “strict
codimension-one”.)

Proposition 13.1 : Any infinite cyclic subgroup of Γ has codimension-one.

Proof : Suppose g ∈ Γ. Let β be any 〈g〉-invariant path (so that β/〈g〉 is compact). Such
a path is necessarily uniform, so we can construct the sets Λ = Λ(α, r), CL = CL(α, r)
and CR = CR(α, r) as defined in Section 4. These sets are all 〈g2〉-invariant, and Λ/〈g2〉 is
compact. Writing X/〈g2〉 as a union of Λ/〈g2〉, CL/〈g

2〉 and CR/〈g
2〉, and noting that the

latter two sets are disjoint and unbounded, we see that X/〈g2〉 has more than one end. ♦

(In fact, by taking an increasing sequence of radii, r, in the above argument, we see
that X/〈g2〉 has precisely two ends.)

In summary, we we have shown:

Proposition 13.2 : Γ is finitely generated, one-ended, contains an element of infinite
order, and every infinite cyclic subgroup has codimension-one. ♦

Now it is shown in [Bo] that a group with the properties described by Proposition 13.2
has to be planar. In the case of almost finitely presented groups (i.e. FP2 over Z2) this
can be deduced from the results and methods of [DuSa] and [DuSw]. Moreover, Graham
Niblo has suggested how these arguments might be adapted to deal with the general case.

In the present situation, we have some additional information, namely the winding
number which gives us directly the cyclic orders which feature in [Bo]. In the remainder of
this section we sketch a direct argument to complete the proof, referring to [Bo] for details.

Our argument makes use of ideas from [DuSw] and [Sw]. (Instead of the “tracks” of
[DuSw], we will speak in terms of “periodic paths”. The separation properties of these
tracks are expressed in terms of the planarity of the complex X .)

We thus aim to show:

Theorem 13.3 : Suppose a group, Γ, acts properly discontinuously cocompactly on a
planar 2-complex with integral winding numbers. Then Γ is a virtual surface group.

The essential facts we will need about Γ will be that it satisfies the conclusion of
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Proposition 13.2, together with certain cyclic order properties of ends of two-ended sub-
groups.

As usual, one of the key steps will be in separating the “euclidean” case (where Γ is
virtually Z⊕Z) from the “hyperbolic” case (where Γ is fuchsian). Unlike the approach of
Kleiner, we won’t make explicit use of hyperbolicity. However, as with all approaches to
date, we shall deal with the fuchsian case by appealing to the result of Tukia, Gabai and
Casson and Jungreis:

Theorem 13.4 : [T,Ga,CJ] If a group, Γ, acts as a convergence group on the circle,
S1, then it also admits a properly discontinuous isometric action on the hyperbolic plane
(such that the induced action on the boundary is topologically conjugate to the original).

♦

Thus, if Γ is finitely generated and one-ended, then it is a virtual surface group as
required.

We shall recognise convergence actions on the circle via a result of Swenson [Sw]. Let
Φ(S1) be the space of distinct unordered pairs in S1. (Thus, Φ(S1) is topologically an
open Möbius band.) Suppose that G is a two-ended (i.e. virtually cyclic) group acting on
S1. We say that G is loxodromic if it acts as a convergence group with limit set consisting
of a pair of distinct ponts, {x, y}. (In other words, there is some g ∈ G with gn|S1 \ {x}
converging to y, and g−n|S1 \ {y} converging locally uniformly to x.)

The following is a simple consequence of the main result of [Sw]:

Theorem 13.5 : Suppose Π ⊆ Φ(S1) is a discrete Γ-invariant with λ∩µ = ∅ for distinct
λ, µ ∈ Π, and with Π/Γ finite. Suppose that the stabiliser of each element λ ∈ Π is two-
ended and loxodromic (with limit set λ). Suppose also that every pair of points in S1 \

⋃
Π

are separated by an element of Π. Then Γ acts as a convergence group on S1.

Proof : The hypothesis on the separation property of Π is just a convenient way of
expressing the fact that

⋃
Π is dense in S1, and that Π is “cross-connected” as described

below. The result thus follows from [Sw]. ♦

We shall in turn recognise this property by using cyclic orders on ends of periodic
paths in X . (A similar idea was used by Scott in his proof of the Torus Theorem for
3-manifolds.) We begin by introducing some general terminology and notation relating to
cyclic orders. (More general constructions of this type are discussed in [Bo]).

Let (E, σ) be a cyclically ordered set. Let Φ(E) = {{x, y} | x, y ∈ E, x 6= y} be the set
of “pairs” in E. Given two disjoint pairs, λ = {x, y} and µ = {z, w}, they either cross (so
that {x, y} separates z from w in the cyclic order) in which case we write λ×µ or x−µ−y
or z − λ − w, or else the don’t cross, in which case, we write λ : µ. Given A,B ⊆ E and
λ ∈ Φ(E), we write A− λ−B to mean that x− λ− y for all x ∈ A and all y ∈ B.

Now let Φ(E) = {{x, y} | x, y ∈ E, x 6= y}. A pattern on E is a subset Π ⊆ Φ(E) such
that λ ∩ µ = ∅ for all distinct λ, µ ∈ Π. We say that Π is full if

⋃
E = Π. We define the

following three finiteness conditions on a pattern, Π:

(F0): If x, y, z, w ∈ E are distinct, then {ν ∈ Π | {x, y} − ν − {z, w}} is finite.
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(F1): If λ, µ ∈ E with λ : µ, then {ν ∈ Π | λ− ν − µ} is finite.

(F2): If λ, µ ∈ E with λ 6= µ, then {ν ∈ Π | ν × λ, ν × µ} is finite.

The following is easily verified:

Lemma 13.6 : If Π is full, then (F1) and (F2) implies (F0). ♦

We say that a full pattern is discrete if it satisfied (F0) (or equivalently (F1) and
(F2)).

If Π is a pattern in S1, then (F0) is equivalent to Π being discrete in Φ(S1). If
⋃
Π

is dense in S1, then if Π satisfies (F0) in
⋃

Π, then it satisfies (F0) also in S1.
Following [Sw], we say that a pattern, Π, is cross-connected if given any λ, µ ∈ Π,

there is a finite sequence, λ = λ0, λ1, . . . , λn = µ, of elements of Π with λi × λi+1 for all
i. Any pattern can be decomposed into cross-connected components. Moreover, it is not
hard to see [Bo]:

Lemma 13.7 : If Π is a discrete pattern, then the set, P, of cross-connected components
of Π can be canonically embedded in the vertex set of a simplicial tree, Σ, in such a way
that if P,Q,R ∈ P then P separates Q from R in Σ if and only if there is some λ ∈ P
such that Q− λ−R. ♦

We now introduce group actions. Suppose that E is a cyclically ordered set, and that
Γ acts on E by order-preserving maps. Suppose that Π is a Γ-invariant pattern. Given
λ ∈ Π, we write Γ(λ) for the (setwise) stabiliser of λ. We say that Π is a Γ-pattern if Π/Γ
is finite and Γ(λ) is two-ended for all λ ∈ Π.

Lemma 13.8 : Suppose Π is a discrete full Γ-pattern on E. Suppose that for all λ ∈ Π
there is some µ ∈ Π with µ× λ and some g ∈ Γ(λ) with gµ : µ. Then, E is a dense cyclic
order.

Proof : Let x ∈ E. Given y, z ∈ E, we show that there is some ν ∈ Π with x− ν −{y, z}.
Let λ be the element of Π containing x, and let µ and g be as in the hypotheses. Without
loss of generality, we have µ− gµ− x. We must have y − gnµ− x for all sufficiently large
n, otherwise {n ∈ N | µ − gnµ − {x, y}} would be infinite, contradicting discreteness.
Similarly z − gnµ− x for all sufficiently large n. We thus set ν = gnµ for large enough n.

♦

It follows that if E is countable then it admits a conical completion to a circle, S1.
The action of Γ extends to an action by homeomorphism on S1. A simple extension the
argument of Lemma 13.8 shows:

Lemma 13.9 : With the hypotheses of Lemma 13.8, if E is countable, then in the
induced action of Γ on S1, Γ(λ) is a loxodromic convergence group for all λ ∈ Π. ♦

Thus, if Π is cross-connected, then it follows by Theorem 13.5 that Γ acts as a con-
vergence group on S1. If Γ is finitely generated and one-ended, then it is a virtual surface
group.
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We now move on to more geometric considerations. Suppose Γ is a group, and that
g, h ∈ Γ have infinite order. We say that g and h are commensurate if there exist m,n ∈
Z \ {0} with gm = hn. We define the commensurator , Comm(g), of g to be the set of
h ∈ Γ such that hgh−1 is commensurate with g. We see that Comm(g) is a subgroup of Γ
containing g.

Suppose, now, that Γ acts properly discontinuously on a metric complex, (X, ρ). We
say that a bi-infinite path, α ⊆ X , is periodic if there is some infinite order g ∈ Γ such
that gα = α. It follows that α/〈g〉 is compact, and that α is a uniform path. We refer to
g as a period of α, and to α as an axis of g. Clearly, two periods of the same axis will be
commensurate, and every infinite order element has an axis.

Definition : We say that two uniform paths α and β are parallel if they are at finite
Hausdorff distance, i.e. there is some r ≥ 0 such that α ⊆ N(β, r) and β ⊆ N(α, r).

Note that unlike the definition of “parallel” for geodesics in Section 11, we are not taking
account of parameterisations or of direction. If ~α and ~β are directed, we say they are
consistently directed if the positive rays are at a finite Hausdorff distance and the negative
rays are at finite Hausdorff distance.

Definition : We say that two uniform paths α and β are divergent if for all r ≥ 0, there
is some compact K ⊆ X such that ρ(α ∩KC , β ∩KC) ≥ r.

The following is easily verified:

Lemma 13.10 : If α and β are periodic paths with periods g and h, then either α and
β are parallel and g and h are commensurate, or else α and β are divergent and g and h
are not commensurate. ♦

Now, given g ∈ Γ, define D(g) = inf{x ∈ X | ρ(x, gx)}. Clearly, D is a conjugacy
invariant, and D(gn) ≤ nD(g) for all n ≥ 0. It’s easily seen that some (hence every)
axis of g is quasigeodesic if and only if D(gn) is bounded below by some increasing linear
function of n. If Γ acts cocompactly on X , then this is the same as saying that 〈g〉 is
quasiisometrically embedded in Γ. If h ∈ Comm(g), then it’s easily seen that h2 commutes
with gn for some n. Thus, either Comm(g) is two-ended or it contains an isometric copy
of Z⊕ Z.

Suppose that α ⊆ X is a directed uniform path. We set Λ(α) = Λ(α, r0) for fixed
sufficiently large r0, as described in Section 5. Note that Λ(α) lies inside a uniform neigh-
bourhood of α. Let CL(α) = CL(α, r0) and CR(α) = CR(α, r0) be the left and right
deep complements. (This construction is only really needed where α is periodic with some
period, g. The important facts are that all three sets are connected and 〈g〉-invariant,
that CL(α)∩CR(α) = ∅ and that Λ(α)/〈g〉 is compact, and CL(α)/〈g〉 and CR(α)/〈g〉 are
unbounded.)

Suppose that ~α and ~β are directed uniform paths, and that Λ(α) ∩ Λ(β) is compact.
By the constructions of Section 10, we see that there is a well-defined cyclic order on
{~α, ~β,−~α,−~β}, which is better thought of as a cyclic order on the set of positive and
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negative rays or “ends” of α and β, i.e. {α+, β+, α−, β−}. We say that α and β cross if
{α−, α+} crosses {β−, β+} in this cyclic order, and we write α × β. Otherwise, we write

α : β. In the latter case, ~α and ~β may be consistently or oppositely directed, depending
on the cyclic order on their endpoints. Note that Λ(α) ∩ CL(β) consists of 0,1 or 2 ends
of Λ(α) (up to a compact set), depending on the above cyclic order. We shall say that α
and β are strictly disjoint if Λ(α) ∩ Λ(β) = ∅. This clearly implies α : β.

Suppose again that Γ acts properly discontinuously on (X, ρ). Suppose that α is a
uniform path, and that h ∈ Γ with hα strictly disjoint from α, and such that α and hα
are consistently directed. Then it’s easy to see that h must have infinite order, and any
axis, β, of h must cross α. If x ∈ X , then any path connecting x to hnx must cross n− 1
disjoint images of Λ(α). We see that D(hn) is bounded below by a linear function of n.
Thus β is quasigeodesic.

Suppose that A is a Γ-invariant collection of periodic arcs in X , with A/Γ finite.
Thus, A is locally finite in X . Note that, up to the action of Γ, there are only finitely
many non-empty sets of the form Λ(α) ∩ Λ(β) for α, β ∈ A. There is therefore a uniform
bound on the diameters of those which are compact. In this way we can imagine the
“crossings” of the elements of A as being local in X . Note that if Λ(α) ∩Λ(β) is compact
and non-empty, then α and β must diverge.

Suppose that α ∈ A with period g. We see that {β ∈ A | Λ(α) ∩ Λ(β) 6= ∅}/〈g〉 is
finite. If β : α with β ∩ CL(α) compact, then there is a bound on how deeply β can enter
CL(α). Using these facts, we see that if h ∈ Γ with hα : α and hα and α consistently
directed, then either hα is strictly disjoint from α or else α and hα diverge and hnα is
strictly disjoint from α for some n ≥ 0. Either way, we see that h has infinite order, and
any axis of h is quasigeodesic and crosses α.

Now suppose that Γ acts properly discontinuously cocompactly on X . We can also
suppose (passing to a subgroup of index at most 2) that Γ is orientation preserving (in the
sense that it preserves winding numbers, and hence also the cyclic orders defined earlier).
The following lemma will get us started.

Lemma 13.11 : Suppose α is a periodic arc in X . Then there is some periodic arc β
which crosses α (so that α and β are divergent).

Proof : Let g be a period of α, and let A be the set of Γ-images of α. We can suppose
that no two elements of A cross — otherwise we are done. Now since A is locally finite,
we can find some h ∈ Γ with ρ(α, hα) ≥ r for arbitrarily large r. In particular, we can
assume, without loss of generality, that Λ(hα) ⊆ CR(α). If α and hα are consistently
directed, then h has infinite order, and its axis crosses α. If not, we need to try harder.
Now, CL(α)/〈g〉 is unbounded. Since the action of Γ on X is compact, we can find some
k ∈ Γ with kα ∩ CL(α) ∩ N(α, s)C 6= ∅ for s arbitrarily large. By the compactness of
Λ(α)/〈g〉, we can assume that Λ(kα) meets Λ(α) in a (possibly empty) compact set. Now,
kα cannot cross α, so we must have kα : α. Also choosing r sufficiently large, we can
suppose that kα and hα are strictly disjoint. Also α separates (in the sense of cyclic order)
hα from kα. In other words, the paths {α, hα, kα} are nested, and so some pair of them
must be consistently directed. From the previous discussion, we see that at least one of h,
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k or h−1k must be of infinite order, with its axis crossing α. ♦

Now let’s suppose that A is a Γ-invariant collection of periodic arcs with A/Γ finite.
As already observed, any two elements of A are either parallel or divergent. Two elements
that cross are necessarily divergent. The following lemma is essentially the same as Lemma
4.5 of [DuSw]:

Lemma 13.12 : Suppose α ∈ A with period g. If β ∈ A crosses α then gβ does not
cross β.

Proof : Suppose gβ does cross β. By induction, gnβ crosses β for all n > 0. Also gn+1β
crosses gnβ within a bounded distance of α. Beyond this, the paths gn+1β and gnβ diverge.
By considering the order of the crossings of gnβ along β, we derive a contradiction (cf.
[DuSw] or [Bo]). ♦

Note that β and gβ are necessarily consistently directed. Since g is not commensurate
with the period of β, we see that for sufficiently large n, gnβ must be strictly disjoint
from β. From the earlier discussion, we see that α must be quasigeodesic, and so 〈g〉 is
quasigeodesic.

Lemma 13.13 : Every infinite cyclic subgroup of Γ is quasiisometrically embedded.

Proof : Suppose g ∈ Γ has infinite order, and let α be an axis of g. By Lemma 13.11,
there is a periodic path, β, which crosses α. Let A be the set of Γ-images of α and β. By
Lemma 13.12 and the subsequent discussion, we see that 〈g〉 is quasigeodesic. ♦

We are now in a position to deal with the “euclidean” case:

Proposition 13.14 : Suppose that Γ contains an infinite order element with [Comm(g), 〈g〉] =
∞. Then Γ contains a subgroup of finite index isomorphic to Z⊕ Z.

Proof : Let α be an axis of g. We can find h ∈ Comm(g) with hα strictly disjoint from
α and with α and hα consistently directed. Since 〈g〉 is quasiconvex, there is some n > 0
such that G = 〈gn, h〉 ∼= Z⊕ Z.

Now it’s fairly easy to see that G must have finite index in Γ. For example, if [Γ, G] =
∞, then we can find some k ∈ Γ such that hmα and khnα are strictly disjoint for all
m,n ∈ Z. Now it’s easily seen that any three arcs from the set {hmα, khnα | m,n ∈ Z}
must be nested (since some pair of them will be parallel). We see that α and kα are
separated by an infinite set of disjoint images of Λ(α) which is clearly a contradiction. ♦

We can now assume that [Comm(g) : 〈g〉] <∞ for every infinite order element, g ∈ Γ.
Let A be a Γ-invariant set of directed periodic arcs with A/Γ finite. Let E be the set

of strict parallel classes in A (i.e. taking account of directions). Thus, E = A/∼+, where
∼+ is the relation defined in Section 10. We see that E admits a natural cyclic order, as
defined in Section 10. Since we are assuming that Γ is orientation preserving, it follows that
Γ preserves this order. Each ~α ∈ A determines an ordered pair, ([−α], [α]) ⊆ E (where
[.] denotes equivalence class). An undirected element, α, determines an unordered pair
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π(α) = {[−α], [α]} ∈ Φ(E). Let Π = {π(α) | α ∈ A}. The stabiliser, Γ(π), of π = π(α) is
precisely the commensurator of any period of α. Thus, Γ(π) is two-ended. We see that Π
is a full Γ-pattern on E.

By Lemma 13.12, we deduce immediately that:

Lemma 13.15 : Suppose that λ ∈ Π and that g ∈ Γ(λ) has infinite order. If µ ∈ Π with
λ× µ, then gµ : µ. ♦

Lemma 13.16 : If λ ∈ Π, then {µ ∈ Π | µ× λ}/Γ(λ) is finite.

Proof : Let λ = π(α). If µ = π(β) crosses λ, then α× β, and so Λ(α) ∩ Λ(β) 6= ∅. Since
the quotient of Λ(α) by any period of α is compact, the result follows. ♦

Lemma 13.17 : The pattern Π satisfies property (F1).

Proof : Suppose that λ = π(α) and µ = π(β) are distinct elements of Π with λ : µ. Let
δ be any path connecting α to β in X . Suppose that ν = π(γ) ∈ Π with λ− ν − µ. Now
there is a bound on how deeply γ can cross α or β, and so it’s not hard to see that γ must
enter some bounded neighbourhood of δ. By local finiteness of A, the set of possible γ and
hence ν is finite. ♦

Lemma 13.18 : The pattern Π satisfies (F2).

Proof : This uses Lemmas 13.15, 13.16 and 13.17, exactly as in [Bo]. The idea is that if
there exist λ 6= µ ∈ Π with Π′ = {ν ∈ Π | ν×λ, ν×µ} infinite, then one uses Lemma 13.15
to interpolate between the different elements of Π′. Thus, using Lemma 13.16 applied
to the axes λ and µ, and the fact that the axes corresponding to different elements of Π
diverge in X , one can find two fixed elements of Π which are separated by arbitrarily many
other elements, contradicting (F1). ♦

Proof of Theorem 13.3 : By Lemma 13.14, we can assume that the commensurator of
every infinite order element is two-ended. By Theorem 12.9, X contains a periodic arc, α.
By Lemma 13.11, there is a periodic arc, β, which crosses α. Let A be the set of Γ-images
of α and β. Let E be the cyclically ordered set and let Π ⊆ Φ(E) be the full Γ-pattern
constructed above. By Lemmas 13.15, 13.17, 13.18 and 13.6 we see that Π satisfies the
hypotheses of Lemma 13.9. If Π is cross-connected, we can thus apply Lemma 13.5 and
Theorem 13.4 to deduce that Γ is a virtual surface group.

If Π is not cross-connected, we have to work a bit harder. Let P be a cross-connected
component of Π, and let {g1, . . . , gn} be a finite generating set of Γ. Now, by Lemma
13.7, we can canonically embed the set of cross-connected components to a simplicial tree
Σ. Now, Γ acts simplicially on Σ, and it is readily checked that this action is non-trivial.
Now, by a standard argument of Bass-Serre theory, we see that if giP 6= P , then there is
an infinite order element, hi ∈ Γ, such that giP separates P from hiP . Let γi be an axis
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of hi. It is easily seen that γi crosses elements of A corresponding to both P and giP .
Now, let B consist of A together with all Γ-images of each γi arising in this way. This
gives us a larger Γ-pattern on a new cyclically ordered set. This time, we can be sure that
the pattern is cross-connected, so Lemma 13.5 applies. ♦

14. Characterisations.

In this section we bring together various results from previous sections and describe a
number of characterisations of virtual surface groups. In particular, we give proofs of the
main results stated in the introduction.

Recall that by a virtual surface group we mean a group, Γ, with a finite index sub-
group isomorphic to the fundamental group of a closed surface other than the 2-sphere or
projective plane.

Here are some other descriptions which turn out to be equivalent:

(S): Γ is a virtual surface group.

(G): Γ acts isometrically, properly discontinuously cocompactly on either the euclidean or
the hyperbolic plane.

(C): Γ is either virtually Z⊕ Z or else acts as a uniform convergence group on the circle.

(R): Γ is finitely generated and quasiisometric to a complete (riemannian) plane.

(L): Γ is finitely generated and one-ended, contains an element of infinite order, and every
infinite order element of Γ has codimension-one.

(I): Γ is finitely presented, one-ended and semistable at infinity with π∞
1 (Γ) ∼= Z.

(E): Γ is quasiisometric to a locally finite uniformly acyclic 2-complex which is homologi-
cally semistable over Z, and whose end homology over Z is infinite cyclic.

(P): Γ is quasiisometric to a locally finite 2-complex which is planar over Z.

(DQ): Γ is PD(2) over Q.

(HQ): Γ is FP2 over Q and H2(Γ,QΓ) contains a 1-dimensional Γ-invariant subspace.

In either of the properties (D) and (H), we can replace Q by an arbitrary field, F, to
get properties which are, in general, stronger than (S). Note, in particular, (HF) ⇒ (S) is
precisely Theorem 0.1, from which most of the implications will follow.

We should begin by commenting on some of the above conditions.
Note that a consequence of property (G) is that Γ has a unique maximal finite normal

subgroup — namely the kernel of the action of Γ. The quotient of Γ by this subgroup is
an orbifold group, i.e. the orbifold fundamental group of a closed (euclidean or hyperbolic)
2-orbifold. Such orbifolds are easily classified, and the topological type is determined by
the fundamental group, and hence by Γ.

In (C), the term “uniform convergence group” means that Γ by homeomorphism on
S1 such the induced action on the space of distinct triples (i.e. S1×S1×S1\{(x, y, z) | x 6=
y 6= z 6= x}) is properly discontinuous and cocompact. (The general theory of convergence
groups was developed by Gehring and Martin [GeM].)
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In (R), “complete riemannian plane” means any complete riemannian 2-manifold
homeomorphic to R2. In fact, any complete path-metric space homeomorphic to R2 will
do. Such a metric is necessarily proper, i.e. closed bounded sets are compact. We can get
away with even less. An analysis of the argument shows that all we really require is a
proper metric such that any pair of points lies in some connected subset whose diameter
is bounded by some function of the distance between them. One certainly needs some
hypothesis of this nature: one can always put a stupid proper metric on the plane so that
it is quasiisometric to any given one-ended group.

Condition (L) is the same as the conclusion of Proposition 13.2. We say that an infinite
order element, g ∈ Γ, has “codimension-one” if the subgroup 〈g〉 does, i.e. if X/〈gn〉 has
more than one end for some n and some (hence any) Cayley graph, X , of Γ. (In fact we
can take n = 2 in the present situation.)

In (I), the term “semistable at infinity” was defined by Mihalik [Mi]. For a one-ended
group, Γ, it means that some (hence any) simply connected 2-complex on which Γ acts
properly discontinuously cocompactly has the property that any two rays are properly
homotopic. Here, π∞

1 (Γ) denotes the fundamental group at infinity. We shall elaborate on
these notions shortly.

In properties (E) and (P), we use the term “quaiisometric” to mean that Γ is finitely
generated, and that some (hence every) Cayley graph of Γ is quasiisometric to the 1-
skeleton of a locally finite 2-complex X with the given properties. We always assume that
there is some bound on the lengths of the boundaries of 2-cells of X . All the properties
mentioned can be seen to be quasiisometry invariant, or more precisely, the property that
a graph is the 1-skeleton of some 2-complex satisfying these conditions is quasiisometry in-
variant. Moreover they are also invariant under the addition of extra 2-cells. Thus, starting
with a Cayley graph of Γ and adding cells to all circuits of length at most some sufficiently
large constant, there is no loss in assuming that Γ in fact acts properly discontinuously
cocompactly on X itself.

In both (E) and (P) we are assuming that X is uniformly acyclic over Z, as defined
in Section 4. To say that X is planar over Z, we mean that it admits an integral winding
number satisfying axioms (W1)–(W3). What we call “homological semistability at infinity”
is the obvious homological equivalent of semistability, which we describe later. By the end
homology of X , we mean the inverse limit of the groups H1(K

C ,Z) as K varies over all
compact subsets of X .

We can obtain variations of properties (E) and (P), denoted (EF) and (PF), by replac-
ing Z everywhere by an arbitrary field F. In (EF), the clause about semistability becomes
redundant (Lemma 14.3). We have (EF) ⇒ (PF) ⇒ (S), and the converses hold if F = Q.

The fact that (S) ⇒ (G) uses the solution to Nielsen realisation problem for finite
groups [Ke]. The converse can be seen using Selberg’s Lemma, or by a direct geometric
argument.

It’s more or less clear that (S) implies all the other properties listed. (One can get
from (S) to (C) bypassing (G) using the fact that, in the non-euclidean case, Γ is hyperbolic
with boundary S1.) The implication (C) ⇒ (S) is the result of the analysis of convergence
actions on the circle pioneered by Tukia [T], and completed independently by Gabai [Ga]
and Casson and Jungreis [CJ]. (In fact, the argument of [Ga] proves (G) directly, without
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passing via (S).) The proofs that the other properties imply (S) all pass via this result.
The fact that (R) ⇒ (S) was shown by Mess [Me]. In that paper, the euclidean case

is separated from the hyperbolic case by the recurrence or transience of Brownian motion
on the riemannian plane. The euclidean case is dealt with using the result of Varopoulos
(see [V] and the references therein, or [W]), namely that the random walk on a finitely
generated group is recurrent if and only if it virtually abelian of rank at most 2. This in
turn relies on Gromov’s result [Gr] on groups of polynomial growth, which rests ultimately
on the solution to Hilbert’s fifth problem [MoZ]. In other words, it calls for some high-
powered machinery. An approach to Mess’s result which uses [Gr] directly has recently
been described by Maillot [Ma].

The fact that (L) ⇒ (S) is shown in [Bo] using results and ideas from [DuSa], [DuSw]
and [Sw].

The main result of this paper shows that (HF) ⇒ (PF) ⇒ (C). The remaining impli-
cations are all fairly elementary as we describe shortly.

We note that an alternative approach to (PQ) ⇒ (C) (at least in the finitely presented
case) has been proposed by Kleiner. This approach also makes use of [Gr], though given
the existence of an infinite order element (Theorem 12.9 of this paper) this can be avoided.
It has also been observed by Dunwoody and Swenson [DuSw] that their result also proves
(DQ) ⇒ (C), in the finitely presented case, again under the assumption of the existence of
an element of infinite order.

In the rest of this section, we set about explaining the proofs of the remaining impli-
cations. We begin with:

Proof of Theorem 0.1 : Suppose Γ satisfies (HF). By Proposition 2.2, Γ acts properly
discontinuously on a a metric 2-complex which is planar over F. In other words Γ admits
a winding number with values in F satisfying (W1)–(W3). By the results of Section 7,
we can lift to a rational integral winding number. Thus, by Theorem 13.3, Γ is a virtual
surface group. ♦

Note that we have passed via (PF). In other words, we have shown also that (PF) ⇒
(S).

Next, we move on to property (I). Let X be any locally finite 2-complex with a bound
on the lengths of boundaries of 2-cells. We assume that X is uniformly simply connected,
i.e., every closed curve in X bounds a disc whose diameter is bounded as a function of
the diameter (or equivalently, length) of the curve. We shall restrict attention to the case
where X is one-ended. Thus X is semistable at infinity if and only if every two rays are
properly homotopic. This is equivalent to the statement that for all compact K ⊆ X , there
is a compact L ⊇ K such that for all compact M ⊇ L, the images of π1(M

C) and π1(L
C)

in π1(K
C) are equal (see [Mi]). This allows us to define the fundamental group at infinity,

π∞
1 (X) as the inverse limit of the system (π1(K

C))K as K varies over all compact subsets
of X . The proper homotopy equivalence of rays in X tells us that we don’t have to worry
about basepoints. These definitions are all quasiisometry invariant (for the 1-skeleton in
the sense described earlier). We therefore get a definition of semistability for any finitely
presented group, Γ, and of π∞

1 (Γ). (It is an open problem as to whether every finitely
presented group is semistable at infinity.)

43



Planar groups

Let (Ki)i∈N be a compact exhaustion of X . Write Gi = π1(K
C
i ) and G∞ = π∞

1 (X).
Thus, G∞ is the inverse limit of the system (Gi)i. By semistability, we can assume that
for all i, the images of Gj in Gi are all equal for j > i. Putting Hi equal to this image, we
can express G∞ as the inverse limit of the system (Hi)i, where all the connecting maps
are surjective. If G∞

∼= Z, we see that Hi
∼= Z for all sufficiently large i. (Otherwise each

Hi would be finite, giving the contradiction that Z is profinite.) We conclude:

Lemma 14.1 : If X is semistable at infinity and π∞
1 (X) ∼= Z, then there exist compact

sets, K ⊆ L ⊆ X such that for all M ⊇ L, the image of π1(M
C) in π1(K

C) is infinite
cyclic. ♦

One can also define homological versions of semistability. Suppose A is a ring and that
X is a locally finite one-ended uniformly acyclic 2-complex (with a bound on the lengths
of boundaries of 2-cells). We say that X is homologically semistable (at infinity) over A if
for all compact K ⊆ X , there is some compact L ⊇ K such that for all compact M ⊇ L,
the image of H1(M

C ;A) in H1(K
C ;A) equals the image of H1(L

C ;A) in H1(K
C ;A). We

define the end homology as the inverse limit of the system (H1(K
C ;A))K as K ranges over

all compact subsets of X . We denote it by H∞
1 (X ;A). (Note that the definition of end

homology makes sense even if the semistability condition is dropped — for homology, we
don’t have to worry about basepoints.) Also these properties are again quasiisometry in-
variant, and so make sense for any group which acts property discontinuously cocompactly
on an A-acyclic 2-complex (which is the same as FP2 over A if A is Z or any field).

From Lemma 14.1, we deduce immediately:

Lemma 14.2 : If X is uniformly simply connected and semistable at infinity with
π∞
1 (X) ∼= Z, then it’s also homologically semistable over Z, and H∞

1 (X ;Z) ∼= Z. ♦

Lemma 14.3 : Suppose F is any field, and X is uniformly acyclic. Then X is homolog-
ically semistable over F.

Proof : Suppose K ⊆ X is compact. Applying Mayer-Vietoris to X = K ∪KC , we see
that H1(K

C ;F) is finite-dimensional. Choose L ⊇ K so as to minimise the dimension of
the image ofH1(L

C ;F) inH1(K
C ;F). IfM ⊇ K is compact, then the image ofH1(M

C ;F)
in H1(K

C ;F) is equal to that of H1(L
C ;F). ♦

Given compact K ⊆ X , let VK denote the image of H∞
1 (X ;F) in H1(K

C ;F) under
that natural map. Suppose H∞

1 (X ;F) is finite dimensional. Choose K so as to maximise
the dimension of VK . We see that the natural map of H∞

1 (X ;F) into H1(K
C ;F) is

injective, so that VK can be naturally identified with H∞
1 (X ;F). The same goes for any

compact set containing K. Putting this together with semistability (Lemma 14.2), we
conclude that:

Lemma 14.4 : Suppose that X is F-acyclic and H∞
1 (X ;F) is finite-dimensional. Then

(∃K0)(∀K1 ⊇ K0)(∃L0 ⊇ K1)(∀L1 ⊇ L0) with K0, K1, L0, L1 ⊆ X compact, the image of
H1(L1;F) in H1(K1;F) is naturally identified with H∞

1 (X ;F). ♦
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Now, if H1(X ;Z) = 0, then by the universal coefficient theorem, H1(X ;F) = 0 for
any field, F. Suppose X is homologically semistable over Z. If H∞

1 (X ;Z) ∼= Z, then
since Z is not profinite, by the same argument as for fundamental groups, we see that the
same conclusions as Lemma 14.4 holds with Z replacing F. Now, again using the universal
coefficient theorem, we deduce:

Lemma 14.5 : If X is Z-acyclic and homologically semistable over Z, and H∞
1 (X ;Z) ∼=

Z, then H∞
1 (X ;F) ∼= F for any field F. ♦

We shall now gather these facts together to deduce (R) ⇒ (I) ⇒ (E) ⇒ (EF) ⇒ (PF)
⇒ (C) ⇒ (S) for any field F. Of course it will be clear that one can pass more directly
from any of (R), (I) or (E) to a planar complex with integral winding numbers.

To prove (R) ⇒ (I), we first make some preliminary observations. Recall that a
path-metric space is taut if every point lies on (or equivalently, is a bounded distance
from) a uniform biinfinite path with uniform parameters. (Here we need only consider
quasigeodesics.) We say that a space is uniformly simply connected if it satisfies some
isodiametric inequality; in other words, every loop, γ, bounds (the continuous image of) a
disc whose diameter is bounded as a function of the diameter of γ. Clearly, the property
of being taut is a quasiisometry invariant of path-metric spaces, whereas that of being
uniformly simply connected is not.

Every simply connected complex which admits a cocompact group action is both taut
and uniformly simply connected. Also, any taut path-metric on the plane is uniformly
simply connected. To see that latter statement, first note that it is enough to consider
simple closed curves γ. Now any such curve, γ, bounds an embedded disc, D. If x ∈ D,
then x lies on a biinfinite uniform path, α, with fixed parameters. Each ray of α emanating
from x must intersect γ. The distance between these intersections is bounded by diam(D),
and hence places an upper bound on the distance between x and γ.

Now suppose that Γ is a finitely generated group which is quasiisometric to a plane, R,
with a complete path-metric. It is a simple exercise to triangulate R such that diameters
of the 2-simplexes are bounded — start with any topological triangulation and take a
sufficiently fine subdivision. (We do not assume that the edges of the triangulation are
rectifiable, or that there is any lower bound on the distance between distinct vertices.
However, this can be achieved, at least in the riemannian case [Ma].)

Let K be a Cayley graph of Γ, and let φ : K −→ R and ψ : R −→ K be quasiinverse
quasiisometries. We can assume that φ and ψ both map vertices to vertices.

Suppose that β is a loop in K. Now φβ is a bounded distance from a loop, γ, in
the 1-skeleton of R. This bounds a simplicial disc, D, in R. We map the vertices of this
disc back to K using ψ, and then extend over the 1-skeleton by mapping edges of D to
geodesics in R. The image of ∂D will be a bounded distance from the original loop β.
After connecting vertices of this image with nearby vertices of β, we end up spanning β
by the continuous image of the 1-skeleton of a triangulation of the disc, in such a way that
the length of the boundary of each 2-simplex is bounded, by some constant, k, say. We
deduce that if we attach a 2-cell to each circuit of K of length at most k, then we construct
a (locally finite) 2-complex, Σ, which is simply connected. Now Γ acts cocompactly on Σ.
We have thus shown that Γ is finitely presented. From this point on, we can assume that
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Σ is a simplicial complex, and that K is the 1-skeleton of Σ.
We now know that Σ is taut and uniformly simply connected. Thus R is taut, and

since it is a plane, it is also uniformly simply connected.
Now we can realise the quasiisometry ψ : R −→ Σ as a proper simplicial map, possibly

at the cost of subdividing R. We can do this by first mapping in the vertices, then mapping
each edge of R to a geodesic in the 1-skeleton of Σ, and then extending to each 2-simplex
of R using the fact that Σ is uniformly simply connected to bound the diameter of their
images. This modified map is a bounded distance from the original, and hence also a
quasiisometry. At this point, we need the fact that R is complete to see that ψ is proper.

Now we know that R is semistable at infinity and that π∞
1 (R) ∼= Z (since these are

just topological notions). It is now a simple exercise to check that these properties are also
true of Σ, using the fact that R is uniformly simply connected to push homotopies in Σ
a bounded distance into R. We have shown that π∞

1 (Γ) ∼= π∞
1 (X) ∼= Z as required. This

finally shows that (R) ⇒ (I).
Now, (I) ⇒ (E) and (E) ⇒ (EF) follow respectively from Lemmas 14.2 and 14.5.

To deduce (EF) ⇒ (PF), let X be an F-acyclic 2-complex on which Γ acts properly
discontinuously cocompactly. Thus, H∞

1 (X ;F) ∼= F. For simplicity, let’s assume that
there is only one Γ-orbit of vertex. Given any vertex, x ∈ X , applying Lemma 14.4, we
find that there exist r ≥ s ≥ 0 such that the image of H1(N(A, r)C;F) in H1(N(A, s)C;F)
can be canonically identified with H∞

1 (X ;F), where A can be x, or any edge incident on
x. By Γ-equivariance, we see that the same is true for any vertex of X .

Now choose any non-zero element ζ ∈ H∞
1 (X ;F). Given a vertex x ∈ X then a loop, β,

with ρ(x, ρ) ≥ r determines an element ofH1(N(x, r)C;F) whose image inH1(N(x, s)C;F)
gives us an element, ωζ, of H∞

1 (X ;F). We define ω(x, β) = ω.

Properties (W1) and (W3) are immediate. To see (W2), suppose that x, y ∈ X are
adjacent vertices, connected by an edge, e. Suppose β is a loop with ρ(x, β) ≥ r and
ρ(y, β) ≥ r. Then, β determines an element of H1(N(e, r)C;F). The images of this
element in H1(N(e, s)C ;F), H1(N(x, s)C;F) and H1(N(y, s)C;F) all correspond to the
same element of H∞

1 (X ;F). Thus, by definition, ω(x, β) = ω(y, β).

We see that ω is a winding number with separation constant, r. Thus X is planar,
proving property (PF).

This discussion leaves open the question as to whether the implication (E) ⇒ (S)
remains true if we drop the assumption of homological semistability from (E).

15. The Seifert Conjecture.

The Seifert conjecture, proved in [T,Me,Ga,CJ], states that if M is a closed (ori-
entable) irreducible 3-manifold whose fundamental group contains an infinite cyclic normal
subgroup, then M is a Seifert fibred space. The results of Section 14 enable us to give
a homological version of this result. Applying the result of [Sco1], one can recover the
original Seifert conjecture.

Specifically, we shall show:
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Theorem 15.1 : Let F be a field, and suppose that Γ is a group which is FP3 over
F, and such that H3(Γ;FΓ) contains a 1-dimensional invariant subspace. Suppose that Γ
contains an infinite cyclic normal subgroup. Then the quotient of Γ by this subgroup is a
virtual surface group.

The proof Theorem 15.1 uses the LHS spectral sequence (see for example [Br]). A
very similar argument is used in [H2]. I am grateful to Ian Leary for explaining to me how
this works.

Proof of Theorem 15.1 : Suppose N is a normal subgroup of a group, Γ, with quotient
G = Γ/N . If M is any left FΓ-module, the LHS spectral sequence for cohomology has
second page Eij

2 = Hi(G;Hj(N ;M)) and converges to Hi+j(Γ;M). Moreover, if M is
a bimodule, so that Hi(Γ,M) is a right FΓ-module, then we get a spectral sequence of
right FΓ-modules. In our case, N ∼= Z and M = FΓ. Thus Hj(N ;M) = Hj(Z;FΓ)
which, as a right FΓ-module, is easily seen to be equal to FG if j = 1 and 0 if j 6= 1.
Thus, the spectral sequence stabilises immediately, with Hi(G;FG) in row j = 1, and
0 everywhere else. Thus, for all j ≥ 0, we obtain Hi(G;FG) ∼= Hi+1(Γ;FΓ). This is
an isomorphism of right FΓ-modules. In particular, we deduce that H2(G;FG) has a
1-dimensional G-invariant subspace.

Now it is shown in [Bi] (making similar use of the LHS spectral sequence for homology,
and applying the Bieri-Eckmann finiteness criterion) that G must be FP2 (in fact, FP3)
over F (see [Bi, Proposition 2.7]). Thus, the hypotheses of Theorem 0.1 are satisfied, and
we deduce that G is a virtual surface group. ♦

As a result, we may deduce:

Corollary 15.2 : If Γ is a torsion-free group satisfying the hypotheses of Theorem 15.1,
then it is the fundamental group of a Seifert fibred 3-manifold. ♦

In the non-orientable case, we are using the general definition of a Seifert fibred 3-
manifold, as found in [Sco2] for example. In other words, we are allowing for the possibility
of a neighbourhood of a fibre being a solid Klein bottle, so that the base orbifold may have
circular mirrors.

To deduce Corollary 15.2 from Theorem 15.1, we need the following:

Lemma 15.3 : Suppose Γ is a torsion-free group with infinite cyclic normal subgroup,
N ⊳ Γ, such that Γ/N is planar. Then Γ is the fundamental group of a Seifert fibred
3-manifold.

This result seems to be folklore, and can be proven by explicit construction (if we
start from the characterisation (G) of planar groups in Section 14). In the orientable case,
it is stated in [Sco1]. The case where N is central, and the quotient is fuchsian is given
in [Z] (see Theorem 63.1). However, since I know of no explicit reference for the general
case, I outline an argument below. We shall make much use of the fact that a torsion free
virtually cyclic group is infinite cyclic.
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Proof of Lemma 15.3 : First, we note that we can assume that the quotient group
is an orbifold group. To see this, let φ : Γ −→ G be the quotient map. Let K be the
maximal finite normal subgroup of G, and let ψ : G −→ G/K = H be the quotient map.
Now, H is an orbifold group, and kerφ had finite index in φ−1K = ker(ψ ◦φ). Now, φ−1K
is torsion-free and two-ended, and thus infinite cyclic. Thus, replacing φ : Γ −→ G by
ψ ◦ φ −→ H, we get an orbifold group quotient as claimed. Note that any finite subgroup
of the quotient must be cyclic (since its preimage in Γ is infinite cyclic).

Now, let φ : Γ −→ G = Γ/N be the quotient map, and let G = π1(Q) be the orbifold
fundamental group of a closed orbifold Q. Now since G has no dihedral subgroups, the
singularities of Q consist of (at most) a finite set of cone points, and finite set of circular
mirrors. Let Z(N) be the centraliser of N in Γ, and let G0 = φ(Z(N)) ≤ G. Thus, G0 has
index at most 2 in G. Note that a loop around any cone-point lies in G0.

Let α1 . . . αm be the mirrors of Q, and let P ⊆ Q \
⋃m

i=1
αi be a finite non-empty set

containing all the cone points of Q. Let Q0 = Q \ (P ∪
⋃m

i=1
αi), and let x ∈ Q0 be a

fixed basepoint. For each i, let βi an arc connecting x to αi, and let γ1, . . . , γn be a set
of embedded loops based at x, such that the interiors of all the βi and γj are disjoint,
and such that each component of Q \ (

⋃m
i=1

βi ∪
⋃n

j=1
γj) is a disc containing precisely one

point of P .

We now construct a 2-complex, D, as follows. Let λ be a circle. For each i ∈ {1, . . .m},
let Ai be an torus or Klein bottle depending on whether or not αi lies in G0. Let µi be
a 2-sided simple closed curve on Ai, and let Bi be a Möbius band, whose core curve is
identified with µi, and whose boundary is identified with λ. For each j ∈ {1, . . . , n}, let
Cj be a torus or Klein bottle depending on whether or not γi lies in G0. We identify a
2-sided simple closed curve on Cj with λ. The union of the Ai, Bi and Cj now gives us our
2-complex, D. Note that D had a natural projection, p, to

⋃m
i=1

αi ∪
⋃m

i=1
βi ∪

⋃n
j=1

γj .

We now thicken up D to give us a 3-manifold, V , and extend p to V . We can assume
that the complement of pV in Q is a disjoint union of open discs each containing one point
of P , and that p|p−1Q0 is a fibration with circular fibres. Now, if δ is any simple closed
curve in Q0, then p−1δ is a torus or Klein bottle depending on whether or not δ lies in
G0. In particular, we see that each boundary component of V is a torus. We can define
a surjective homomorphism, θ : π1(V ) −→ Γ, with ker θ = π1(λ) ≤ π1(V ), and such that
θ ◦ φ is the homomorphism from Γ to G induced by p.

Suppose T is a boundary component of V . Now, T is incompressible, so π1(T ) is a
subgroup of π1(V ). Moreover, θ(π1(T )) is infinite cyclic (being the preimage in Γ of a finite
cyclic subgroup of G). We can thus glue a solid torus to T so as to kill ker(θ|π1(T )). Per-
forming this construction for each boundary component of V , we get a closed 3-manifold,
M , with a projection map p :M −→ Q, so that the preimage of every point is a circle, and
the preimage of each cone point is a singular fibre. In other words, M is a Seifert fibred
space. Now, θ descends to a homomorphism from π1(M) to Γ, which is easily verified to
be an isomorphism. ♦

Now, if Γ is PD(3) over Z, then it’s necessarily torsion-free. It is also FP3 over Z

and hence also over Q. Moreover, H3(Γ;ZΓ) ∼= Z and so H3(Γ;QΓ) ∼= Q. Thus Corollary
15.2 applies. We have therefore proven Corollary 0.5.

In the case where the abelianisation of Γ is infinite, Corollary 0.5 was proven by
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Hillman [H1]. The main obstacle to generalising this was the issue of whether a torsion
group could be PD(2) over Q — a matter resolved in the negative in this paper. (See also
[Kl].)

As a result of Corollary 0.5, we get another proof of the Seifert conjecture.

Corollary 15.4 : If M is a closed orientable irreducible 3-manifold and π1(M) contains
an infinite cyclic normal subgroup, then M is a Seifert fibre space.

Proof : Since π2(M) = 0, π1(M) is PD(3) over Z. By Corollary 0.5, M is homotopy
equivalent to a Seifert fibre space, and hence homeomorphic to one by [Sco1]. ♦

Scott’s theorem [Sco1] is only stated in the orientable case, so we have reproduced
this hypothesis above. However, the difficult (non Haken) case dealt with in [Sco1] is
necessarily orientable, so it would seem that this result will generalise without difficultly
to the non-orientable case.

In the original proof, Mess [Me] showed that the quotient space was quasiisometric to
a complete riemannian plane, and reduced the problem to classifying convergence actions
on the plane. This had been partially achieved in [T], and was subsequently completed in
[Ga,CJ].
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