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Abstract.

We explore conditions under which the property of geometrical finiteness is open
among type-preserving representations of a given group into the group of isometries of
hyperbolic n-space. We give general criteria under which this is the case, for example if
every maximal parabolic subgroup has rank at least n− 2. In dimension n = 3, we deduce
Marden’s theorem that geometrical finiteness is always an open property. We give examples
to show that, in general, additional constraints of the type we describe are necessary in
dimension 4 and higher.

0. Introduction.

In this paper, we consider the space of type-preserving representations of a given
finitely generated group into the group, IsomHn, of isometries of hyperbolic n-space, Hn.
We are particularly interested in the subset of geometrically finite representations without
accidental parabolics, and consider the question of when this subset is open. This need not
always be the case, and we give examples in dimension n = 4 of sequences of non-discrete
(or of discrete non geometrically finite representations) which converge on a geometrically
finite representation (Section 5). We also give a positive result (Theorem 1.5) which clarifies
how and when this phenomenon can occur.

Deformations of Kleinian groups play an important role in hyperbolic geometry. In
dimension n = 3, there is a well developed theory (see for example [BeP] for an exposition),
which plays a crucial role in Thurston’s hyperbolisation theorem for Haken 3-manifolds.
In higher dimensions, spaces of deformations are much less well understood in general, but
can be useful in constructing interesting examples.

Suppose that Γ is a finitely generated group with a (possibly empty) collection of
virtually abelian “peripheral” subgroups. We say that a representation from Γ to IsomHn

is “type preserving” if it sends every peripheral subgroup to a discrete parabolic group.
By a “peripheral element”, we mean an infinite order element lying in some peripheral
subgroup. An “accidental parabolic” is a non-peripheral element which gets sent to a
parabolic. Let R = R(Γ, n) be the set of type preserving representations. Thus, R
carries a natural “algebraic” topology (Section 1). Let RD ⊆ R be the subset of discrete
representations, and let RF ⊆ RD be the subset of geometrically finite representations
without accidental parabolics. (We do not necessarily assume that such representations
are faithful, though the kernel of such a representation is, by hypothesis, finite.) It turns
out that RD is always closed in R, provided that Γ is not virtually abelian [Wi]. (See the
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end of Section 1 for a discussion of this). The properties of RF , depend on the dimension,
n, and the group Γ.

In dimension n ≤ 3, RF is always open in R. For n = 3, this is a result of Marden
[Mard]. These cases are discussed more fully in Section 1. The set R is also open in the
“convex cocompact” case — where Γ has no peripheral elements. This is a consequence
of the Holonomy Theorem (see [L,G2]), and will also be proven directly in Section 4
(Proposition 4.1). Also, in the finite covolume case, Mostow rigidity tells us that RF is a
point, and in particular open. In fact, Proposition 1.8 tells us that RF is open provided
that the rank of every peripheral subgroup is at least n − 2. All the above examples are
special cases of this result.

Note that our definition of “type preserving” is more restrictive than that sometimes
used, in that we are supposing that the parabolic groups are discrete. Elsewhere it has been
taken to mean that every peripheral element gets sent to a parabolic. In low dimension, this
makes no real difference. Note that a rank 1 parabolic group is necessarily discrete, and a
discrete rank n− 1 parabolic group cannot be deformed to a non-discrete parabolic group.
We thus recover the usual results in dimension n ≤ 3. In higher dimension, however, some
assumption of discreteness is essential. Consider, for example, a rank 2 free abelian group
acting properly discontinuously by translation on euclidean 3-space. We can perturb this
action so that it becomes non-discrete fixing setwise a 1-dimensional subspace. We can
extend this to parabolic action on hyperbolic 4-space. This gives a fairly trivial example.
In fact, Misha Kapovich has observed that this phenomenon can occur in more interesting
situations, for example, by deforming a finite volume hyperbolic 3-manifold into 4-space
by bending along a totally geodesic finite-area surface.

Even assuming discreteness of parabolic groups, however, RF need not be open in R
or even in RD. Again, the simplest examples occur in dimension n = 4. In Section 5, we
describe a sequence of representations in R\RD which converge on a point of RF . We also
give a sequence of representations in RD \ RF which converge to a point of RF . In both
these examples, there is a cyclic parabolic group G ≤ Γ which acts by euclidean isometry
on a some horosphere. For each representation in the converging sequence, this group acts
as a “screw motion”. As the sequence converges, the rotational part of the screw motion
tends to 0, so that, in the limit, we are left with a euclidean translation. In other words,
the parabolic group, in some sense, changes character in the limit. We shall see that this
must always be the case in such examples.

The main positive result of this paper (Theorem 1.5) gives a “stratification” of the
space R, such that the intersection of RF with each stratum is open in that stratum. This
is achieved by associating to each parabolic subgroup a canonical euclidean subspace in the
corresponding horosphere. On a stratum, the dimensions of these subspaces is constant.
In the case of a screw motion on euclidean 3-space, the canonical subspace is just the axis
of the screw motion. For a translation, it is the whole of euclidean 3-space. Thus, in the
examples described earlier, we see that the dimension jumps up in the limit. In contrast,
there are cases (for example as described by Proposition 1.8) where the whole of R consists
of a single stratum, or at least where each stratum is open and closed in R. Thus, in such
cases, RF is open in R.

As remarked earlier, representations in RF or RD are not assumed to be faithful.
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However the above results would remain valid if “discrete” were everywhere replaced by
“discrete and faithful”, and “geometrically finite” by “geometrically finite and faithful”.
(See Lemma 1.9.)

In this paper, we shall concentrate on the case of constant curvature. However, the
notion of geometrical finiteness can be defined for groups acting on any pinched Hadamard
manifold (i.e. a complete simply connected riemannian manifold of pinched negative curva-
ture). The definitions are described in general in [Bo3], and have been explored explicitly
in the case of complex hyperbolic space by Goldman and others, (see for example [G3]). I
suspect that many of the results described here can be generalised to that situation. The
problem reduces to understanding the geometry of parabolic groups. For complex hyper-
bolic space (and the other symmetric spaces) this may be possible along similar lines. In
the general case, one could not hope to associate canonical subspaces to parabolic groups,
but one might be able to rephrase the stratification in terms of rotational parts of parabolic
isometries, which can be defined in the general context [Bo2]. Note that peripheral sub-
groups in this case are allowed to be virtually nilpotent.

In the special case of convex cocompact groups (no peripheral elements), none of
these problems arise. Indeed the proof given here of Proposition 4.1 generalises, essentially
unchanged, to show that in variable curvature, the set of convex cocompact representations
is open.

Returning to the constant curvature case, we remark that there are close connections
between geometrical finiteness and structural stability. These were explored by Sullivan
[S] in dimension n = 3. In [Tu], Tukia shows that geometrically finite representations
are structurally stable (among geometrically finite representations) in any dimension. (In
Tukia’s paper, a more restrictive definition of geometrical finiteness is used, namely that
the group should possess a finite-sided fundamental domain. However, all the arguments
appear to go through in general.) This means that the limit sets of geometrically finite
representations vary continuously in the Hausdorff topology. Moreover the action of Γ on
the boundary of Hn of actions which are close in RF are quasiconformally conjugate, by a
map with quasiconformal constant close to unity. In some sense, these results are comple-
mentary to the kind of results we describe in this paper. Thus, Sullivan and Tukia consider
representations which remain in the class of geometrically finite groups. In dimension 3,
this restriction is superfluous by the result of Marden [Mard], but not necessarily in higher
dimensions.

1. Summary of results.

We use Sn, En and Hn to denote, respectively, the n-dimensional spherical, euclidean
and hyperbolic spaces. We write dsph, deuc and dhyp for the metrics on these spaces. If X
is any of these spaces, we shall write IsomX for the Lie group of isometries of X .

Suppose Γ is a finitely generated group. The space of representations ρ : Γ −→ IsomX
carries an algebraic topology . This is defined by choosing a finite generating set {γ1, . . . , γk}
for Γ, and embedding the representation space in the cartesian product (IsomX)k by the
map [ρ 7→ (ρ(γ1), . . . , ρ(γk))]. Note that, for any γ ∈ Γ, the map [ρ 7→ ρ(γ)] is thus
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continuous. In particular, it follows that the topology is independent of the choice of finite
generating set.

We say that a representation is discrete if it is finite-one and ρ(Γ) is a discrete subset of
IsomX . Thus, ρ is discrete if and only if the induced action onX is properly discontinuous.

Let’s begin our discussion with euclidean space Em. The Bieberbach Theorems tell
us that:

Lemma 1.1 : If ρ : G −→ IsomEm is discrete, then G is finitely generated virtually
abelian. ♦

We shall assume, from now on, that G is finitely generated virtually abelian. We
write r(G) for the rank of a finite index free abelian subgroup. (This is independent of the
choice of such a subgroup.)

Suppose that ρ : G −→ IsomEm is discrete. A crystallographic subspace of Em is a
ρ(G)-invariant affine subspace, µ ⊆ Em, such that µ/ρ(G) is compact. Note that the latter
condition is equivalent to saying that dim(µ) = r(G). We say that G is a crystallographic

group if r(G) = m, or equivalently if Em/ρ(G) is compact.
For any discrete representation, ρ, we set Σ = Σ(ρ) to be the set of all crystallographic

subspaces. We set σ = σ(ρ) =
⋃
Σ(ρ) ⊆ Em. The following is another consequence of the

Bieberbach Theorems (see for example [Wo] or [Bo1]).

Theorem 1.2 : The set σ is a non-empty ρ(G)-invariant subspace of Em, which is
foliated by the elements of Σ. Any two elements of Σ are parallel, and the action of ρ(G)
on two such elements commutes with orthogonal projection between them. ♦

We write s(ρ) = dim(σ(ρ)). Clearly r(G) ≤ s(ρ) ≤ m.
We shall write S = S(G,m) for the space of discrete representations of G into IsomEm

with the algebraic topology. We shall see (Section 2) that:

Lemma 1.3 : The map s : S −→ N is upper semicontinuous.

We now move on to hyperbolic space, Hn. We write ∂Hn for the ideal sphere. Given
p ∈ ∂Hn, we write Isomp H

n for the subgroup of isometries which preserve some, and
hence any, horosphere about p. Identifying some such horosphere with En−1, we get an
identification of Isomp H

n with IsomEn−1.
If G is a finitely generated infinite virtually abelian group, we say that a representation

ρ : G −→ IsomHn is parabolic, with fixed point p, if ρ(G) ⊆ Isomp H
n and ρ is discrete.

The fixed point, p, is uniquely determined by ρ.
Now suppose that Γ is a finitely generated group. A peripheral structure on Γ consists

of a set, Π, and an action of Γ on Π, together with a collection (Gi)i∈Π of subsets of Γ
indexed by Π, satisfying the following conditions:

(1) If γ ∈ Γ and i ∈ Π, then Gγi = γGiγ
−1,

(2) Π/Γ is finite,

(3) If i 6= j then Gi ∩Gj is finite, and

(4) For each i ∈ Π, Gi is an infinite finitely generated virtually abelian group.
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Note that these conditions imply that Gi is the stabiliser of i (so that we could have defined
peripheral structure purely in terms of the action of Γ on a set Π).

Definition : A representation ρ : Γ −→ IsomHn is type-preserving (relative to the given
peripheral structure) if for each i ∈ Π, ρ|Gi is discrete parabolic.

We shall writeR = R(Γ, n) for the space of type-preserving representations in the algebraic
topology.

We can think of NΠ/Γ as the set of maps ω : Π −→ N such that ω(γi) = ω(i) for
all i ∈ Π and γ ∈ Γ. We define a partial order, ≤, on NΠ/Γ by ω ≤ ω′ if and only if
ω(i) ≤ ω′(i) for all i ∈ Π. Let W (Γ) be the finite subset of NΠ/Γ defined by ω ∈ W (Γ) if
and only if ω(i) ≤ n− 1 for all i ∈ Π.

Now, given any ρ ∈ R(Γ), and i ∈ Π, we get a parabolic representation ρ|Gi −→
Isompi

Hn, where pi is the fixed point of ρ(Gi). We set ∆(ρ)(i) = s(ρ|Gi). This defines a
map ∆ : R −→ W . The following is a corollary of Lemma 1.3:

Lemma 1.4 : The map ∆ : R(Γ, n) −→W (Γ) is upper semicontinuous.

This gives us our stratification of R, where each “stratum” has the form Rω = ∆−1(ω),
for ω ∈W (Γ).

By a peripheral element of Γ, we mean an infinite order element of
⋃

i∈ΠGi. If ρ
is type-preserving, then an accidental parabolic of ρ is a non-peripheral element whose
image under ρ is parabolic. We write RF ⊆ R for the subspace of geometrically finite
representations without accidental parabolics.

Our main result can now be stated:

Theorem 1.5 : For each ω ∈W , the set RF ∩ Rω is open in Rω.

This is proved in Section 4.

In our definition of a geometrically finite representation, we did not assume that the
representation was faithful, though there would be no loss in doing this. (Note that the
kernel of a geometrically finite representation is a finite normal subgroup. Provided that the
group is not elementary, this will be the unique maximal finite normal subgroup. Moreover
the trivial representation of any finite group is isolated in the algebraic topology. It follows
easily that we cannot have a sequence of non-faithful representations of a non-elementary
group converging on a faithful geometrically finite representation.

To describe some applications of this result, we return for a moment, to euclidean space
Em. Let G be a finitely generated virtually abelian group, and suppose that ρ ∈ S(G,m).
Now r(G) ≤ s(ρ) ≤ m, so if r(G) = m then s(ρ) = m. If ρ(Γ) = m−1, then s ∈ {m−1, m}.
In fact:

Lemma 1.6 : If r(G) = m− 1, then s is locally constant on S(G,m).

This is fairly intuitive, since if for any crystallographic subspace, either each component
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of the normal bundle is preserved by ρ(G), or there is some element which interchanges
the two components. In the former case, s(ρ) = m and in the latter s(ρ) = m − 1. This
situation remains stable under small perturbations. A more detailed argument is given at
the end of Section 2.

Returning to hyperbolic space, which Γ as above, we obtain the following corollaries.

Corollary 1.7 : If r(Gi) ≥ n− 2 for each i ∈ Π, then ∆ is locally constant on R.

This uses the fact that the parabolic fixed point of a group ρ(Gi) varies continuously with
ρ (see Section 4). Putting this together with Theorem 1.5, we deduce:

Proposition 1.8 : If r(Gi) ≥ n− 2 for each i ∈ Π, then RF is open in R. ♦

As remarked in the introduction, Theorem 1.5 and its corollaries would remain valid
if RF were everywhere replaced by the set R0

F of faithful geometrically finite representa-
tions. This follows from the following observation (which works equally well in variable
curvature). Let R0

D ⊆ RD be the set of discrete faithful representations.

Lemma 1.9 : R0
D is open and closed in RD.

Proof : To see that R0
D is open, suppose that the sequence ρi ∈ RD \ R0

D converges
to ρ ∈ RD. The fact that Γ admits a discrete representation tells us that it contains a
maximal finite normal subgroup which contains all other finite normal subgroups. We can
therefore assume that ker ρi is constant — equal to F ⊳ Γ. Since each ρi|F is trivial, we
see that ρ|F is trivial, and so ρ /∈ R0

D.

To see that R0
D is closed, suppose that the sequence ρi ∈ R0

D converges on ρ ∈ RD.
Now, the trivial representation of a finite group is isolated in the algebraic topology, and
so ρi| ker ρ is trivial for all sufficiently large i. Thus ker ρ is trivial, and so ρ ∈ R0

D. ♦

As mentioned in the introduction, there are several circumstances under which the
hypotheses of Proposition 1.8 are satisfied.

One obvious case is if Π = ∅, so the space of convex cocompact representations is
always open in the algebraic topology. To see this directly one can bypass most of the
proof of Theorem 1.5, as is done in the first part of Section 4 (Proposition 4.1). The
technical details arise mainly in dealing with parabolics.

We also see that the space of finite covolume representations of a group are open. In
fact, we know by Mostow rigidity that this space consists of an isolated point.

The hypotheses are also satisfied for n ≤ 3. In the case n = 2, all discrete represen-
tations are geometrically finite, though they might contain accidental parabolics. In the
finite coarea case, however, we see that RF = RD, and so RF is both open and closed.
In fact, we get two copies of Teichmüller space (one for each choice of orientation). For
a compact surface, it’s known that the connected components of the representation space
correspond to the possible values of the Euler class of a representation [G1]. The discrete
representations correspond to the extreme cases where the Euler class is plus or minus the
Euler characteristic of the surface.
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In the case n = 3, we recover Marden’s result [Mard], that RF is open in R. It has
been conjectured that RF is dense in RD, though (as far as I know) the only cases for
which this is known are the finite covolume groups, where both spaces reduce to a point,
(or of course if RD = ∅). It can be shown, by a roundabout argument using Thurston’s
geometrisation theorem for Haken manifolds, that if RD 6= ∅ then RF 6= ∅. In general,
the space RD admits two other natural topologies, namely the “geometric topology” and
the “quasiconformal topology”. These are discussed in [Th]. On the space RF , all three
topologies agree.

In dimension n = 4, the RF need not be open in R, or even in RD. In Section 5, we
give examples of sequences in R\RD which converge to a point of RF , and a sequence in
RD \ RF which also converges to a point of RF .

There are other constraints under which the space of geometrically finite representa-
tions will be open; for example if we demand that all parabolic elements should have zero
rotational part. This however, seems rather unnatural.

We finish this section with a few remarks about the result that RD(Γ) is closed if Γ
is non-elementary. The term “elementary” can be interpreted to mean virtually abelian
in the constant curvature case. This result is due, with varying generality to Chuckrow
[C], Marden, Jørgensen and Wielenberg [Wi]. In fact it is true for pinched Hadamard
manifolds, if “elementary” is interpreted to mean virtually nilpotent. Note that the type
preserving assumption is irrelevant here (so we might as well take Γ to have empty pe-
ripheral structure). Our situation is slightly different to that described in [Wi], in that
we are not assuming that discrete representations are faithful — just that they have finite
kernels. For completeness, we give an argument below, which works in variable curvature.
The result we want is:

Proposition 1.10 : Suppose that X is a pinched Hadamard manifold, and that Γ is a
finitely generated group. If ρ : Γ −→ IsomX is an algebraic limit of discrete representa-
tions, then either ρ is discrete, or Γ is virtually nilpotent.

Proof : The fact that Γ admits a discrete representation tells us immediately that any
locally finite subgroup of Γ is finite. Suppose that ρ : Γ −→ IsomX is not discrete. If U
is a neighbourhood of the identity in IsomX , then ρ−1U is an infinite subset of Γ. Thus
we can find β1, . . . , βp ∈ ρ−1U such that 〈β1, . . . , βp〉 is infinite (otherwise 〈ρ−1U〉 would
be an infinite locally finite subgroup of Γ).

Now let ǫ > 0 be less than the Margulis constant. Let {γ1, . . . , γq} be a finite gener-
ating set for Γ. Choose any x ∈ X , and let K = max{d(x, ρ(γj)x) | 1 ≤ j ≤ q}. Let U be
a neighbourhood of the identity in IsomX such that if g ∈ U and y ∈ N(x,K + 1) then
d(y, gy) ≤ ǫ/2. Let β1, . . . , βp ∈ ρ−1U be chosen as above. Let ρ′ be a discrete representa-
tion, close to ρ, such that d(y, ρ′(βi)y) ≤ ǫ for all y ∈ N(x,K + 1) and i ∈ {1, . . . , p}, and
such that d(x, ρ′(γj)x) ≤ K + 1 for all j ∈ {1, . . . , q}.

Let Tǫ = {y ∈ X | Γǫ(y) is infinite}, where Γǫ(y) = 〈γ ∈ Γ | d(y, ρ′(γ)y) ≤ ǫ〉. Let
T0 be the connected component of Tǫ containing the point x (i.e. the “Margulis region”
containing x). Now, N(x,K +1) ⊆ Tǫ and so T0 ∩ γjT0 6= ∅ for each j ∈ {1, . . . , q}. Thus,
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T0 is ρ′(Γ)-invariant. ¿From the structure of Margulis regions, it follows that ρ′(Γ) is
virtually nilpotent (see Section 3.5 of [Bo3]). Now ρ′(Γ) ∼= Γ/ ker ρ′, and ker ρ′ is finite. A
theorem of P. Hall tells us that a nilpotent extension of a finite group is virtually nilpotent.
(This is not hard in the finitely generated case.) It follows that Γ is virtually nilpotent. ♦

Proposition 1.10 remains valid if we replace “discrete” by “discrete and faithful” in
both the hypothesis and conclusion. This is a corollary of the above result and Lemma
1.9. Note that, in the case of constant curvature, every nilpotent subgroup of IsomHn is
virtually abelian, so we recover the statement given in [Wi].

Note that we have not made much use of the curvature bound away from 0, other
than the convenience of referring to [Bo3]. We suspect that the above argument can be
modified to work for any Hadamard manifold with curvature bounded away from −∞.

Other proofs of Proposition 1.10 can be found in [GM] for complex hyperbolic space,
and in [Mart] in the case of pinched negative curvature (where the metric is also allowed
to vary).

2. Euclidean groups.

In this section we prove some results relating to discrete representations into euclidean
space.

For convenience of notation, we shall use Rm to denote euclidean space Em with a
preferred basepoint 0 ∈ T . Thus, Rm is an inner-product space, and we can identify Sm−1

with the unit sphere in Em. In this way IsomSm−1 acts by isometry on Rm. Also, there
is a natural homomorphism rot : IsomEm −→ IsomSm−1, where rot(g) is the rotational
part of g.

Given p ∈ {0, . . . , m}, we write Fp for the grassmannian of p-dimensional vector
subspaces of Rm, and we write F =

⊔m
p=0 Fp. Given V ∈ Fp, we write V ⊥ ∈ Fm−p for

the orthogonal complement. Clearly, the map [V 7→ V ⊥] is continuous.

It will be convenient to introduce a “parameter space”, T , which might, in specific
cases, be the whole or part of the representation space we are dealing with. All we really
need to assume about T is that it is a hausdorff topological space, though it is convenient
to assume also that it’s first countable. This will allow us to speak about continuity in
terms of sequences.

In view of the fact that F is compact, we can define “upper semicontinuity” as follows.
Suppose we have some function V : T −→ F . We say that V is upper semicontinuous if
whenever we have a sequence (ti)i∈N converging to some t ∈ T , and with V (ti) converging
to some V∞ ∈ F , then V∞ ⊆ V (t). Note that one can also characterise continuous maps
in this fashion by demanding that we always have V∞ = V (t).

The following are simple observations:

Lemma 2.1 : If V : T −→ F is upper semicontinuous, then the map [t 7→ dimV (t)] :
T −→ N is also upper semicontinuous. If dimV (t) is constant on T , then V is continuous.

♦
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Lemma 2.2 : If V,W : T −→ F are upper semicontinuous, then so is the map [t 7→
V (t) ∩W (t)]. ♦

Given g ∈ IsomSm−1, let fix(g) ∈ F be the set of fixed points of g in Rm. We see
easily that:

Lemma 2.3 : The map fix : IsomSm−1 −→ F is upper semicontinuous. ♦

More generally, given a subset A ⊆ IsomSm−1, we write fix(A) =
⋂

g∈A fix(g).
Let G be any finitely generated group. Suppose to each t ∈ T we associate a repre-

sentation ρt : G −→ IsomSm−1.

Lemma 2.4 : If the map [t 7→ ρt] is continuous (with respect to the algebraic topology),
then the map [t 7→ fix(ρt(G))] is upper semicontinuous.

Proof : Choose a finite generating set, {γ1, . . . , γk} for G. Then fix(ρt(G)) =
⋂k

i=1 ρt(γi).
For each i, the map [t 7→ ρt(γi)] is continuous, so the result follows by Lemmas 3.2 and
3.3. ♦

We now consider general euclidean groups. Given x, y ∈ Em, we write −→xy ∈ Rm for
the vector from x to y.

Given p ∈ {0, . . . , m}, let Ep be the set of all p-dimensional subspaces of Em. Let

E =
⊔m

p=0 Ep. Given τ ∈ Fp, set D(τ) = {−→xy | x, y ∈ τ} ∈ Fp. We put a topology on Ep
by choosing as base the collection of all sets of the form {τ ∈ Ep | τ ∩ U 6= ∅, D(τ) ∈ O},
where U runs over all open subsets of Em, and O runs over all open subsets of Fp. We
give E the topology as a disjoint union. In this way, the map D : E −→ F is continuous.

We shall need the following observation about convergence in E . Suppose that (τi)i∈N

is a sequence of elements of E , and τ ∈ E . Suppose that D(τi) → D(τ), and that there are
points xi ∈ τi and x ∈ τ , with xi → x. Then τi → τ .

Now, suppose G is a finitely generated virtually abelian group, and ρ : G −→ IsomEm

is a discrete representation. There are several natural subspaces one can associate to ρ.
Recall that σ(ρ) ∈ E is foliated by the set Σ(ρ) of parallel crystallographic subspaces
(Theorem 1.2). We write M(ρ) = D(µ) ∈ F for some (hence any) such subspace µ ∈ Σ.
Let S(ρ) = D(σ(ρ)). Clearly, M(ρ) ⊆ S(ρ). By definition, dim(S(ρ)) = s(ρ). Let
F (ρ) = fix(rot(ρ(G))).

Lemma 2.5 : S(ρ) =M(ρ) + F (ρ).

Proof : We know that M(ρ) ⊆ S(ρ). We claim that F (ρ) ⊆ S(ρ).
To see this, suppose ζ ∈ F (ρ). Choose x ∈ µ ∈ Σ, and let y ∈ En be the point such

that −→xy = ζ. Let µ′ be the subspace through y parallel to µ (i.e. D(µ′) = D(µ)). Note
that this is defined independently of the choice of x ∈ µ. If γ ∈ G, then ζ = rot(ρ(γ))(ζ)
is also the vector from ρ(γ)x to ρ(γ)y. But ρ(γ)x ∈ µ, so ρ(γ)y ∈ µ′. Thus µ′ is ρ(G)-
invariant. Since dim(µ′) = dim(µ) = r(G), we see that µ′ ∈ Σ, and so y ∈ µ′ ⊆ σ(ρ). Thus

ζ = −→xy ∈ D(σ(ρ)) = S(ρ) as claimed.
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It remains to show that S(ρ) ⊆ M(ρ) + F (ρ). Suppose that ζ ∈ S(ρ). Choose

x, y ∈ σ(ρ) with ζ = −→xy. Let x ∈ µ ∈ Σ and y ∈ µ′ ∈ Σ. Let z ∈ µ be the nearest point

on µ to y. Thus −→xy = −→xz + −→zy, and −→xz ∈ M(ρ) and −→zy ∈ (M(ρ))⊥. Now, µ and µ′ are
ρ(G)-invariant, and the action of G commutes with orthogonal projection between them
(Theorem 1.2). Thus, if γ ∈ G, then ρ(γ)z is the nearest point on µ to ρ(γ)y. In other

words, rot(ρ(γ))(−→zy) = −→zy and we deduce that −→zy ∈ F (ρ). Thus ζ = −→xy = −→xz + −→zy ∈
M(ρ) + F (ρ). ♦

(Note that the argument shows in fact that the subspacesM(ρ) and F (ρ) meet orthog-
onally along their intersection. In other words, we can write S(ρ) as an orthogonal direct
sum S(ρ) = (F (ρ) ∩M(ρ))⊕ F ′(ρ)⊕M ′(ρ), where F ′(ρ) ⊆ F (ρ) and M ′(ρ) ⊆M(ρ).)

As in Section 1, S = S(G,m) denotes the set of discrete representations from G into
IsomEm. Using Lemma 2.3, and the fact that rotational part is continuous, we deduce:

Lemma 2.6 : The map F : S −→ F is upper semicontinuous. ♦

Let’s restrict attention to the case of crystallographic groups for the moment. Suppose
that r(G) = m, and that ρ, ρ′ ∈ S(G,m) are faithful. Now one of the Bieberbach Theorems
[Wo] tells us that there is an affine transformation, A, of Em, which conjugates ρ to ρ′,
i.e. ρ′(γ) = Aρ(γ)A−1 for all γ ∈ G. (In fact, as observed elsewhere, this follows from
Theorem 1.2 — Take the product action of Γ on Em × Em ≡ E2m. A crystallographic
subspace for this action is a graph of the desired affine transformation.) Now such an affine
transformation has a “rotational part” which in this case is a linear endomorphism, B, of
Rm. Thus, ζ ∈ fix(rot ρ(γ)) if and only if Bζ ∈ fix(B(rotρ(γ))B−1) = fix(rot(Aρ(γ)A−1).
We see that F (ρ′) = B(F (ρ)). In particular, we see that f(ρ′) = f(ρ).

Now suppose ρ ∈ S(G,m), still with r(G) = m. We claim that ker(ρ) is the unique
maximal finite normal subgroup of G. (For if H were a finite normal subgroup of G, then
fix(ρ(H)) would be a non-empty ρ(G)-invariant subspace of Em, and hence the whole of
Em. Thus, H ≤ ker(ρ).) In particular, the kernel is completely determined by the group
structure of G. Thus the previous paragraph applies equally well to non-faithful discrete
representations. In summary, we have shown:

Lemma 2.7 : If r(G) = m, then f is constant on S(G,m). ♦

In this case, we can define h(G) = f(ρ) for some, and hence any, ρ ∈ S(G,m).

We now drop the constraint on dimension. If ρ ∈ S(G,m), then we have r(G) = dimµ
for any µ ∈ Σ. Applying the above result to the action of G on µ, we see that h(G) =
dim(F (ρ) ∩M(ρ)).

In summary, if ρ ∈ S(G,m) we have dimM(ρ) = r(G), dimF (ρ) = f(ρ), dimS(ρ) =
s(ρ) and dim(F (ρ)∩M(ρ)) = h(G). Moreover, by Lemma 2.5, we have S(ρ) =M(ρ)+F (ρ).
Using the formula dimS(ρ) + dim(F (ρ)∩M(ρ)) = dimM(ρ)+ dimF (ρ), we arrive at the
identity s(ρ) = r(G) − h(G) + f(ρ). Since, by Lemma 2.6, f is upper semicontinuous, so
we deduce that s is also upper semicontinuous. This proves Lemma 1.3.

It remains to consider the way in which the subspaces, σ(ρ) vary with σ. Given
q ∈ {r(G), . . . , m}, we shall write Sq = s−1(q).

10
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Note that, by Lemma 2.6, F is upper semicontinuous on S. Now, by the above identity,
f(ρ) = dimF (ρ) is constant on Sq . By Lemma 1.2, we see that F : Sq −→ F is continuous.

Moreover, we shall show:

Proposition 2.8 : For each q ∈ {r(G), . . . , m}, the map σ : Sq −→ Eq is continuous.

Proof : Suppose that (ρi)i∈N is a sequence of representations in Sq , converging on some
ρ∞ ∈ Sq . ¿From the continuity of F on Sq, we know that F (ρi) → F (ρ∞). We write
σi = σ(ρi). We want to show that σi → σ(ρ∞).

Suppose that σi fails to converge to σ(ρ∞). Then, passing to a subsequence, we can
assume that either σi → σ∞ ∈ E with σ∞ 6= σ(ρ∞), or else σi tends to infinity in the sense
that for any compact set K ⊆ Em, {i ∈ N | σi ∩K 6= ∅} is finite.

Let us consider the first case. Again passing to a subsequence, we can suppose that
M(ρi) converges to some M∞ ∈ Fr(G). Now D(σi) → D(σ∞) and for each i, we have
M(ρi) ⊆ D(σi). It follows that M∞ ⊆ D(σ∞).

Given x ∈ σ∞, let µ ∈ E be the subspace through x with D(µ) = M∞. Since
D(µ) ⊆ D(σ∞), we have µ ⊆ σ∞. Now, since σi → σ∞, there are points xi ∈ σi with
xi → x. Let µi be the subspace through xi with D(µi) =M(ρi). Since D(µi) → D(µ), we
see that µi → µ.

Now, µi ∈ Σ(ρi). In particular, µi is ρi(G)-invariant. It now follows that µ is ρ(G)-
invariant. To see this, suppose y ∈ µ, and choose a sequence yi ∈ µi with yi → y. Now
given γ ∈ G, we have ρi(γ) → ρ∞(γ) and so ρi(γ)yi → ρ∞(γ)y. We have ρi(γ)yi ∈ µi and
so ρ∞(γ)y ∈ µ. This shows that µ is ρ∞(G)-invariant as claimed. Now since dimµ = r(G),
we see that µ ∈ Σ(ρ∞), and so µ ⊆ σ(ρ∞). In particular x ∈ σ(ρ∞).

We have thus shown that σ∞ ⊆ σ(ρ∞). But since dimσ∞ = dimσ(ρ∞), we get that
σ∞ = ρ(σ∞).

We now move on to consider the second case, namely where σi tends to infinity.

Given any x ∈ Em, let yi = yi(x) ∈ σi be the nearest point in σi to x. We can
suppose (for sufficiently large i) that x /∈ σi. Let ζi(x) be the unit vector in the direction
−→xyi. Now, passing to a subsequence, we can suppose that ζi(x) converges to some ζ ∈ Rm.
Now, if x′ ∈ Em is any other point, we see that deuc(yi(x), yi(x

′)) ≤ deuc(x, x
′). Since

the distance between x and σi is tending to infinity, we see that the angle between ζi(x)
and ζi(x

′) tends to 0. We see that ζi(x
′) also tends to ζ as i → ∞. Note that for each

i, ζi(x) is perpendicular to σi. In other words, ζi(x) ∈ D(σi)
⊥ = S(ρi)

⊥ ⊆ F (ρi)
⊥. Now

F (ρi) → F (ρ∞) and so we see that ζ ∈ F (ρ∞)⊥.

Now suppose γ ∈ G. We have ρi(γ) → ρ∞(γ) and so ρi(γ)x → ρ∞(γ)x. Now, since
σi is ρi(G)-invariant, we see that ξi = rot ρi(γ)(ζi(x)) is the unit vector from ρi(γ)x to
the nearest point yi(ρi(γ)x) = ρi(γ)(yi(x)) in σi. Since ρi → ρ∞ and ζi(x) → ζ, we see
that ξi → rot ρ∞(γ)(ζ). Now, since ρi(γ)x → ρ∞(γ)x, we see that the angle between ξi
and ζi(ρ∞(γ)x) tends to 0. But (as discussed earlier with x′ = ρ∞(γ)x) the latter vector
tends to ζ. We see that ξi → ζ. Thus rot ρ∞(γ)(ζ) = ζ. We thus conclude that ζ ∈ F (ρ∞)
contradicting the earlier statement that ζ ∈ F (ρ∞)⊥. ♦

11
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Lemma 2.9 : The map M : Sq −→ F is continuous.

Proof : Fix some point x0 ∈ Em. Given ρ ∈ Sq, let x0(ρ) ∈ σ(ρ) be the nearest point
in σ(ρ) to x0. Using Proposition 2.8, we see easily that x0(ρ) depends continuous on ρ.
Let µ(ρ) be the crystallographic subspace in Σ(ρ) containing the point x0(ρ). We claim
that [ρ 7→ µ(ρ)] : Sq −→ E is continuous. It then follows that M(ρ) = D(µ(ρ)) varies
continuously in ρ as required.

To prove the claim, choose a set of generators, {γ1, . . . , γr} for a finite index free
abelian subgroup of G, where r = r(G). For 1 ≤ i ≤ r, let xi(ρ) = ρ(γi)(x0(ρ)). Thus
each of the points xi(ρ) vary continuously be ρ. But µ(ρ) is the subspace spanned by the
points x0(ρ), x1(ρ), . . . , xr(ρ), and has constant dimension r. The claim now follows. ♦

Given r, s ∈ N, with r ≤ s, we shall write

L(r, s) = {(V, τ) | V ∈ Fr, τ ∈ Es, V ⊆ D(τ)}.

We give L(r, s) the subspace topology as a subset of Fr × Es. Intuitively, we can think of
a point of L(r, s) as consisting of an s-dimensional subspace of Em (namely τ) foliated by
parallel r-dimensional subspaces (whose direction is given by V ).

Given ρ ∈ S(G,m), we define λ(ρ) = (M(ρ), σ(ρ)) ∈ L(r, s) where r = r(G) and
s = s(G). Thus, we get a map λ : Ss −→ L(r, s) where s = m − d. Putting Proposition
2.8 and Lemma 2.9 together, we see that:

Proposition 2.10 : The map λ : Ss −→ L(r, s) is continuous. ♦

We shall also need the following observation:

Lemma 2.11 : Suppose ρ ∈ Ss. Given any x ∈ Em, and η > 0, there is a neigh-
bourhood, U , of ρ in Ss such that for all ρ′ ∈ U and γ ∈ G, we have deuc(x, ρ

′(γ)x) ≥
(1− η)deuc(x, ρ(γ)x). ♦

We shall only need this result for crystallographic groups, for which it is a fairly simple
exercise. We state in general, since Proposition 2.10 allows us fairly easily to reduce to
that case anyway.

Finally, we give a proof of Lemma 1.6:

Proof of Lemma 1.6 : Suppose that r(G) = m− 1, and that ρi → ρ∞. Suppose that
s(ρi) = dimσ(ρi) = m − 1 for all i. We want to show that s(ρ∞) = m − 1. Since G
is finitely generated, we can suppose (on passing to a subsequence) that there is a fixed
γ0 ∈ G, such that ρi(γ0) swaps the two components of Em \ σ(ρi).

Now, as in the proof of Proposition 2.8, we have either that σ(ρi) tends to infinity
as i → ∞, or that σ(ρi) converges on some σ∞ ∈ Em−1. But, in the former case, we see
easily that the isometries ρi(γ0) move any fixed basepoint an arbitrarily large distance,
contradicting the fact that ρi(γ0) converges to some isometry ρ∞(γ0). We thus have that
σ(ρi) → σ∞. Now it’s easily seen that σ∞ is ρ∞(G)-invariant, and hence a crystallographic
subspace, and that ρ∞(γ0) swaps the two components of Em \ σ∞. Thus σ∞ = σ(ρ∞). In
particular, dimσ(ρ∞) = m− 1 as required.

12
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3. Coverings by connected sets.

In this section, (X, d) can be any simply-connected metric space in which open metric
balls N(x, r) = {y ∈ X | d(x, y) < r} are connected for all x ∈ X and r > 0. (In fact
it would be enough to assume this for all r less than some fixed positive constant.) Our
principal application will be to hyperbolic space: X = Hn.

Suppose that (I, E) is a connected graph with vertex set I, and edge set E. We shall
denote by ij the edge with endpoints i, j ∈ I. For convenience we shall assume that ii ∈ E
for all i ∈ I. (In other words, E is a reflexive symmetric relation on I, whose transitive
closure has just one equivalence class.)

The main result of the this section is used in the proof Theorem 1.5.

Theorem 3.1 : Suppose that (I, E) is a non-empty connected graph, and that (Ai)i∈I

is a collection of non-empty open connected subsets of X , indexed by the vertex set I,
satisfying:

(A1) if ij ∈ E, then Ai ∩ Aj 6= ∅,

(A2) if ij, ik ∈ E and Ai ∩Aj ∩ Ak 6= ∅ then jk ∈ E, and

(A3) (∃ǫ > 0)(∀i ∈ I)(∀x ∈ Ai)(∃j ∈ I)(ij ∈ E and N(x, ǫ) ⊆ Aj).

Then, X =
⋃

i∈I Ai and if Ai ∩ Aj 6= ∅ then ij ∈ E.

The rest of this section is devoted to proving this result. The idea is to construct abstractly
a covering space for X out of the sets Ai, together with the combinatorial information from
(I, E) telling us how to glue them together.

We give I the discrete topology, and X × I the product topology. Given i ∈ I, we set
Ξi = {(x, i) ∈ X × I | x ∈ Ai}, and set Ξ =

⋃
i∈I Ξi ⊆ X × I. We give Ξ the subspace

topology. Thus Ξ can be thought of as a disjoint union of the sets Ai.
We define a relation ∼ on Ξ by (x, i) ∼ (y, j) if and only if x = y and ij ∈ E. Using

hypothesis (A2), we see easily that ∼ is an equivalence relation on Ξ. We let Σ = Ξ/∼
with the quotient topology, and let π : Ξ −→ Σ be the quotient map. Given (x, i) ∈ Ξ,
write [x, i] = π((x, i)) ∈ Σ for the equivalence class. If U ⊆ Ai, write [U, i] = {[x, i] | x ∈
U} ⊆ Ξi. Let Bi = [Ai, i] = π(Ξi). Thus, Bi is connected. Define the map φ : Σ −→ X by
φ([x, i]) = x.

Lemma 3.2 : φ is continuous.

Proof : If U ⊆ X is open, then for all i ∈ I, Ξi ∩ π
−1φ−1U = (U ∩ Ai) × {i} is open in

Ξi = Ai × {i}. Thus, π−1φ−1U is open in Ξ, so φ−1U is open in Σ. ♦

Lemma 3.3 : Σ is connected.

Proof : Suppose [x, i], [y, j] ∈ Σ. By hypothesis, (I, E) is connected, so there is a sequence
i = i(0), i(1), . . . , i(n) = j in I, with i(m − 1)i(m) ∈ E for each m ∈ {1, . . . , n}. By
hypothesis (A1), for each m ∈ {1, . . . , n}, we can choose x(m) ∈ Ai(m−1) ∩ Ai(m). Now
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[x(m), i(m−1)] = [x(m), i(m)] ∈ Bi(m−1)∩Bi(m). In particular, Bi(m)∩Bi(m−1) 6= ∅. Now
each Bi(m) is connected, and so B =

⋃n
m=1Bi(m) is connected. But now, [x, i] ∈ Bi(0) ⊆ B

and [y, i] ∈ Bi(n) ⊆ B. We have shown that every pair of points of Σ lie inside a connected
subset of Σ. This shows that Σ itself is connected. ♦

We next claim that φ is a covering map. We begin with a couple of preliminary obser-
vations. If U ⊆ Ai is open, then [U, i] ⊆ Σ is open. This follows since Ξj ∩ π

−1([U, i]]) =
(U ∩ Ai) × {j} is open in Ξj for each j ∈ I. Also if U ⊆ Ai ∩ Aj , then [U, i] = [U, j] if
ij ∈ E, and [U, i] ∩ [U, j] = ∅ if ij /∈ E. Also x ∈ N = N(x, ǫ/2). Using hypothesis (A3),
we see that if N ∩ Ai 6= ∅, then N ⊆ Aj for some j ∈ I with ij ∈ E.

Lemma 3.4 : φ is a covering map.

Proof : Suppose x ∈ X . Let N = N(x, ǫ/2). We aim to show that φ−1N is topologically
a disjoint union of its connected components, each of which is mapped homeomorphically
to N under φ.

Suppose [y, i] ∈ φ−1N ⊆ Σ. Now y ∈ Ai, so N ∩ Ai 6= ∅, and so N ⊆ Aj for some
j ∈ I with ij ∈ E. Thus [y, i] = [y, j] ∈ [N, j]. We see that, as a set, φ−1N is a disjoint
union of sets of the form [N, i] for certain i ∈ I. Now each such set [N, i] is open in Σ and
hence in φ−1N . It follows that each [N, i] is also closed in φ−1N . Now [N, i] = π(N ×{i})
is connected, and is thus a connected component of φ−1N .

Now, φ|[N, i] maps bijectively onto N . We know that φ is continuous. Also any subset
of [N, i] has the form [U, i] with U ⊆ N . If [U, i] is open in [N, i], then Ξi ∩ π

−1([U, i]) =
U ∩ {i} is open in N × {i}. It follows that U is an open subset of X , and so φ([U, i]) = U
is open. This shows that φ maps [N, i] homeomorphically onto N . ♦

Proof of Theorem 3.1 : By hypothesis, Σ is non-empty. By Lemma 3.3, it is connected.
By Lemma 3.4, φ : Σ −→ X is a covering map. By hypothesis, X is simply connected. It
follows that φ is a homeomorphism.

By construction, we have Σ =
⋃

i∈I Bi and Bi ∩Bj 6= ∅ if and only if ij ∈ E. Also, φ
maps Bi homeomorphically onto Ai. We deduce that X =

⋃
i∈I Ai and Ai ∩Aj 6= ∅ if and

only if ij ∈ E. ♦

4. Proofs of the main results.

The main object of this section is to give a proof of Theorem 1.5. We shall motivate
the argument by first giving a direct proof along similar lines in the convex cocompact case,
i.e. where the peripheral structure is empty. The only input we need for this is Theorem
3.1. Afterwards we shall worry about how to deal with parabolics. For this, we shall also
need the results of Section 2.

Suppose that Γ is a finitely generated group (with empty peripheral structure). Thus,
R(Γ, n) is the space of all representations, ρ : Γ −→ IsomHn, and R(Γ, n) the subset of

14



Geometrically finite representations

convex cocompact representations (where “convex cocompact” means “geometrically finite
without parabolics”). In this special case we shall show:

Proposition 4.1 : RF is open in R.

This result is not new (at least in constant curvature, or for symmetric spaces). For
example, it can be deduced from the Holonomy Theorem, versions of which are proven in
[L] and [G2]. (To do this, one may need a slight variant of the Holonomy Theorem for
manifolds with boundary. The manifold in question is then viewed as locally modelled
on compactified hyperbolic space. If Γ is a convex cocompact group, with discontinuity
domain Ω, then the quotient of Hn ∪ Ω by Γ is a compact manifold having a structure of
this type.)

The argument we give here can be applied equally well in the case of variable negative
curvature with curvature bounded away from 0. (In case there is no curvature bound away
from −∞ one should reinterpret “convex” as “quasiconvex” in some sense. This adds
some technical complications, but the argument should still go through.) For the sake of
simplicity, we shall give the argument here only with reference to hyperbolic space, Hn.

We begin with some general discussion of convex sets in Hn. Given a subset Q ⊆ Hn,
we write Q̄ for its closure in the ball Hn∪∂Hn. If Q1 and Q2 are convex, then Q̄1∩Q̄2 = ∅
if and only if dhyp(Q1, Q2) > 0. In such a case we shall say that Q1 and Q2 are strictly

disjoint .
We shall phrase everything in terms of continuous families of representations. Let T

be a “parameter space”, i.e. a first countable hausdorff topological space, with a preferred
basepoint 0 ∈ T . We shall speak about a parameter t ∈ T being “small” if it lies in some
small neighbourhood of 0.

Suppose that the map [t 7→ Q(t)] associates to each t ∈ T a set Q ⊆ Hn. We say
that Q(t) is a continuous translation (of some fixed set Q), if there is a continuous map
[t 7→ g(t)] : T −→ IsomHn such that Q(t) = g(t)Q for all t ∈ T . Without loss of generality,
we can take Q = Q(0).

Suppose that K ⊆ Q is closed, and that Q is a collection of closed convex subsets of
Hn. We say that Q properly ǫ-covers K if for all x ∈ K there is some Q ∈ Q such that
N(x, ǫ) ⊆ Q, and if every point of K̄ lies in the interior of Q̄ for some Q ∈ Q. One easily
verifies the following:

Lemma 4.2 : Suppose that I is some finite indexing set, and that for each i ∈ I, we have
a continuous translation [t 7→ Qi(t)] of a closed convex set Qi(0). Suppose that K ⊆ Hn

is closed and is properly ǫ-covered by {Qi(0) | i ∈ I}. Then K is properly (ǫ/2)-covered
by {Qi(t) | i ∈ I} for all sufficiently small t ∈ T . ♦

Returning to our finitely generated group, Γ, we can characterise convex cocompact
representations as follows:

Lemma 4.3 : Suppose ρ ∈ R(Γ), then ρ ∈ RF (Γ) if and only if there is a closed
convex set Q ⊆ Hn such that {γ ∈ Γ | Q ∩ ρ(γ)Q 6= ∅} is finite, and such that the sets
{ρ(γ)Q | γ ∈ Γ} form a locally finite cover of Hn. ♦
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If ρ ∈ RF , we could take Q to be, for example, a Dirichlet domain. Note that the
sets {ρ(γ)Q | γ ∈ Γ} are necessarily locally finite on Hn ∪ Ω(Γ) (see [Bo1]). Note that we
can “thicken up” Q a bit so that ∂Q is properly ǫ-covered by the sets ρ(γ)Q as γ ranges
over the finite set of non-trivial γ ∈ Γ such that Q ∩ ρ(γ)Q 6= ∅. (This can be done by
replacing Q by some convex neighbourhood of itself in Hn ∪Ω(Γ), using, for example, the
Klein model. By the above remark, the finiteness properties of the cover remain valid.)
We can now thicken up Q a bit further so that it has the additional properties that if
Q ∩ ρ(γ)Q = ∅ then Q and ρ(γ)Q are strictly disjoint, whereas if Q ∩ ρ(γ)Q 6= ∅ then
this intersection contains a non-empty open set. (This can be done, without affecting
the ǫ-covering property, by replacing Q by a small uniform neighbourhood of itself in the
hyperbolic metric.) The point of imposing these additional conditions is that they are
stable with respect to small perturbations (cf. Lemma 4.2).

To avoid notational confusion later on, we shall imagine the the elements of Γ as
indexed by a set Υ. Thus, for each i ∈ Υ, we have a corresponding element g(i) ∈ Γ. Thus
Γ acts on Υ by left multiplication, i.e. such that g(γi) = γg(i) for all i ∈ Υ and γ ∈ Γ.

Now suppose that ρ0 ∈ RF , and that Q ⊆ Hn, is as described by Lemma 4.3 and the
subsequent discussion. Given i ∈ Υ, set Ai = ρ0(g(i))Q. Thus, if γ ∈ Γ, Aγi = ρ0(γ)Ai.
We define a graph (I, E) by setting I = Υ, and letting ij ∈ E if and only if Ai ∩ Aj 6= ∅
(so that Ai and Aj are strictly disjoint). Note that this graph is connected, every vertex
has finite degree, and that E/Γ is finite. Note that the hypotheses of Theorem 3.1 are
satisfied. In particular, (A3) follows from the fact that ∂Ai is properly ǫ-covered by the
sets {Aj | ij ∈ E, i 6= j}. Of course, we deduce nothing new from the conclusion in this
case.

Now, suppose that [t 7→ ρt] : T −→ IsomHn is a continuous family of representations,
with ρ0 ∈ RF . Given t ∈ T and i ∈ I, let Ai(t) = ρt(g(i))Q. Thus, Ai(0) = Ai, and
Aγi(t) = ρt(γ)Ai(t) for all i ∈ I, γ ∈ Γ and t ∈ T . Also [t 7→ Ai(t)] is a continuous
translation of Ai(0).

Now fix any i ∈ I. We can assume (after conjugating by ρt(g(i))) that Ai(t) = Ai

is constant. (In fact, by taking i so that g(i) is the identity, we needn’t bother with this
here, but the principle will be used in the proof of general case.) Now, applying Lemma
4.2, we see that for all sufficiently small t ∈ T , the sets {Aj(t) | ij ∈ E, i 6= j} give a
proper (ǫ/2)-cover of ∂Ai = Ai(t). ¿From the ρt(Γ)-equivariance, we see that this is true
simultaneously for all i ∈ I, and so we see that the hypothesis (A3) is satisfied for the
collection {Ai(t) | i ∈ I}.

Now, if ij ∈ E, we arranged that Ai(0) ∩ Aj(0) contains a non-empty open set, and
so Ai(t) ∩ Aj(t) 6= ∅ for all sufficiently small t ∈ T . But, since E/Γ is finite, we see, again
from the ρt(Γ)-equivariance, that hypothesis (A1) is satisfied for all sufficiently small t.

Finally, suppose ij, ik ∈ E and jk /∈ E. Then Aj(0) and Ak(0) are strictly disjoint,
and so Aj(t) ∩ Ak(t) = ∅ for all sufficiently small t. Now, for a given i, there are only
finitely many such pairs j, k, and so there are only finitely many such triples, i, j, k, up to
the action of Γ. We see that hypothesis (A2) is satisfied for all sufficiently small t.

In summary, we see that for all sufficiently small t ∈ T , the hypotheses of Theorem 3.1
are satisfied, and so Hn =

⋃
i∈I Ai(t) =

⋃
γ∈Γ ρt(γ)Q. Moreover, we have Ai(t)∩Aj(t) 6= ∅

if and only if ij ∈ E. It follows that the collection {Ai(t) | i ∈ I} = {ρt(γ)Q | γ ∈ Γ} is
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a locally finite cover of Hn, with Q meeting only finitely many images of itself under the
action of ρt(Γ). Lemma 4.2 now tells us that ρt ∈ RF .

By taking T to be the whole representation space R, this proves Proposition 4.1.

We now do the same thing again in the general case. This time, we have to deal with
parabolic groups. The idea will be to include a set of “standard parabolic regions” in our
family of covers, (Ai(t))i∈I .

As before, let Rn
+ be the upper half space model, and identify ∂Rn

+ ≡ Rn−1 ≡ En−1.
Given any r ∈ {0, . . . , n − 1}, we write τ(r) ⊆ En−1 ⊆ Rn

+ ∪ ∂Rn
+ for the “standard”

r-dimensional subspace τ(r) = {(ξ1, . . . , ξn−1, 0) | (∀k > r)(ξk = 0)}. We write C(r) =
{x ∈ Rn

+ | deuc(x, τ(r)) ≥ 1}, where deuc is the usual euclidean metric on Rn
+.

Now suppose that G is a finitely generated virtually abelian group with r(G) = r.
Let S(G, n− 1) be the space of discrete representations into En−1 (as described in Section
2). Suppose that ρ ∈ S(G, n − 1). By the Bieberbach Theorem (Theorem 1.3), we can
conjugate ρ by an element of IsomEn−1 so that τ(r) is a crystallographic subspace. In
particular, τ(r) is ρ(G)-invariant. Also, if H(r) is the closure of Rn

+ \C(r) in Rn
+ ∪ ∂Rn

+,
then the quotient H(r)/ρ(G) is compact. We refer to C(r) as a standard parabolic region

for the group ρ(G).

More generally, suppose that ρ : G −→ IsomHn is a parabolic representation, as
discussed in Section 1, with fixed point p ∈ ∂Hn. By a parabolic region, C, we shall mean
a closed convex ρ(G)-invariant subset of Hn such that H/ρ(G) is compact, where H is the
closure of Hn \ C in Hn ∪ ∂Hn \ {p}.

Now, we can find an isometry, β : Hn −→ Rn
+, with β(p) = ∞. Let ρβ ∈ S(G, n − 1)

be the conjugate representation, defined by ρβ(γ) = βρ(γ)β−1. Now, we can also assume
that β is chosen so that τ(r) is a crystallographic subspace for ρβ(G). We shall say that
C ⊆ Hn is a standard parabolic region for ρ if it has the form C = β−1C(r) for some such
isometry β.

Now, suppose Γ is a finitely generated group, with peripheral structure (Gi)i∈Π. Recall
that R is the space of type-preserving representations, and RF is the subset of geometri-
cally finite representations without accidental parabolics. We may characterise elements
of RF as follows:

Proposition 4.4 : Suppose that ρ ∈ R. Then ρ ∈ RF if and only if there is a collection
(Ci)i∈Π of closed convex subsets of Hn, together with another closed convex set Q ⊆ Hn,
satisfying the following:

(1) (∀γ ∈ Γ)(∀i ∈ Π)(Cγi = ρ(γ)Ci),

(2) If i 6= j, then Ci ∩ Cj = ∅,

(3) For all i ∈ Π, Ci is a cusp region corresponding to the parabolic representation ρ|Gi,

(4) The collection {Ci | i ∈ Π} ∪ {ρ(γ)Q | γ ∈ Γ} form a locally finite cover of Hn. ♦

This is essentially Marden’s definition of geometrical finiteness [Mard], (or “GF1” as
described in [Bo1]). Note that we could obtain Q, for example, by taking a Dirichlet
domain, removing its intersection with the standard parabolic regions, and then taking
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the convex hull.

The local finiteness part of condition (4) should be interpreted to mean that given
any compact set K ⊆ Hn, the sets {i ∈ Π | K ∩ Ci 6= ∅} and {γ ∈ Γ | K ∩ ρ(γ)Q 6= ∅}
are finite. In fact, it follows that the collection is locally finite on Hn ∪ Ω(Γ) (see [Bo1]).
It follows that Q, or indeed any neighbourhood of Q in Hn which is relatively compact in
Hn ∪ Ω(Γ), meets only finitely many images of itself under Γ, and only finitely many of
the sets Ci. Similarly, each Ci meets only finitely many images of Q, up to the action of
ρ(Gi). There is no loss in assuming that each Ci is in fact a standard cusp region, and
that if i 6= j then Ci and Cj are strictly disjoint. It then follows, in fact, that there is some
fixed ǫ > 0 such that if i 6= j, then dhyp(Ci, Cj) ≥ ǫ.

There are further conditions we could impose on Q, similar to those in the cocompact
case. Thus, by “thickening” it up a bit we can assume that ∂Q is properly ǫ-covered by the
(finite) collection of those γQ and Ci which meet Q. Also, for each i, ∂Ci is “properly ǫ-
covered” the set of those images of Q which meet ∂Ci. We are abusing terminology slightly
here, since the parabolic fixed point pi lies in the closure of ∂Ci, but is not contained in
the interior of any set ρ(γ)Q̄. What we really mean can be expressed by saying that there
is a set P ⊆ ∂Ci, whose images under ρ(Gi) cover ∂Ci and which is properly ǫ-covered by
the set of those images of Q which meet P . Finally, we can assume that if Q meets a given
set ρ(γ)Q or Ci then the intersection contains a non-empty open set, whereas if these sets
are disjoint, then they are strictly disjoint.

Now suppose that ρ0 ∈ RF , and that Q ⊆ Hn and (Ci)i∈Π satisfy all the conditions
described above (with ρ = ρ0). Let I = Υ ⊔ Π. Given i ∈ I, we define the convex set
Ai ⊆ Hn by Ai = Ci if i ∈ Π, and Ai = ρ0(g(i))Q if i ∈ Υ. We define a graph (I, E) be
letting ij ∈ E if and only if Ai ∩ Aj 6= ∅. Note that there is a natural Γ-action on this
graph. Given i ∈ I, write I(i) = {j ∈ I | ij ∈ E, i 6= j}. Thus, if i ∈ Υ, then I(i) is finite.
If i ∈ Π, then I(i) ⊆ Υ, and I(i)/Gi is finite. Also, I/Γ is finite, and so E/Γ is finite.
Note that the sets (Ai)i∈I satisfy the hypotheses of Theorem 3.1.

The idea of the proof of Theorem 1.5 is to consider a continuous family [t 7→ ρt] :
T −→ R, of deformations of ρ0, such that ∆(ρt) = ∆(ρ0) for all t. We construct a family
of continuous translations [t 7→ Ai(t)], so that Ai(0) = Ai, and Aγi(t) = ρt(γ)Ai(t), for all
γ, i and t. We verify that for all sufficiently small t, the collection (Ai(t))i∈I satisfies the
hypotheses of Theorem 3.1. It then follows by Proposition 4.4, that ρt ∈ RF .

Given p ∈ ∂Hn, we can find a hyperbolic isometry θp : Hn −→ Rn
+ which extends to

a map Hn ∪ ∂Hn −→ Rn
+ ∪ ∂Rn

+ ∪{∞} such that θp(p) = ∞. For notational convenience,
we shall choose a preferred point of Hn which we shall denote by ∞, and identify Hn and
Rn

+ in such a way that θ∞ is the identity map. Moreover, we can assume that θp varies
continuously in a neighbourhood of ∞. More precisely, there is a neighbourhood, U , of ∞
in ∂Hn, such that the map [(p, x) 7→ θp(x)] : U ×Hn −→ Hn is continuous.

Now, given points p, q ∈ ∂Hn, we set θp,q = θθp(q) ◦ θp. Thus, θp,q is an isometry of
Hn. Note that θp,q(q) = θθp(q)(θp(q)) = ∞. Also, θ∞,q = θq. Moreover, for a fixed p, θp,q
varies continuously in q, as q varies over a neighbourhood of p (namely θ−1

p U).

There is a similar construction in euclidean space. Recall, from Section 2, that
L(r, s) = {(V, τ) | V ∈ Fr, τ ∈ Es, V ⊆ D(τ)}. We fix a “standard” element of L(r, s),
namely λ0 = λ0(r, s) = (D(τ(r)), τ(s)), where τ(k) is the standard k-dimensional subspace
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of En−1 as defined earlier. Now, given any λ ∈ L(r, s), we can find φλ ∈ IsomEn−1 such
that φλ(λ) = λ0. We can assume that φλ0

is the identity, and that φλ varies continuously
on a neighbourhood of λ0 in L(r, s). Given κ, λ ∈ L(r, s), we set φλ,κ = φφλ(κ) ◦ φλ. Thus
φλ,κ(κ) = λ0, φλ0,κ = φκ, and φλ,κ varies continuously in κ in a neighbourhood of λ in
L(r, s). We extend φλ,κ to a hyperbolic isometry fixing ∞.

Now, suppose that [t 7→ ρt] : T −→ R is a continuous family, with ρ0 ∈ RF and
∆(ρt) = ∆(ρ0) for all t ∈ T . Let Q, (Ci)i∈Π, (I, E) and (Ai)i∈I be as described earlier.

Now given i ∈ Π, ρt|Gi is parabolic. Let pi(t) be the fixed point of ρt(Gi). Note that
pi(t) is the unique fixed point of ρt(γ) for some fixed γ ∈ Gi, and so we see that it varies
continuously in t. Let ri = r(Gi) and si = ∆(ρt)(i).

Let Π0 ⊆ Π be a transversal to the action of Γ on Π. Thus, Π0 is finite. Given i ∈ Π0,

let θi(t) = θpi(0),pi(t), and let ρ
θi(t)
t be the representation ρt conjugated by θi(t). Now

ρ
θi(t)
t |Gi is parabolic representation with fixed point θi(t)(pi(t)) = ∞. In other words, we

can consider ρ
θi(t)
t as an element of S(Gi, n − 1). Let λi(t) = λ(ρ

θi(t)
t ) ∈ L(ri, si). By

Proposition 2.10, λi(t) is continuous in t. Let φi(t) = φλi(0),λi(t), so that ρ
(φi(t)◦θi(t))
t |Gi ∈

S(Gi, n− 1), and λ(ρ
(φi(t)◦θi(t))
t ) = λ(ri, si).

Now, there is a fixed hyperbolic isometry (or euclidean homothety), ψi such that ψi ◦
φi(0)◦θi(0)(Ci) is the standard parabolic region C(ri) (inRn

+). Let βi(t) = ψi◦φi(t)◦θi(t).

Thus, ρ
βi(t)
t |Gi ∈ S(Gi, n− 1), and λ(ρ

βi(t)
t ) = λ0.

Now each i ∈ Π has the form γj for some γ ∈ Γ and j ∈ Π0. We choose one such γ
for each i /∈ Π0. Now, Gi = γGjγ

−1, so ρt|Gi is parabolic with fixed point ρt(γ)(pj(t)).

In this case, we set βi(t) = βj(t) ◦ ρt(γ
−1). Again, we get ρ

βi(t)
t |Gi ∈ S(Gi, n− 1).

Now, for each i ∈ Π, set Ci(t) = βi(t)
−1C(ri). Thus, Cγi(t) = ρt(γ)Ci(t), and

Ci(t) is a standard cusp region for the parabolic representation ρt|Gi. Also Ci(0) = Ci,
and Ci(t) = hi(t)Ci(0), where hi(t) = βi(t)

−1βi(0). Thus, [t 7→ Ci(t)] is a continuous
translation (for sufficiently small t).

Now, let I = Υ ⊔ Π be as above. We define the collection (Ai(t))i∈I by setting
Ai(t) = Ci(t) for i ∈ Π and Ai(t) = ρt(g(i))Q for i ∈ Υ. Thus, (Ai(t))i∈I has all the
properties outlined earlier. We want to show that it satisfies the hypotheses of Theorem
3.1 for all sufficiently small t.

Now hypothesis (A1) follows exactly as in the cocompact case, given that I/Γ and
E/Γ are finite. Hypothesis (A3), in the case where i ∈ Υ, also follows as in the cocompact
case, given that I(i) is finite. Hypothesis (A3), in the case where i ∈ Π, calls for some
comment. Note that after conjugating the family of representations by a continuous family
of elements of of IsomHn (namely βi(t)) we can suppose that Ai(t) = Ci is constant. Now
since ρt|Gi varies continuously, we can find a constant set P ⊆ ∂Ci such that the images
of P under each group ρt(Gi) cover Ci. Now P is properly ǫ-covered by some finite subset
of the sets Aj(0) for j ∈ I(i) ⊆ Υ. We now apply Lemma 4.2 to show that it is properly
(ǫ/2)-covered by the corresponding sets Aj(t) for all sufficiently small t.

Again, property (A2) in the case where i ∈ Υ follows as in the cocompact case, given
that I(i) is finite. The case where i ∈ Π requires a bit more work.

Now, again up to a continuous conjugacy, we can assume that Ai(t) is constant, and
equal to the standard cusp region C(ri) inRn

+. In particular, τ = τ(ri) is a crystallographic
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subspace. Let 0 ∈ τ ⊆ En−1 ≡ Rn−1 be the origin, and let N(0, h) denote the euclidean
h-neighbourhood of 0 in Rn

+ ∪ ∂Rn
+.

Now, I(i)/Gi is finite. Let I0 ⊆ I(i) be a (finite) transversal to the Gi-action. For
each j ∈ I0, the set Aj(0) is relatively compact in Rn

+ ∪ ∂Rn
+, and so Aj(0) ⊆ N(0, Rj)

for some Rj > 0. Thus, for all sufficiently small t, we have Aj(t) ⊆ N(0, Rj + 1). Let
R = max{Rj + 1 | j ∈ I0}. Thus, we can assume that Aj(t) ⊆ N(0, R) for all j ∈ I0 and
t ∈ T .

Let H = {γ ∈ Γ | deuc(0, ρ0(γ)0) ≤ 4R}. Applying Lemma 2.11, we see that for all
γ ∈ Gi, and for all sufficiently small t, deuc(0, ρt(γ)0) ≥

1
2
deuc(0, ρ0(γ)0). In particular, for

all γ ∈ Gi \H, we have deuc(0, ρt(γ)0) ≥ 2R.

Now suppose that γ ∈ H, j, l ∈ I0, and Aj(0) ∩ Aγl(0) = ∅. For all sufficiently small
t, we have Aj(t) ∩ Aγl(t) = ∅. Since there are only finitely many such j, l and γ, we can
suppose this is true for all t ∈ T .

Now suppose that j, k ∈ I(i) with Aj(t) ∩ Ak(t) 6= ∅. Up to the action of Gi, we can
suppose that j ∈ I0 and that k = γl, where γ ∈ Gi and l ∈ I0. Thus Ak(t) = Aγl(t) =
ρt(γ)Al(t). Now, Aj(t)∩ρt(γ)Al(t) 6= ∅ and Aj(t), Al(t) ⊆ N(0, R) and so deuc(0, ρt(γ)0) ≤
2R. Thus γ ∈ H. ¿From the previous paragraph, we see that Aj(0)∩Ak(0) 6= ∅, so jk ∈ E.

Since there are only finitely many such i up to the action Γ, this verifies hypothesis
(A3). Thus all the hypotheses of Theorem 3.1 are satisfied for all sufficiently small t. It
follows that (Ai(t))i∈I forms a locally finite cover for Hn, and that if Ai(t) ∩ Aj(t) 6= ∅
then ij ∈ E. In particular, we see that the parabolic regions Ci(t) and Cj(t) for i, j ∈ Π
are disjoint unless i = j. Proposition 4.4 now tells us that ρt ∈ RF as required. This
proves Theorem 1.5.

5. Examples.

In this section we give examples of geometrically finite representations into IsomH4

which are limits of non-geometrically finite representations. By Theorem 1.5, we know
that this has to be the result of the canonical subspaces associated to the cusps jumping
up in dimension in the limit.

In the first example, we describe type-preserving representations ρn : Z ∗ Z −→
IsomH4, such that ρn → ρ, where ρ is faithful and geometrically finite without accidental
parabolics, but where ρn(Z ∗ Z) is not discrete for any n.

In the second example, we describe type-preserving representations ρn : Z ∗Z ∗Z −→
IsomH4, again converging to a faithful geometrically finite representation ρ : Z∗Z∗Z −→
IsomH4. This time, each ρn is discrete but not geometrically finite.

In each case, there is just one conjugacy class of peripheral subgroup, namely the set
of conjugates of one of the free factors isomorphic to Z.

To construct these representations, we shall need the following elementary combina-
tion lemmas. Given a discrete subgroup, Γ ⊆ IsomH4, we write Ω(Γ) ⊆ ∂H4 for the
discontinuity domain. We write M(Γ) = (H4 ∪ Ω(Γ))/Γ. If Q ⊆ Ω(Γ) we say that Q is
dispersed by Γ if Q ∩ γQ = ∅ for all non-trivial γ ∈ Γ.

We shall say that a pair of round balls, D1, D2 ∈ ∂H4, are complementary if they
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meet along their common boundary D1 ∩D2 = ∂D1 = ∂D2.

Lemma 5.1 : Suppose that D1 and D2 are complementary round balls in ∂H4, and
Γ1,Γ2 ⊆ IsomH4 are discrete groups. Suppose that D2 ⊆ Ω(Γ1) and that D1 ⊆ Ω(Γ2),
and are dispersed by Γ1 and Γ2 respectively. Then Γ = 〈Γ1,Γ2〉 ∼= Γ1∗Γ2, and Γ is discrete.
Moreover, if Γ1 and Γ2 are both geometrically finite, then so is Γ.

Proof : Let Hi be the convex hull of Di, so that Hi is a half-space in H4 ∪ ∂H4. Now H2

projects to a half space in M(Γ1), and we form the manifold M ′
1 by removing the interior

of H2 from M(Γ1). We construct M ′
2 similarly, and form a another manifold M by gluing

together M ′
1 and M ′

2 along their common boundary (a copy of hyperbolic 3-space). If
we do this right, then M = (Hn ∪ Ω(Γ))/Γ, so that Γ is discrete. Now, using Marden’s
description of geometrical finiteness [Mard] (“GF1” in [Bo1]), we see that if Γ1 and Γ2 are
geometrically finite, then so is Γ. ♦

The following variation can be proved by a similar argument:

Lemma 5.2 : Suppose that Γ1,Γ2,Γ3 ⊆ IsomH4 are discrete, and that D2, D3 ⊆
Ω(Γ1) are round balls. Suppose that D2 and D3 are both dispersed by Γ1 and that their
complements are dispersed by Γ2 and Γ3 respectively. Suppose that D2 ∩ γD3 = ∅ for all
γ ∈ Γ. Then, Γ = 〈Γ1,Γ2,Γ3〉 ∼= Γ1 ∗Γ2 ∗Γ3, and Γ is discrete. Moreover, if Γ1, Γ2 and Γ3

are all geometrically finite, then so is Γ. ♦

Let R4
+ be the upper-half-space model for H4. We identify E3 ≡ R3 ≡ ∂R4

+. Given
any h > 0, let Xh and Zh be, respectively, the translations of E3 given by [(x, y, z) 7→
(x+ h, y, z)] and [(x, y, z) 7→ (x, y, z+ h)]. Given r > 0, let α(r) be the line parallel to the
z-axis given by α(y) = {(0, r, z) | z ∈ R}. If r, h > 0, let T (r, θ, h) be the “screw motion”
on E3 given by a rotation through an angle of θ about the axis α(r) composed with the
translation Zh. Note that each these maps extend to a parabolic isometry of H4 fixing ∞,
which we shall denote by the same symbols.

Suppose ζ, ξ > 0 are constants (to be described later). For each n ∈ N, let Tn =
Tn(ζ, ξ) = T (ζn/2π, 2π/n, ξ/n). Thus Tn

n = Zξ. Also, as n → ∞, the map Tn converges
to Xζ .

LetD be the ball of radius 1 about the origin, 0 in E3, and letD′ be the complementary
ball in ∂H4. We fix any ζ > 2. Note that the ball D is dispersed by the cyclic parabolic
group 〈Xζ〉.

First example.

Choose ǫ > 0 to be some number less than the Margulis constant in dimension 4.
Then there is some η > 0 such that if β, β′ ⊆ H4 are two distinct loxodromic axes in
a discrete subgroup of IsomHn, which are each translated a distance less that ǫ by the
corresponding loxodromic elements, then dhyp(β, β

′) > η.
Let 0 < t < 1, and let β ⊆ H4 be the bi-infinite geodesic joining the ideal points

(−t, 0, 0) and (t, 0, 0). Let γ ∈ IsomH4 be a hyperbolic isometry which translates the axis
β by a hyperbolic distance ǫ. (For definiteness, we can take (t, 0, 0) to be the attracting
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fixed point, and assume that γ has trivial rotational part). By choosing t small enough,
we can ensure that the ball D′ is dispersed by the group Γ2 = 〈γ〉.

Let Γ1 = 〈Xζ〉, so that D is dispersed by Γ1. Thus, by Lemma 5.1, 〈Γ1,Γ2〉 ∼= Z ∗ Z
is geometrically finite.

Suppose ξ > 0. Now, Zξβ is the bi-infinite geodesic joining the ideal points (−t, 0, ξ)
and (t, 0, ξ). We fix ξ small enough so that dhyp(β, Zξβ) < η. Thus, the isometries ZξγZ

−1
ξ

generate a non-discrete group.

Let Γ = Z ∗ Z with free generators a and b. We choose a peripheral structure for
Γ consisting of the cyclic subgroup 〈a〉 and all its conjugates in Γ. We define a type-
preserving representation, ρ : Γ −→ IsomH4, by setting ρ(a) = Xζ and ρ(b) = γ. As
described above, ρ is faithful and geometrically finite.

Given n ∈ N, we define the type-preserving representation ρn : Γ −→ IsomH4 by
setting ρn(a) = Tn = Tn(ζ, ξ) and ρn(b) = γ. Now Zξ = Tn

n ∈ ρn(Γ), and so γ, ZξγZ
−1
ξ ∈

ρn(Γ). Thus ρn(Γ) is not discrete.

We also have that ρn(a) = Tn converges to Xζ = ρ(b), and that ρn(b) = ρ(b) for all
n. Thus ρn converges to ρ.

Second example.

For this we shall need the following fact [C]:

Lemma 5.3 : There exists a discrete subgroup of IsomH3 isomorphic to Z ∗ Z, which
has no parabolics and which is not geometrically finite.

Proof : (Sketch) There is a homeomorphism from R = R(Z ∗ Z) onto (IsomH3)2 given
by [ρ 7→ (ρ(a), ρ(b))], where a, b are free generators of Z ∗ Z. (Here Z ∗ Z is taken to have
empty peripheral structure, so that every representation is type-preserving.) Thus, R is
a 12-manifold. If γ ∈ Z ∗ Z, then P (γ) = {ρ ∈ R | tr ρ(γ) = ±2} is a 10-dimensional
subvariety of R. Thus, P =

⋃
γ∈Z∗Z

P (γ) has Hausdorff dimension 10 (with respect to any
riemannian metric on R).

Let R0
F and R0

D be, respectively, the sets of faithful geometrically finite and faithful
discrete representations. Now, R0

F and R \ R0
D are both non-empty and open in R. It

follows that the closed set R0
D \R0

F has dimension at least 11, and so R0
D \ (R0

F ∪P ) 6= ∅.
The image of any representation in this set has the desired property. For further details,
see [C]. ♦

We now embed H3 as a subspace of H4. Let γ, δ ∈ IsomH3 be free generators of a
non geometrically finite group as described by Lemma 5.3, and extend this action to H4

as a 4-dimensional fuchsian group, Γ′ = 〈γ, δ〉. Now, Γ′ acts properly discontinuously on
∂H4 \ ∂H3, so we can find a round ball in ∂H4 \ ∂H3 which is dispersed by Γ′. After
conjugating by a suitable element of IsomH4, we can assume that D′ is such a ball (i.e.
the complementary ball to the unit ball, D, centred at the origin of E3).

Now fix any ζ, ξ > 2, and let Tn = Tn(ζ, ξ). For all sufficiently large n, we see that the
ball D is dispersed by the group 〈Tn〉. It follows by Lemma 5.1, that 〈Γ′, Tn〉 ∼= Γ′ ∗ 〈Tn〉 ∼=
Z ∗ Z ∗ Z is discrete (but not geometrically finite).
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Suppose Γ1 = 〈Xζ〉, Γ2 = 〈γ〉, and Γ3 = 〈ZξδZ
−1
ξ 〉. Thus, Γ1, Γ2 and Γ3 are geomet-

rically finite cyclic groups, with Γ1 parabolic, and Γ2,Γ3 loxodromic. Now D is dispersed
by Γ1, and D

′ is dispersed by Γ2 (since Γ2 ≤ Γ′). Since Zξ and Xζ commute, ZξD is also
dispersed by Γ1. Moreover, Zξ = Tn

n ∈ Γ′, and so Γ3 ⊆ Γ′ = ZξΓ
′Z−1

ξ . Thus, ZξD
′ is

dispersed by Γ3. We also note that D ∩ γZξD = ∅ for all γ ∈ Γ1. Thus, the hypotheses of
Lemma 5.2 are satisfied, so we see that 〈Γ1,Γ2,Γ3〉 ∼= Z ∗ Z ∗ Z is geometrically finite.

Let Γ ∼= Z ∗ Z ∗ Z with free generators a, b and c. We take a peripheral structure
the cyclic group 〈a〉 together with all its conjugates in Γ. We define a representation
ρ : Γ −→ IsomH4 by setting ρ(a) = Xζ , ρ(b) = γ and ρ(c) = ZξδZ

−1
ξ . We see that ρ is

faithful, type preserving and geometrically finite without accidental parabolics.
Now, given n ∈ N, we define a type-preserving representation ρn : Γ −→ IsomH4

by setting ρn(a) = Tn, ρn(b) = γ and ρn(c) = ZξδZ
−1
ξ . Now, Zξ = Tn

n , and so δ =

ρn(a
−ncan) ∈ ρn(Γ). Thus ρn(Γ) = 〈Tn, γ, δ〉 = 〈Tn,Γ1〉. ¿From the earlier discussion,

we see that for all sufficiently large n, we have that ρn is discrete and faithful, but not
geometrically finite.

Finally note that as n→ ∞, Tn → Xζ , and so ρn converges to ρ.
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