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0. Introduction.

Let Σ be a compact surface, and letM be a path metric space with π1(M) ∼= π1(Σ) and
with the universal cover M̃ Gromov hyperbolic. We show that, under certain assumptions,
the shortest realisation in M of a multicurve Σ can be approximated by a train track in M .
In the case where M is a hyperbolic 3-manifold, this is well known (see for example [Bon]).
The main result is stated as Theorem 0.1 here. Among other things, one can deduce that,
under a certain assumption on the “systole”, any shortest realisation of a multicurve in
the quotient has finite diameter (Corollary 0.2). Under the same assumption, we recover
the result of [Ba] regarding the existence of short standard generating sets (Corollary 0.3),
though this is much less direct than following the original proof. Our broader aim will
be to generalise certain arguments from the proof of the Ending Lamination Conjecture
to this broader setting. In this, train tracks will play the role of pleated surfaces. These
issues will be discussed in [Bow1,Bow2].

Let (H, dH) be a k-hyperbolic path-metric space, and suppose that Γ is a group
acting by isometry. Since the main results are quasi-isometry invariant, we can, without
any essential loss of generality, make a few simplifying assumptions for the purposes of
exposition.

We will assume that H is simply connected geodesic space, and that Γ acts freely on
H with discrete orbits, so that we get a quotient space M = H/Γ, with π1(M) = Γ, and
H = M̃ . We also assume that, for all g ∈ Γ, the minimum, |g| = min{dH(y, gy) | y ∈ H},
is attained at some x ∈ H. Thus, we get a g-invariant axis,

⋃
i∈Z

giα, where α is any
geodesic from x to gx in H. This projects to a closed curve in M , which has minimal
length in its homotopy class. We justify the above assumptions at the end of this section.

Suppose now that Γ = π1(Σ) where Σ is a compact orientable surface with (possibly
empty) boundary, ∂Σ. We assume that Σ is not a closed torus. We write Σ̃ for its universal
cover.

If α is an essential closed curve in Σ, we write g(α) ∈ Γ for the corresponding element
of Γ (defined up to conjugacy in general). We set lM (α) = |g(α)|. Thus, α is represented
by a shortest curve (not necessarily unique), αM in M , of length lM (α). We can construct
a locally injective map q : α −→ M with q(α) = αM . We write dα for the induced path-
metric on α. If α is simple, we write α̃ for the preimage in Σ̃. Thus q lifts to a Γ-equivariant
map, q̃ : α̃ −→ M̃ = H.

Definition : We refer to αM as a reasilisation of α in M .

More generally, this applies to a disjoint union, γ, of simple closed curves. We again
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get q : γ −→ M so that γM = q(γ) is shortest in its homotopy class. We write lM (γ) =∑
α lM (α), where the sum is taken over the set of components, α, of γ. (It is 0 if γ = ∅.) We

similary refer to γM as a realisation of γ. We say that γ is a multicurve if it is non-empty
and no component is peripheral, and no two components are homotopic.

We will use the notion of a “train track”, τ ⊆ Σ, here abbreviated to “track”, and
associated terminology, see for example [PH]. Here, we will assume that ∂Σ ⊆ τ . No
component of Σ \ τ can be a smooth disc, monogon, digon or smooth annulus. We say
that τ fills Σ if each component of Σ\ τ is a topological disc or peripheral annulus (so that
Γ = π1(Σ) is carried on τ). We write τ̃ for the lift τ to Σ̃. We also recall the notions of
“trainpath” and “carrying map”. If γ is a multicurve, and p : γ −→ τ is a carrying map,
then there is a unique lift p̃ : γ̃ −→ τ̃ . We write E(τ) and V (τ) for the sets of branches
and switches respectively.

By a loop, δ ⊆ τ mean a circular subtrack conisisting of a single branch and a single
switch of τ . It is simple if at the switch, there is exactly one incident half-branch on each
side of δ, and arranged so that there is a local trainpath of τ meeting δ precisely at the
switch. If δ happens to be a boundary component, then there is just one branch emerging
from the switch, and we drop the final condition. Note that distinct simple loops are
necessarily disjoint. An annular neighbourhood, A, of δ is simple if A∩ τ consists of either
just δ, or else γ together with an interval in each of the adjacent edges. By a special set of
simple loops, we mean a preferred (possibly empty) set, S, of loops, together with a set,
A(S) = {A(δ) | δ ∈ S}, of disjoint simple annular neighbourhoods. We write S̃ for the set
of lifts of elements of S to Σ̃. If δ̃ ∈ T , we write A(δ̃) for the corresponding lift of A(δ).
We have an obvious interpretation of A(S̃), etc.

The following is the main result:

Theorem 0.1 : Suppose that γ ⊆ Σ is a multicurve, and q : γ −→ M is a realisation
of γ (i.e. so that q(γ) is minimal length in its homotopy class). Suppose ν0 ∈ N. Then
there is a track, τ ⊆ Σ, filling Σ, with a special set, S, of loops, a path-metric, dτ , on τ , a
carrying map p : γ −→ τ and a map f : τ −→M such that:

(T1) p : (γ, dγ) −→ (τ, dτ) is ξ0-lipschitz.

(T2) For all x ∈ γ̃, dM̃ (q̃(x), f̃ ◦ p̃(x)) ≤ h0.

(T3) The dτ -length of τ \ ⋃
A(S) is at most h1(ν0).

(T4) f : (τ \ ⋃S, dτ ) −→ (M, dM) is ξ1(ν0)-lipschitz.

(T5) If δ̃ ∈ S̃ and x ∈ A(δ̃) ∩ τ̃ , then for all i ∈ {1, . . . , ν0}, dM̃ (f̃(x), gif̃(x)) ≤ h2, where

g = g(δ̃) ∈ Γ corresponds to δ.

Moreover, if ν ≥ ν0, we can find some subset Sν ⊆ S, and a simple annulus system
Aν(δ) ⊆ A(δ) for δ ∈ Sν such that:

(T6) The dτ -length of τ \ ⋃
Aν(Sν) is at most h1(ν).

(T7) f is ξ1(ν)-lipschitz on each δ ∈ S \ Sν .

(T8) If δ̃ ∈ S̃ν and x ∈ Aν(δ̃)∩ τ̃ , then for all i ∈ {1, . . . , ν}, dM̃ (f̃(x), gif̃(x)) ≤ h2, where

g = g(δ̃) ∈ Γ corresponds to δ.
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Here, the constants ξ0, h0, h2, and the function ξ1 and h1 depend only on lM (∂Σ), the
hyperbolicity constant of M̃ , and the topological type of Σ.

Less formally, this says that the realisation of a multicurve in M must factor through
a train track, f(τ), in M , up to bounded distance. Moreover, the part of the train track
lying outside the “thin part” of M has bounded length. The “thin part” of M can be
defined by the criterion of (T5), and depends on the parameter, ν0, chosen at the outset.
This is the content of (T1)–(T5). If we later change our minds, and decide we want an
even thinner thin part, we can choose a larger ν ≥ ν0. We need then only modify the
constants outputted. We do not need to change the track, f(τ), in M . This is the content
of (T6)–(T8).

One context in which the above can be made more explicit, is that of a hyperbolic
manifold, M . In this case, we can extend q : γ −→ M to a 1-lipschitz map, q : Σ −→ M ,
where Σ is equipped with some hyperbolic structure. This necessarily maps the thin part
of Σ to the thin part of M . Now, γ is realised as a geodesic multicurve in Σ which can be
approximated by a train track, τ , in Σ, whose length outside the thin part of Σ is bounded.
Moreover, we can assume the track to be simple inside the thin part (which is a disjoint
union of annuli). We then take f = q|τ . For further discussion of these constructions (in
dimension 3), see for example [Bon].

Note that if S = ∅, then (τ, dτ) has bounded diameter, and it follows that γM = q(γ)
has bounded diameter in (M, dM ). Since τ carries Γ = π1(Σ), it also follows that there
is a standard generating set of Γ, represented by paths of bounded length in δ based at
some point a ∈ τ . It follows that f(a) is displaced a bounded distance by each of these
generators in M̃ .

To relate this to results appearing elsewehere, we make some further definitions.

We say that a subgroup, G ≤ Γ is elliptic if it has a bounded orbit in H (and hence
in fact a uniformly bounded orbit in H). If G has a fixed point in ∂H but is not elliptic
then the fixed point set in ∂H is either a singleton and G is parabolic or a pair and G is
loxodromic. We say that G is elementary if it is elliptic, parabolic or loxodromic.

Given g ∈ Γ, we write ||g|| = limn→∞
1
ndH(x, gnx), where x is any point of H, for

the stable length of g. Clearly ||g|| ≤ |g| in fact |g| − ||g|| is bounded above by some fixed
multiple of the hyperbolicity constant. Moreover, 〈g〉 is necessarily elementary. If ||g|| = 0
it is elliptic or parabolic, and if ||g|| > 0, it is loxodromic.

We define sysS
0 (M) = infα{lSM (α)} ≥ 0, as α varies over all essential simple closed

curves in Σ. Note that if g = g(δ̃) is the element of Γ featuring in (T8) of the theorem,
then ||g|| ≤ h2/ν, and so ν sysS

0 (M) ≤ h2. If sysS
0 (M) = η > 0 and ν > h2/η then if

follows that S = ∅.
We deduce the following corollaries:

Corollary 0.2 : Suppose that sysS
0 (M) > 0 and γ ⊆ Σ is a multicurve. Then the

diameter of any realisation of γ in M is bounded above in terms of sysS
0 (M), lM (∂Σ), the

hyperbolicity constant of M̃ and the topological type of Σ.
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Corollary 0.3 : Suppose that sysS
0 (M) > 0. Then there is a standard generating

set, g1, . . . , gm, for Γ, and some x ∈ M̃ , such that for each i ∈ {1, . . . , m}, dM̃ (x, gix) is

bounded above in terms of sysS
0 (M), lM (∂Σ), the hyperbolicity constant of M̃ and the

topological type of Σ.

Here “standard” can be interpreted to mean arising from a specific combinatorial
representation of the surface in terms of a polygon with edge identifications. Thus there
is only one standard generating set modulo the mapping class group of Σ.

In the case where ∂Σ = ∅, Corollary 0.2 is proven in [Ba]. Indeed the argument given
there also effectively proves Corollary 0.3 in this situation. Such arguments can also be
generalised, without too much difficulty to the case where ∂ 6= ∅ so as to give the above
statement. This would be much more direct than following the proof in the present paper,
though we shall not pursue that matter here.

Finally, we justify the assumptions made earlier on Γ andH, starting from an arbitrary
isometric action of a group, Γ on a Gromov hyperbolic space, H. (Here Γ could be any
group, though our only interest is in the case where Γ is torsion-free.)

Fix some suitable constant c (a fixed multiple of the hyperbolicity constant) and put
the product metric on Γ×H, where any two distinct points of Γ are deemed to be distance
c apart. Let H ′ be the 2-dimensional simplicial complex with vertex set Γ×H, and where
a pair or triple in Γ × H spans a simplex if its diameter is at most 2c. The diagonal
action on Γ × H extends to a simplicial action on H ′, and H and H ′ are equivariantly
quasi-isometric. The action will be free if Γ is torsion-free. (In general, one may need
modify the construction to deal with 2 and 3 torsion.) The results given above when
applied to H ′ can readily be translated back into results about H. Indeed, the arguments
can be reformulated directly in terms of the original H, though this becomes more clumsy.
We therefore assume we have replaced H by H ′ and that the conditions of the previous
paragraph hold.

1. Outline of proof.

The proof separates into two parts, which use different arguments.

Let γ ⊆ Σ be a multicurve with realisation, γM ⊆M . The main step is to construct a
“binding” of γ in Σ. This consists of a foliation of a closed subset, Π ⊆ Σ, whose leaves are
compact, and transverse to γ (except that we allow a closed leaf in Π to be a component
of γ). We construct a map of Π into M which extends the realisation of γ.

The leaves of Π when mapped over to M have bounded diameter. More precisely, the
image of any interval leaf lifted to M̃ has bounded diameter in M̃ , and the image of any
circular leaf lifted to M̃ has a fundamental domain of bounded diameter. These bounds
depend only on the hyperbolicity constant of M̃ , the topological type of Σ, and the length
of the realisation of ∂Σ in M .

The binding is constructed in Section 5. The key ingredient is the existence of a
“transverse graph”, Υ, as given by Proposition 2.2. The discussion of this is postponed
until later.
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After constructing the binding, we can construct a train track as follows. We can
assume that each component of the union of the circular leaves is a closed essential annulus
in Σ. This corresponds to an infinite cyclic subgroup of π1(Σ) ≡ π1(M) acting on M̃ . Such
a subgroup has relatively simple geometry, and so we can explicitly construct a suitable
track in each such annulus (see Lemmas 3.1 and 3.3). We can now collapse down each of
the interval leaves to give us a track extending the tracks in the annuli. By construction, γ
will be supported on this track. We may need to extend this track to larger track, τ ⊆ Σ,
so that it fills all of Σ (i.e. each component of Σ \ τ is simply connected). Also, one can
construct a map f : τ −→ M̃ so that the realisation of γ agrees, up to bounded distance,
with the composition of the carrying map γ −→ τ and the map f . One verifies properties
(T1)–(T8), thereby proving Theorem 0.

To obtain the transverse graph Υ and hence Π, we need a different construction. To
give the idea, we recall a related construction where M is a hyperbolic 3-manifold (cf.
[Bon]).

First we extend γ to a triangulation, χ, of Σ, where the vertex set, V ⊆ γ∪Σ. One then
constructs a 1-lipschitz map, φ : Σ −→ M , extending the realisation γ −→ γM , sending
each edge of χ to a geodesic segment, and each triangle to a totally geodesic simplex in M .
The pullback metric on Σ is hyperbolic, possibly with cone singularites of angle greater
than 2π at the vertices. One can then use this to construct a train track in Σ carrying
γ. (For example, collapse down a small metric neighbourhood of γ in Σ in the induced
metric.)

In our situation, where M̃ is Gromov hyperbolic, we still have a map of the 1-skeleton
of χ into M , though we can no longer extend over 2-simplices. Instead we use the induced
metric on the 1-skeleton to put a suitable metric on Σ \ V (see Section 6). We can then
use the thin-triangle property of M̃ to relate this to the geometry of M , and construct the
transverse graph, Υ, giving rise to the binding Π and track τ . The construction of Υ will
be discussed in Section 8.

2. Triangulations and transverse graphs.

Let Σ be a compact surface, and let χ be a triangulation of Σ. We do not require sim-
plices to be embedded on their boundaries, so for example, we allow an edge to be incident
on the same vertex at both ends. Such a triangulation lifts to a genuine triangulation, χ̃,
of the universal cover, Σ̃, of Σ. We write V = V (χ) and E = E(χ) respectively for the
sets of vertices and edges of Σ.

From χ we can construct a pair of transerse singular smooth folliations on Σ, termed
vertical and horizontal . The horizontal foliation has degree-1 singularites at each point of
V , and tripod singularties at the centre of each triangle. Each edge of χ is contained in
a horizontal leaf. Similarly, the vertical foliation is transverse to the interior of each edge
of χ and has a tripod singularity at the centre of each triangle. We can arrange that each
vertical leaf is compact (but that is not essential to the discussion, for the moment).
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Definition : By a transverse arc in Σ we mean a smooth arc transverse to the horizontal
foliation, disjoint from V , and meeting the singular points at most at its endpoints.

Definition : A transverse graph, Υ, is a graph embedded in Σ such that each edge is a
transverse arc, and each vertex is either at a (tripod) singular point or lies in ∂Σ. Each
edge is assumed to meet at least one singular point. Moreover, we assume that at each
singular point there is at least one incident edge of Υ emerging between any two of the
branches of the local horizontal singular leaf through this point.

Thus each vertex of Υ\∂Σ has degree at least 3, and each point of Υ∩∂Σ is a degree-1
vertex of Υ.

Definition : We say that a triangulation, χ, of Σ is compatible with a multicurve, γ ⊆ Σ,
if V ⊆ Σ, and if each component of γ ∪ ∂Σ consists of a single vertex and edge of χ.

It is easily seen that any multicurve admits a compatible triangulation.

We claim:

Lemma 2.1 : Suppose that γ ⊆ Σ is a multicurve, and that χ is a compatible triangu-
lation. Then Σ admits a riemannian metric, with each edge of χ̃ in Σ̃ geodesic. Moreover,
there is an equivariant map, φ̃ : Σ̃ −→ M̃ , sending each edge of χ̃ to a geodesic in M̃ and
each vertical leaf in each triangle of χ̃ to a geodesic segment of bounded length. The quo-
tient map φ : Σ −→M sends each component of γ ∪ ∂Σ to a realisation in M . Moreover,
we can assume this to be any prescribed realisation in M . The length bound depends only
on the hyperbolicity constant, k, and the topological type of Σ. ♦

In the above, we do not assume φ to be continuous. It will however be continuous
restricted to χ and to each vertical leaf.

The proof of Lemma 2.1, is a simple exercise using the thin triangle property of M̃ .
We will give a more elaborate treatment in Section 6.

With more work, we can show:

Proposition 2.2 : We can choose the map φ̃ : Σ̃ −→ M̃ , such that χ admits a transverse
graph, Υ with the following properties. The graph Υ ⊆ Σ has at most n0 edges. For each
edge, ǫ, of Υ̃, diamφ(ǫ) ≤ l0. Moreover, there is some η0 > 0, such that if a ∈ E(χ) and
length(a \D) > 2η0, then each component of a \ (Υ ∪D) has length at least η0. Here l0,
η0 and n0 depend only on the topological type of Σ.

The proof of this involves somewhat different methods, and will be posptoned until
Sections 6 to 8. In the meantime, we explain how this gives rise to a track in Σ, and
thereby prove Theorem 0.1. This will be achieved in Sections 3 to 5.
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3. Tracks in annuli.

We will need a technical lemma regarding tracks in annuli. Suppose that Ω is a
topological annulus, with boundary ∂Ω = ǫ ⊔ ǫ′. By a simple track , ω ⊆ Ω, we mean a
track meeting ∂Ω transversely such that Ω is a simple annulus with respect to ω, as defined
in Section 0. More precisely, ω consists of a core curve, δ = δ(ω) ⊆ intΩ of Ω, together
with two branches, ζ and ζ ′ connecting δ to ǫ and ǫ′ respectively, and such that ζ ∪ ζ ′ is
a trainpath. We assume that ω meets ∂Ω transversely. An annulus, A ⊆ Ω is simple if is
simple in the sense of Section 0. Thus, A ∩ ω is a simple track in A.

Suppose that I ⊆ ǫ and I ′ ⊆ ǫ′ are intervals, each containing one of the two terminal
points of ω. By crossing arc we mean an arc, Ω, meeting ǫ and ǫ′ in points of I and I ′

respectively. Let β be a disjoint union of crossing arcs. A map, p : β −→ ω is a carrying

map if it is smooth at the switch, and is p is homotopic to inclusion relative to I ∪ I ′ (that
is sliding the endpoint in these intervals). In other words, if α is any component of β, then
p(α) runs along ζ, then some number (possibly 0) times around δ, and then out along ζ ′.

By a realisation of Ω, β, we mean a homotopically non-trivial map, q : Ω −→M , such
that, for each component, α, of β, the image q(β) is of minimal length in its homotopy
class relative to its endpoints. This lifts to a map q̃ : Ω̃ −→ M̃ = H, which is equivariant
with respect to the group of covering transformations of Ω̃, an infinite cyclic subgroup,
G = 〈g〉 of Γ. If α̃ is a lift of a component of β, then q̃(α̃) is a geodesic in H from q̃(z̃) to
q̃(z̃′), where z̃ and z̃′ are the endpoints of α̃. We write dβ for the induced path metric on

β. We write ω̃, δ̃, etc. for the lifts of ω, δ etc.

Lemma 3.1 : Suppose that l ≥ 0. Let Ω be an annulus, let I, I ′ be intervals in each
of the two boundary components, and let β be a disjoint union of crossing arcs. Suppose
that q : Ω −→ M is a realisation of Ω, β, with length(q(∂Ω)) ≤ l. Then there is a simple
track, ω ⊆ Ω, with terminal points in I ∪ I ′, with an intrinsic path metric, dω, a carrying
map p : β −→ ω, and a map f : ω −→M with f(δ(ω)) freely homotopic in M to q(δ(ω)).

(1) p : (β, dβ) −→ (ω, dω) is ξ0-lipschitz,

(2) (∀x ∈ β̃) dM̃ (q̃(x), f̃(p̃(x))) ≤ h0,

Also, given ν ∈ N there is a subset, A ⊆ Ω, which is either empty or a simple annulus,
satisfying:

(3) The dω-length of ω \A is at most h1(ν),

(4) f : (τ \ (δ(ω) ∩A), dω) −→ (M, d) is ξ1(ν)-lipschitz.

(5) (∀x ∈ Ã ∩ ω̃)(∀i ∈ {1, . . . , ν}) dM̃ (f̃(x), gif̃(x)) ≤ h2.

Here h0, h2 and the functions ξ0, ξ1, h1 depend only on l and the hyperbolicity constant of
M̃ .

In fact, all we really require of the statement that length(q(Ω)) ≤ l is that there
should be a fundamental domain for each of the two boundary components of ∂Ω̃ in Σ̃
whose q̃-image is of bounded diameter.

The proof is based on some general observations on the geometry of an infinite cyclic
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subgroup, G = 〈g〉, acting on a k-hyperbolic space H = M̃ . We note that G is parabolic,
loxodromic or elliptic. If it is parabolic, it fixes a point of ∂H. If it is loxodromic, there is
a bi-infinite geodesic (or path geodesic up to a small additive constant), θ, such that for
all i, giθ is a uniformly bounded Hausdorff distance from θ (depending only on k). Such
a θ is well defined up to uniformly bounded Hausdorff distance. We refer to it as an axis

of G. If G is elliptic, there is a G-invariant uniformly quasiconvex set, Q ⊆ G, such that
for all x ∈ Q and g ∈ G, d(x, gx) is uniformly bounded. We refer to such a set, Q, as an
almost fixed set. We can take the above bounds to be a suitable fixed multiple of k (e.g.
100k).

Lemma 3.2 : Given k ≥ 0, there exist h3 = h3(k), and given also ν ≥ 0, there is some
L = L(l, ν, k) with the following properties. Suppose that G = 〈g〉 acts on a h-hyperbolic
space H. Suppose y ∈ H, with d(y, gy) ≤ l.

(1) Suppose G is parabolic with fixed point, w ∈ ∂H, and that x ∈ H lies in a geodesic
ray from y to w with d(x, y) ≥ l. Then d(x, gi(x)) ≤ h3 for all i ∈ {1, . . . , ν}.
(2) Suppose that G is loxodromic and that θ is an axis of G.

(2a) If d(y, θ) ≥ L, and x ∈ θ, then d(x, gi(x)) ≤ h3 for all i ∈ {1, . . . , ν}.
(2b) If x lies in a shortest geodesic from x to θ and d(x, y) ≥ L, then d(x, gi(x)) ≤ h3 for
all i ∈ {1, . . . , ν}.
(3) Suppose that G is elliptic, and that Q is an almost fixed set. If x lies in a shortest
geodesic from x to Q and d(x, y) ≥ L, then d(x, gi(x)) ≤ h3 for all i ∈ {1, . . . , ν}.

Proof : The proof is an elementary exercise in hyperbolic spaces, noting that for all
i ∈ {1, . . . , ν}, we have d(y, giy) ≤ νl. ♦

To apply this to Lemma 3.1, let q̃ : Ω̃ −→ H = M̃ be a lift of Ω, equivariant with
respect to G = 〈g〉. We first consider the case where β consists of just one arc, say from
z ∈ ǫ to z′ ∈ ǫ′. We can take I = {z} and I = {z′}, so the terminal points of ω will
also be at z and z′. Thus, q̃(β̃) is a geodesic from y = q̃(z̃) to y′ = q̃(z̃′), which it will be
convenient to denote by [y, y′]. We consider a number of cases separately.

Suppose first that G is parabolic with fixed point, w ∈ ∂H. Let u ∈ [y, y′] be a
“nearest point” to w. More precisely, using the thin triangles property, we choose some
u a bounded distance, depending only on k, from geodesics rays, [y, w] and [y′, w] from y
and y′ respectively, to w. Thus, u = q̃(ṽ) where ṽ is a point of β̃, mapping to a point,
v ∈ β. We let δ be a core curve of Ω such that β ∩ δ = {v}, and set ω = β ∪ δ, and orient
the switch arbitrarily. (Here, δ will play no role other than to fulfil the requirement that
ω be simple track.) Take dω to be the pull-back path metric on ω. Below, “length” in ω
refers to the metic dω.

We define p : β −→ ω be be inclusion. We define f : ω −→ M to be equal to q on
β, and to send δ to a shortest loop in the homotopy class relative to q(v). It remains to
describe A. To this end we distinguish three cases. If length(ζ) and length(ζ ′) are both
at most L, then we set A = ∅. If they are both greater than L, we take A ⊇ δ so that
length(ζ \A) and length(ζ ′ \A) are both equal to L. If length(ζ) > L and length(ζ ′) ≤ L,
then we take A ⊇ δ so that length(ζ \A) = L and length(ζ ′∩A) is (arbitrarily) small. Now
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each point of q̃(Ã∩ω) lies a bounded distance from a point x as featuring in Lemma 3.2(1),
and is thus displaced at most a bounded distance, say h2, by gi for all i ∈ {1, . . . , ν}. Here
h2 depends only on h3 and k, and hence ultimately only on k, as required.

Next suppose that that G is loxodromic with axis θ. We in turn split this into two
cases. Suppose first that d(θ, [y, y′]) is large in relation to h. We set u ∈ [y, y′] to be a
nearest point to θ. We now proceed in a similar manner as above, this time using Lemma
3.2(2b) in place of Lemma 3.2(1).

Secondly we suppose that the distance between [y, y′] and θ is a bounded multiple of
k. Let w,w′ ∈ θ be nearest points to y, y′ respectively. Then [y, y′] is a bounded distance,
depending on k, from the path [y, w] ∪ [w,w′] ∪ [w′, y′], where [w,w′] ⊆ θ and [y′, w′].

Now the bi-infinite path,
⋃

i∈Z
[gjw, gj+1w] is a bounded Hausdorff distance from θ.

(It is quasigeodesic, but need not be uniformly so.) Moreover, d(w, gw) is bounded above
in terms of l and h. Thus, there is some j ∈ Z with d(w′, gjw) bounded. Without loss of
generality we can assume j ≥ 0. Let φ be the path [w, gw] ∪ · · · ∪ [gj−1w, gjw]. We see
that [y, y′] remains a bounded distance from [y, w]∪ φ∪ [gjw, y′] (this time, depending on
l as well as on h). We refer to the direction from w to gjw along [w, gw] as the “forward”
direction.

Now let ω be a simple track in Ω. We can construct a map f : ω −→ M , so that its
lift, f̃ : ω̃ −→ H, sends a lift of the path δ to [w, gw] and lifts of the branches, ζ̃ and ζ̃ ′

to [y, w] and [g−jy, w] respectively. We orient the cusp between ζ and δ so that it points
in the forward direction. We define the metric dω by taking the induced path-metric on
α ∪ ζ ′, and taking the induced path metric on δ scaled so that the length of δ is equal to
its stable length in M . We define a carrying map, p : β −→ ω such that f̃ ◦ p̃ : β̃ −→ H
sends β̃ to [y, w]∪ φ∪ [gjw, y]. We take f to be linear with respect to the path metric dω,
and the metric on M . This means that it will be uniformly bilipschitz on ζ ∪ ζ ′. If we can
bound j (in terms of r and l), it will also be lipschitz on δ (with constant depending on
ν). Since q̃(β̃) = [y, y′] remains a bounded distance from this path, we can assume it to
move each point a bounded distance.

To construct A we split into three cases, similarly as before, depending on whether
length(ζ) and length(ζ ′) are greater than or less than L. This time apply Lemma 3.2(2a).
In the first case, where length(ζ) and length(ζ ′) are both at most L, needs slight modifi-
cation. If the stable length of is greater than k/ν, say, then we set A = ∅. The bound on
stable length places an upper bound on j in the above, so β is lipschitz on δ (with con-
stant depending on ν). If it is less than k/ν, then any point near the axis gets translated
a bounded distance by gi for all i ∈ {1, . . . , ν}. In this case, we choose A ⊇ δ so that
length(ζ ∩ A) and length(ζ ′ ∩ A) are both small.

Finally suppose that G is elliptic. Let Q ⊆ H be an almost fixed set. Set u ∈ [y, y′] to
be a nearest point to Q. Define ω, β, ζ, ζ ′ and p : β −→ ω as in the parabolic case. Given ν
and hence L we also define A as in the parabolic case. The fact that d(x, gix) is bounded
for all x ∈ ω ∩A and all i ∈ {1, . . . , ν} now follows from Lemma 5.2(3) (if x is far from Q)
or else from the definition of Q, and the fact that it is quasiconvex, (if x is near Q).

The above argument case also deal with the case where β consist of exactly two curves,
β1 and β2, each connecting z to z′, but differing homotopically by a Dehn twist. The q̃-
images of β̃1 and β̃2 connect z̃ to z̃′ and z̃ to gz̃′ respectively. Note that these remain a
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bounded distance apart.
The general case can be reduced to this, since we can decompose β as β1 ∪β2, so that

they lift to β̃1, a set of intervals connecting Ĩ to Ĩ ′, and β̃2, a set of intervals connecting Ĩ
to gĨ ′.

There is a variation on Lemma 3.1, where, instead of a set of crossing arcs realised in
M , we have a core curve realised in M .

Lemma 3.3 : Suppose that l ≥ 0. Let Ω be an annulus, let z, z′ be points in each of the
boundary components. Suppose that β is some core curve of Ω. Suppose that q : Ω −→M
is a realisation with length(q(∂Ω)) ≤ l, and with q(β) of minimal length in its homotopy
class. Then there is a simple track, ω ⊆ Ω, with terminal points at z∪ z′, with an intrinsic
path metric, dω, a carrying map p : β −→ ω with p(β) = δ(ω), and a map f : ω −→ M
with f(δ(ω)) homotopic to q(δ(ω)). Also, given ν ∈ N there is a subset, A ⊆ Ω, which is
either empty or a simple annulus, and satisfying properties (1)–(5) of Lemma 3.1.

(Here we can take dω to be equal to dβ on β = δ(ω).) The proof is similar.
We can also allow for an annulus where β is a boundary component of Σ. In this case

there will only be one branch, ζ, emerging.

4. Bindings.

To get from transverse graphs to tracks we pass via another notion which we will term
a “binding” of a multicurve, γ. Informally, this consists of a subset of our surface, Σ, with a
vertical foliation transverse to the multicurve and with all leaves compact. (We also allow
for a component of γ be be a closed vertical leaf.) The eventual aim will be to construct
a track carrying γ by collapsing those leaves that are intervals. The part consisting of
circular leaves will be dealt with separately, using the constructions of Section 3. We may
also need to “augment” the binding so that it fills the whole of Σ. Here are some more
formal definitions.

Definition : A binding of γ consists of a subsurface Π ⊆ Σ whose boundary, ∂Π, is a
union of horizonal and vertical parts, ∂Π = ∂HΠ ∪ ∂V Π, together with two transverse
horizontal and vertical foliations on Π satisfying the following:

(B1) Π ∩ ∂Σ is a union of vertical leaves.

(B2) ∂HΠ ∩ ∂V Π is finite, and each component of ∂HΠ lies in a horizontal leaf, and each
component of ∂V Π lies in a horizontal leaf.

(B3) ∂HΠ ⊆ γ.

(B4) Each component of γ ∩ Π either lies in a horizontal leaf, or is a vertical leaf.

(B5) Each vertical leaf is compact, and each circular vertical leaf is homopically essential
in Σ.

(B6) No annular component of Σ \ Π is bounded by two vertical leaves.

10
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Definition : By a subbinding of Π, we mean another binding Π′ of γ, with Π′ ⊆ Π and
where the vertical and horizontal foliations on Π restrict to Π′.

Definition : A rectangle is a binding, R, that is topologically a disc and where each of
∂HR and ∂VR are a pair of intervals.

A rectangle is empty if R ∩ γ ⊆ ∂VR.

Definition : A vertical annulus is a binding, Ω, of γ with ∂HΩ = ∅.
A vertical annulus is isolated if γ ∩ Ω is either empty or a component of γ.

We talk about a rectangle or vertical annulus in a binding Π to mean subbindings
that are rectangles or vertical annuli respectively.

We make the following observations. Any vertical annulus is a topological annulus.
Any two distinct vertical annuli are disjoint. Any isolated annulus is a connected compo-
nent of γ ∪ Π. The binding Π is a union of maximal empty rectangles and closed vertical
leaves. Any component of Π that does not meet γ is an isolated maximal annulus.

Definition : The circular part , B(Π), of Π is the union of all circular vertical leaves.

We may as well assume that there are no isolated vertical leaves (since we can always
thicken such a leaf to give a vertical annulus). In this case, B(Π) is a subbinding of Π, and
consists of a disjoint union of all the maximal vertical annuli. We can also assume that
each component of γ that is a vertical leaf lies in the interior of B(Π).

Definition : We say that a binding, Π, is circle-free if every vertical leaf is an interval.

Definition : By the circle-free part S(Π) of a binding, Π, we mean the closure of Π\B(Π).

We can check that S(Π) is a circle-free subbinding of Π.

Let Φ = Φ(Π) be the metric completion of Σ\(γ∪Π). This is a surface with boundary
∂Φ. There is a natural map ι : Φ −→ Σ which is injective on the interior, but may be
injective or two-to-one on ∂Φ. We have ι(∂Φ) ⊆ γ ∪ Π, and we write ∂HΦ and ∂V Φ for
the primages in Φ of γ and ∂HΠ respectively. Note that ∂HΦ ∩ ∂V Φ is finite. We refer to
the components of ∂HΦ and of ∂V Φ as the horizontal and vertical sides of Φ.

Definition : A cusp of Φ is a vertical side of Φ that is an interval.

Definition : A component, F , of Φ is a monogon, respectively digon, if F is a topological
disc, and has exactly one, respectively two, cusps.

In other words, ∂HF and ∂V F each consist respectively of an interval, or of a pair of
intervals.

11
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Definition : The complexity , c(Π), of Π is defined as c(Π) = χ(Φ) − χ(Σ), where χ
denotes Euler characteristic.

We see that the total number of cusps of Φ is exactly 2c(Π). In particular, c(Π) ≥ 0.
Note that the total number of vertical and horizontal edges of Φ is bounded in terms

of c(Π) and the topological type of Σ. (In fact, it bounds the combinatorics of Π, in the
sense of limiting the number of maximal annuli and rectangles in Π, and hence the manner
in which they can intersect.)

Definition : We say that Π is efficient if there are no complementary monogons or digons.

If Π is efficient (in particular, if there are no monogons) then any crossing of γ with
a closed vertical leaf is essential (so that the total number of crossings is minimal in the
free homotopy class). It also follows that no two distinct maximal vertical annuli can be
homotopic (otherwise there would be a digon between them).

In fact, if Π is efficient, then c(Π) is bounded in terms of type(Σ). This is not hard
to see, though we will not formally be using this fact here.

We describe a few moves on an arbitrary binding with the eventual aim of eliminating
monogons and digons, so that it will become efficient. These will be performed under
additional geometric constraints in Section 5.

(M1) Splitting.
Suppose that R ⊆ Π is an empty rectangle and let Π′ be the closure of Π \ R. Then

Π′ is a subbinding. Now ∂VR meets ∂V Π in 0, 1 or 2 intervals (cusps of Φ). If there are 0,
then we would introduce a digon, and c(Π′) = c(Π) + 1, so we will not use this operation.
If it is 1, then c(Π′) = c(Π), and it is 2, then c(Π′) = c(Π) − 1. We refer to either of the
last two cases as a “splitting” of Π. The last case is termed a “complete splitting”.

(M2) Filling digons.
Suppose that D is a digon component of Φ(Π). We can construct a rectangle, R, with

∂VR = ∂VD and ∂HR = ∂HD. In other words, we equip R with transverse horizontal and
vertical foliations. We write Π′ = Π ∪ R and connect up the foliations to give horizontal
and vertical foliations on Π′. This will be a binding provided that each vertical leaf of Π′

is compact. Note that c(Π′) = c(Π) − 1. We refer to this process as “filling” the digon D.
A sufficient condition for the compactness of vertical leaves is that we can push one

of the horizontal sides of D, along the vertical folation, into a horizonal side of a different
component of Φ. In this case, we can construct the vertical foliation on D however we
want. This process of pushing will be elaborated on later.

(M3) Modifying an annulus.
Suppose that Ω ⊆ Σ is an essential annulus such that each component of γ ∩ Ω is

a crossing arc (i.e. connects the two boundary components of Ω), and such that each
component of Π ∩ ∂Ω is a vertical leaf of Π. We note that the closure, Π0, of Π \ Ω is a
subbinding of Π. On Π0 we take the original foliations. On Ω, we take two new foliations
with the vertical foliation consisting of circles, and the horizontal foliation of crossing arcs,
including the components of γ ∩ Ω. We note that c(Π′) ≤ c(Π).
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The above assumes that Ω is embedded in Σ, though we can modify the construction
to deal with an immersed annulus, ι : Ω −→ Σ. We assume that there is some embedded
core curve, α ⊆ Ω such that ι−1ι(α) = α. We also assume that ι(∂Ω) meets Π only in
vertical leaves. We can now apply the above construction to the component of Σ \ ι(∂Ω)
containing ι(α), perhaps adjusted slightly so that its closure Ω′ is embedded. We can then
set Π′ = Π∪Ω′ similarly as above. We describe this more carefully when we come to apply
it in the next section.

All the above operations can only reduce the complexity of the binding.

Next, we consider how bindings give rise to tracks in Σ carrying γ.

Suppose, first, that Π is a circle-free binding. Define an equivalence relation ∼ on γ
by writing x ∼ y if either x, y ∈ γ \Π or if x, y ∈ γ∩Π and x, y lie in the same vertical leaf
of Π. Set ρ = Π/∼. This is the same as taking γ ∪Π and collapsing each vertical leaf to a
point. Now ρ is a graph which admits an embedding Σ that is well defined up to isotopy.
In fact, we can extend the quotient map, γ ∪ Π −→ ρ, to a map π : Σ −→ Σ that is a
homotopy equivalence, and so that π is injective on Σ \ (γ ∪ Π). Note that π(γ) = ρ, and
that π|γ is a local homeomorphism. There is a natural map from Φ to Σ also denoted by
π, which agrees with the above on its interior, and sends π(∂Φ) ⊆ ρ.

Recall that a track in Σ consists of an embedded graph where all vertices have degree at
least 3, and where each vertex has the structure of a swich (that is, the incident half-edges
are partitioned into two non-empty subsets). We also allow for closed circle components.
We see that ρ has a cononical switch structure at each vertex such that π : γ −→ ρ is a
carrying map. Cusps of Φ get mapped to cusps of Σ \ ρ in the usual sense. In particular,
monogons and bigon components of Φ correspond to monogon and bigon components of
Σ \ ρ. Note that there can be no smooth disc or annular components of ρ. Thus, if Π is
efficient, we see that ρ is a track, in the sense we have defined it. (That is a train track in
the traditional sense, except that it might not be connected.)

Suppose now, that Π is any binding with ∂Σ ⊆ Π. Let B = B(Π) be the circular part
of Π, which we can suppose is a disjoint union of maximal vertical annuli. Let S = S(Π)
be the circle-free part. Thus S ∩B = ∂V S ∩ ∂VB consists of finite set of vertical intervals.
By modifying Π, slightly, splitting along empty rectangles, we can assume that S meets
each component of ∂VB, if at all, in a single vertical interval. Thus, each component of
∂B \ ∂Σ either is vertical circle or meets Φ in a single cusp. This will simplify a little the
following discussion.

Let ρ′ be constructed as above from Π′ by collapsing each vertical leaf of Π′ to a
point. This time ρ′ is a graph naturally embedded in the closure of Σ \B. This may have
a number of terminal vertices in ∂B. All other vertices of ρ′ have the structure of a switch
as before.

To complete ρ′ to a track, we need some additional data. Suppose that in each non-
isolated maximal annular component, Ω, of we have a simple track, ω, in Ω, as defined
in Section 3. Thus, ω ∩ Ω consists of a single point in each component of ∂Ω. We shall
assume these terminal points to lie also in S. Thus, after sliding these points in Ω ∩ S,
we can connect them up to terminal points of ρ′, to give a smooth edge crossing ∂Ω.
Performing this construction for each non-isolated component of B gives us a track ρ
which carries those components of γ that are not vertical leaves in isolated annuli. There
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is some ambiguity about how the carrying map behaves on B, which will be discussed
when we apply the construction. As before, we can extend the carrying map to a map
π : Σ −→ Σ, homotopic to the identity and injective on Σ \ Π.

To finish, we need to extend ρ to a track that fills Σ. For this we need some more
data. Let us suppose that we also have a simple track in each islated component of B. In
addition we have a graph in λ embedded in Φ such that for each component F of Φ, F \ λ
is a disc (cf, the notion of carrying graph [Ba]). We assume that π meets ∂Φ precisely
in its terminal vertices. In fact, we can assume that λ meets each component of ∂Φ in a
single point.

Now λ gives us a graph, π(λ) in Σ, with its terminal vertices in ρ or in boundaries
of isolated annuli. We connect these up with the simple tracks in the isolated annuli, and
to gives us a graph τ ⊇ ρ in Σ, with ∂Σ ⊆ τ . Each component of Σ is a topological disc.
We can now abitrarily assign the vertices of τ that were not already in ρ the structure of
switches. This cannot introduce any monogons or digons. Thus, τ has the structure of a
track carrying γ and filling Σ.

Definition : By an augmented binding we mean binding Π together with with tracks ω
in B(Π) and λ in Φ(Π) of the type described above.

In other words if we have an augmented binding that is efficient (no monogons or
digons in Φ(Π)) then we can construct a track τ filling Σ as above.

We next introduce the notion of “pushing” intervals in γ along the vertical foliations.
This is best described in the the cover Π̃. Given intervals I, we say that I pushes to J
if there is an rectangle, R̃, in Π̃ with ∂HR̃ = Ĩ ⊔ J̃ , where Ĩ and J̃ are lifts of I and J
respectively. (We allow for the possibility that R̃ is degenerate, i.e. R̃ = Ĩ = J̃ .) This
determines a canonical homeomorphism, θ : I −→ J , obtained by flowing along the leaves.
Note that R̃ determines an immersed rectangle, R, in Π. We will abuse notation slightly
by writing ∂HR = I ∪ J .

We now move on to consider some metric conditions on Π that will be used in Section
5.

Suppose that dγ is a path-metric on γ.

Definition : Given µ > 0, we say that dγ is µ-pushing invariant if whenever I, J ⊆ γ are
intervals and I pushes to J , then the canonical homeomorphism from I to J is µ-bilipschitz.

Note that if Π is a circle-free binding, then we can put a path-metric, dρ, on the track
ρ, so that the carrying map, (γ, dγ) −→ (ρ, dρ) is locally µ-bilipschitz.

Definition : The horizontal size of Π is length(∂HΦ(Π)).

We now bring the space, M , into play. Let M be as in the introduction, with π1(M) =
Γ, and H = M̃ hyperbolic.
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Definition : Let Π be a binding of γ. By a realisation of Π, we mean a map φ : γ∪Π −→
M , such that φ|γ is a realisation of γ (i.e. φ(γ) has minimal length in its homotopy
class) and such that q is continuous on each vertical leaf of Π. Moreover, q has a lift
q̃ : γ̃ ∪ Π̃ −→ M̃ , projecting to φ. (We regard the choice of lift as part of the structure of
q.)

Let dγ be the pull back metric to γ. We assume that dγ is µ-pushing invariant for
some µ ≥ 0.

Suppose that α is a vertical leaf and let λ be a component of α̃. If α is an interval,
we define the size of α to be diam(φ̃(λ)). If α is an circle, we define the size to be the the
diameter of the φ̃-image of a fundamental domain for λ. This is well defined up to a factor
of 2.

Definition : The vertical size of Π is the maximal size of a vertical leaf of Π.

We talk of the size of Π as being “bounded” if there are bounds on its complexity,
vertical size and horizontal size.

5. From transverse graphs to tracks.

Let γ ⊆ Σ be a multicurve, and γM a realisation of minimal length in M . Let χ
be a compatible triangulation, as in Section 2. We get a map φ : Σ −→ M , lifting to
φ̃ : Σ̃ −→ M̃ (Lemma 2.1). Let Υ be the transverse graph given by Proposition 2.2.

Starting with such a map φ we construct our track in three steps.

(1) Use φ to construct a binding, Π, of γ of bounded complexity, and a map, ψ : Π −→M
with ψ(γ) = γM , such that the pull-back path-metric, dγ , on Π is µ-pushing invariant
for some µ, and such that Π has bounded horizontal size. We also have a carrying graph
λ ⊆ Φ and an extension of ψ to λ such that ψ(λ) has bounded length. Note that ψ is in
the right homotopy class. All the bounds and constant µ depend only on type(Σ) and the
hyperbolicity constant.

(2) We modify Π to eliminate monogons and digons, while maintaining geometric control.
Thus Π becomes efficient. We also modify λ ⊆ Φ(Π) and ψ|λ so that it has the same
properties as when we started out.

(3) We use Π to construct a track, τ , filling Σ and a carrying map, p : γ −→ τ , in the same
manner as that described above. Some of the components of B(Π) give rise to the special
annuli, A(S). We use ψ to give us a map f : τ −→M with the properties claimed.

Step 1 :

We start with Σ, χ, φ,Υ as above, with φ(γ) = γM . We can lift φ : Σ −→ M to
ψ̃ : Σ̃ −→ M̃ . Suppose that I, J are disjoint intervals in Σ̃ transverse to γ̃, meeting each
component at most once. (In practice, these will be edges of Υ̃.) Let G(I, J) be the set
of closures of components of γ̃ \ (I ∪ J) that meet both I and J . It has a natural linear
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order. Let R be the union of I ∪ J ∪⋃
G(I, J) together with all the bounded components

of its complement in Σ. If G(I, J) = ∅, then R = ∅. If G(I, J) consists of a single arc, β,
then R = β. Otherwise, R is a topological disc. We can write ∂R̃ = ∂HR̃ ∪ ∂V R̃, where
∂HR̃ consists of the two extreme segments of G(I, J), and where ∂V R̃ ⊆ I ∪ J . We give R̃
the structure of a rectangle, with the elements of G(I, J) horizontal, and so that ∂HR̃ and
∂V R̃ are, respectively, the horizontal and vertical boundary components. We can chose
the vertical foliation so that the pushing map is linear on each component of G(I, J).

Recall that the metric dγ on γ is the pull back under the map φ : γ −→M . Lifting to
Σ, we see that the difference in lengths between any two elements of G(I, J) is bounded
above by diam(φ̃(I)) + diam(φ̃(J)). Suppose that there is a positive lower bound on the
lengths of the elements of G(I, J). Then R is µ pushing invariant, where µ depends
only on these bounds and the hyperbolicity constant. Moreover, we can find a realisation
ψ̃ : R̃ −→ M̃ , with ψ̃ equal to φ̃ on γ̃ ∩ R̃ and with each vertical leaf sent to a piecewise
geodesic path with breakpoints in γ̃. Using hyperbolicity, we see that such a path must
have bounded length. This descends to a rectangle, R, in Σ and a map ψ : R −→M , with
ψ|(R ∩ γ) = φ|(R ∩ γ). The vertical size is bounded above in terms of the hyperbolicty
constant and diam(φ̃(I)) + diam(φ̃(J)).

Now let C be a component of Σ\Υ. The horizontal foliation in C can have singularties
only in V or on ∂C, and such singularties have positive degree. This means that C must
be a disc containing at most one point of V or an annulus with V ∩C = ∅. For each such
component we aim to construct a binding, ΠC ⊆ C. We eventually piece these together to
give us our binding Π.

Suppose first that C is a disc. Let C̃ be a lift of C to Σ. Then ∂C̃ is a closed path
consisting of a bounded number of edges of Υ̃, or segment of ∂Σ. Thus diam(φ̃(C̃)) is
bounded.

Suppose that C∩V = ∅. Then C̃∩ γ̃ consists of a set of arcs, each of which has length
bounded above (by diam(φ̃(C̃))) and below (by the constant, η0, of Propostion 2.2). For
each pair of distinct edges, I, J of Υ̃ in ∂C̃ (with G(I, J) 6= ∅), we construct a rectangle,
R̃, as above, and let Π̃C be the union of all such rectangles. We construct ψ̃ : Π̃C −→ M̃
as above. This descends to ΠC and ψ : ΠC −→M , with bounded vertical size. Since there
are boundedly many rectangles, we see that ΠC has bounded horizontal size.

If C ∩ V = {v} with v ∈ V , then all edges of χ must radiate from v, and so C ∩ γ
consists of a single arc. In this case, we can just set ΠC = ∅.

Suppose now that C is an annulus, with boundary components ǫ1 and ǫ2, say. Each
ǫi is either a boundary component of Σ, or a closed path in Υ with a bounded number
of edges. It lifts to a strip, C̃, in Σ̃ bounded by ǫ̃1 ∪ ǫ̃2. For each pair of edge I, J of Υ̃
lying in ǫ̃1 and ǫ̃2 respectively, we construct a rectangle from G(I, J) as before. We can do
this equivariantly with respect to the covering translations of C̃. Their union descends to
a binding, Π0, in C. We have a map, ψ : Π0 −→ M of bounded vertical size. In the case
where C∩γ 6= ∅, the complement C∩Π0 consists of a bounded number of discs. Each such
disc, D, is bounded by two components, say β1, β2 of γ ∩C. We can insert a rectangle in
D, by pushing the components of D ∩ ǫ1 and ǫ2 inward a bit to give horizontal segments,
an so that the vertical segments are most of β1 and β2. We now foliate this similarly as
before, so that the pushing maps are linear, and such that the vertical leaves all close up.
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This will give us our binding C. If C ∩ γ = ∅, then we perform a similar construction, but
starting with a component of χ∩C instead of a components of C ∩ γ. This will give us an
isolated annulus ΠC and a map ψ : ΠC −→M of bounded vertical size.

We now piece together all the bindings ΠC , as C ranges over components of Σ \Υ, to
give us our binding Π.

To construct λ ⊆ Φ, we begin by taking Υ ∩ Φ. This cuts Φ into discs and annuli.
Each annulus arises from an annular component of Σ ∩ Υ and is bounded on one side by
a vertical leaf of Π and on the other by a closed path in Υ. It is crossed by some short
arc in an edge of χ. By adding these edges, we can arrange the the complement of our
graph is a union of disc. We can then delete enough edges so that the complement in each
component of Φ consists of just a single disc. This gives us a our graph λ ⊆ Φ.

Lifing to Σ, we have an equivariant map λ̃ −→ M sending each edge to a set of
bounded diameter. We now modify this, fixing the vertex set, and sending each edge to a
geodesics segment. This descends to a map ψ : λ −→M such that each edge has bounded
length.

Step 2 :

We start with a binding, Π, for γ, that is uniformly pushing invariant, and has bounded
complexity and horizontal size. We have a map ψ : Π −→M of bounded vertical size. We
also have a carring graph λ ⊆ Φ(T ) and an extension ψ : λ −→ M in the right homotopy
class. We first need to eliminate monogons and digons from Φ(Π). At the end, we will
describe how to modify λ.

(a) Eliminating monogons.

Let D be a monogon component of Φ(Π). Thus, ∂HD and ∂VD are both intervals.
Let R ⊆ Π be the maximal empty rectangle on the other side of ∂VD, in other words so
that ∂VD ⊆ ∂VR.

We construct Π′ as the full splitting of Π along R. Thus, c(Π′) ≤ c(Π). Since Π′ ⊆ Π,
Π′ is uniformly pushing invariant, and restricting ψ to Π′ it has bounded vertical height.
Note that Π′ remains uniformly pushing invariant, and the vertical size cannot increase.
The horizontal size has increased by length(∂HR) so we need to check that this is bounded.

Let I, J be the components of ∂HR, so that α = I ∪ ∂HD ∪ J is an arc in γ. Let
θ : I −→ J be the pushing map, which we are know to be uniformly bilipschitz. Since
ψ(Π) has bounded vertical length, lifting to Σ̃, we see that ψ̃|I and ψ̃ ◦ θ|I are a bounded
distance apart. But ψ̃|α̃ is a uniform quasigeodesic, and θ reverses orientation along α. It
follows that I and J have bounded length, as required.

After performing this construction a bounded number of times (depending on the orig-
inal complexity of Π) eliminate all monogons while maintaining a bound on the horizontal
length of Π.

(b) Eliminating digons.

Let D be a digon component of Φ. We label the components if ∂HD arbitrarily as
∂+

HD and ∂−HD (the “top” and “bottom” sides) and of ∂VD as ∂+
V D and ∂−V D (the “left”

and “right” sides).
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We begin by pushing ∂+
HD upwards as far as we can. If we runt into a component of

∂Σ, we can immediately apply move (M2) to eliminate D, so we suppose that this does not
happen. Thus, we arrive an interval, I, meeting ∂HΠ non-trivially. There is a rectangle in
Π with horizontal sides ∂+

HD and I. (One can see that this rectangle must be embedded
in Π, though an immersed recangle would be sufficient for subsequent arguement.) Since
∂+

HD ⊆ ∂Φ, the length of ∂+
HD is bounded, and since Π is uniformly pushing invariant, so

also is the length of I.

Let K ⊆ I be the set of points with meet in Φ on the top side of I. We can assume
that K is connected. Otherwise, there would be a emply rectangle in Π with one of its
horizontal sides lying in I. Since it has bounded length, we could remove it, thereby
reducing c(Π) while maintaining a bound on the horizontal length. In now follows, in
particular, that K, lies in a single component, F , of Φ.

Suppose that F 6= D. Then we can assume that I ⊆ ∂HF — again by splitting along
a empty rectangle on the top of I. (This will not be a full splitting though). We can then
fill the digon D by inserting an empty rectangle, R0, say, to give us a binding Π′ ⊇ Π.
This reduces complexity and horizontal length. We can construct the vertical foliation so
that the pushing map between the horizontal components is linear, and hence unformly
bilipshitz. Lifting to Π̃, we see that that diam(φ̃(∂D̃)) is bounded. We can thus extend
this to a map R̃0 so that the ψ̃-image of each vertical leaf has bounded diameter. This
descends to a map ψ : R0 −→M . We see that ψ(Π′) has bounded vertical size.

We can therefore assume that I meets D non-trivially in a single interval. This must
lie in ∂−HD.

Similarly, we push ∂−HD down as far as we can. By similar reasoning we can assume
that we arrive an interval I ′ which meets ∂+

HD is a single non-trivial interval.

Combining these, we obtain a rectangle, R, in Π with ∂+
HD ⊆ ∂−HR and with ∂−HD ⊆

∂+
HR, where ∂+

HR and ∂−HR are the “top” and “bottom” sides of R. Indeed, without loss
of generality, we can assume we are in one of the following two cases:

(i) ∂−HD = ∂+
HR and ∂+

HD is a subinterval of ∂−HR,

(ii) ∂−HD is a subinterval of ∂+
HR containing its right endpoint and ∂+

HD is a subinterval of
∂−HR meeting containing its left endpoint.

Note that we can find a simple closed curve, β, in Σ consisting of a vertical leaf of R
together with an arc in D. This determines an element, g ∈ Γ, defined up to conjugacy.
(We orient so that we run downwards along the vertical leaf.)

We aim to eliminate D by applying the move (M3) described in Section 4. That is,
we want to construct an annulus, Ω, in Σ, containing D and meeting Π only in vertical
leaves. This is best described in terms of the cover, Σ̃, of Σ.

We lift D to a digon, D̃ in Φ̃, with ∂+
HD̃ ⊆ ∂−HR̃, where R̃ is a lift of R. Thus,

∂−HD̃ ⊆ g∂+
HR̃. We aim to construct a 〈g〉-invariant strip, Ω̃ ⊆ Σ̃, which will descend to

the required annulus, Ω ⊆ Σ. We will write β−, β+ for its boundary components, and β̃−

and β̃+ for their lifts to Σ̃.

In the above, we can have either:

(i) ∂+
HR̃ = g−1∂−HD̃ and ∂−HR̃ = I− ∪ ∂+

HD̃ ∪ I+, or

(ii) ∂+
HR̃ = I− ∪ g−1∂−HD̃ and ∂−HR̃ = ∂+

HD̃ ∪ I+,
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where I− and I+ are intervals. Either way, I+ is an interval in ∂−HR̃ with left endpoint in

∂+
HD̃ and containing the right endpoint of ∂+

HR̃.

If I+ consists of a single point, when we can just set β̃+ = ∂+
V D ∪ ∂+

V R, so we can
suppose that I+ is a non-trivial interval.

We now push I+ down as far as it will go, to an interval, J , meeting ∂HΠ̃ non-trivially.
By a similar argument as earlier, we can assume that a J∩∂HΦ̃ consists of a single interval.
(Otherwise we can split Π, decreasing c(Π).) Thus J ∩ ∂+

HΦ̃ ⊆ ∂+
H F̃ . Thus, ∂+

HΦ̃ ⊆ ∂+
H F̃ ,

where F̃ is a component of Φ̃. Let F ⊆ Σ be the projection. We distinguish two cases:

(a) F 6= D.

In this case, splitting Π if necessary, we can suppose that J ⊆ ∂+
H F̃ . Now the left

endpoint of I+ is also the right endpoint of ∂+
HD̃, and the right endpoint of ∂−HD̃ is also

the right endpoint of g∂+
HR. This lies in the same vertical leaf of Π̃ as the left endpoint

of J and the right endpoint of gI+. Now gI+ pushes down to gJ ⊆ gF̃ . This means that
there is a vertical interval, δ1, from the left endpoint of J so some point, x ∈ gF̃ . We
connect x to the left endpooint of gJ by a path δ1, lying in gF̃ . Now δ1 ∪ δ2 maps down
to a simple closed curve, β+ ⊆ Σ, meeting Π in a single leaf, and homotopic to the curve
β described above.

(b) F = D.

We set F̃ = hD̃, where h ∈ Γ. Note that h /∈ 〈g〉. Let K ⊆ J be the component of
J \h∂+

HD̃ containing the left endpoint. Let S ⊆ Π̃ be the emptly rectangle with ∂+
HS = K.

Note that ∂+
V S = h∂−V D̃. Now the right endpoint of ∂I+ pushes down into h∂+

HR̃, so so

the right endpoint of gI+ pushes down into gh∂+
HR̃. From this, it follows that the left

endpoint of ∂−HS lies in gh∂+
HR̃. Thus, ∂−HS meets both ghR̃ and hgR̃, and so ∂+

V R̃ lies in

both hD̃ and ghg−1D̃. It follows that ghg−1D̃ = hD̃ and so ghg−1 = h. In other words, g
and h commute. Since g is primative and h /∈ 〈g〉, it follows that Σ is closed torus, contrary
to our assumptions.

In summary, we have found a simple closed curve β+ in Σ homotopic to β, and meeting
Π in a vertical leaf. Note that D̃ lies to the right of β̃+ oriented downward, in the direction
of translation of g.

We now perform a similar construction on the left of D̃. There are two possibilities:
either

(i) I− ⊆ ∂−HR, and we push it down as far as it will go, or

(ii) I− ⊆ ∂+
HR, and we push it up as far as it will go.

Either way, as above we get a curve β− ⊆ Σ homotopic to β, again meeting Π in a single
vertical leaf. They bound an immersed annulus Ω mapping to D with degree 1. (In fact,
it’s not hard to see that this has to be embedded in Σ.) We can now use the construction
(M3) of Section 4 to give us Π′ = Π ∪ Ω. In the process, we have removed the digon D,
and so c(Π′) < c(Π).

After a bounded number of such operation we will eventually arrive at a binding Π′′

with no monogons or digons. In other words, Π′′ is efficient.

We started out, in addition, with a carrying graph, λ ⊆ Φ(Π), and a map, ψ : λ −→M ,
in the right homotopy class, with ψ(λ) of bounded length. To complete the picture, we

19



Train tracks

need to explain how to get a carrying graph, λ′′ ⊆ Φ(Π′′) and a map ψ′′ : λ′′ −→M .
Note that in each step of the above process, ∂Φ(Π′) is a bounded distance from

∂Φ(Π). More precisely, in a splitting move, we attach a rectangle to Φ(Π) along one or
two vertical sides. There given the bound on vertical size, there is no loss in assuming that
λ ∩ ∂Φ ⊆ ∂HΠ, and so gives us also a graph λ ⊆ Φ(Π). Now, if the rectangle is attached
along just one side, or is attached along both sides but to different components of Φ, then
we can simply set λ′ = λ and ψ′ = ψ. If the rectangle meets the same component of Φ(Π)
along both its vertical sides, then we set λ′ = λ ∪ α, where α is any vertical leaf of the
rectangle. Since the ψ̃-image of a lift of the boundary of rectangle has bounded diameter,
we can define ψ′ : α −→ M so that ψ̃′(α̃) has bounded diameter. We set ψ′|λ = ψ. This
defines our map ψ′ in this case. In the move that deletes a digon, there is no change to
λ or ψ. Finally, in the case of addition of an annulus, Φ(Π) changes by the removal of a
digon, and the conversion of a horizontal boundary segment of bounded length to a vertical
segment. Therefore no change is necessary in this case.

After all these operations we end up with our efficient binding, Π′′, the supporting
graph on the complement, and a map ψ′′ : λ′′ −→ M . To simplify notation, we rename
these as Π and λ and continue to the next step.

Step 3 :

We now have an efficient binding, Π, and a carrying graph, λ, on Φ, and a map
ψ : Π ∪ λ −→M , as above.

Let B(Π) and S(Π) be the circular components of Π as defined in Section 4. We can
assume that B(Π) is a disjoint union of maximal vertical annuli, and that Φ(P ) meets
each component of ∂B(P ) in a single vertical edge of Φ. (This will simplify the subsequent
discussion.)

Let Ω be a component of B(Π), and let ∂Ω ∪ ǫ ⊔ ǫ′. Suppose that Ω is not isolated.
Let I = ǫ ∩ S(Π) and let I ′ = ǫ′ ∩ S(Π). Thus, I, I ′ are intervals, ǫ \ I and ǫ′ \ I ′ and
cusps of Φ(Π). Now γ ∩ Ω consists of a set of crossing arcs. The map ψ : Ω −→ M sends
each component of γ ∩Ω to a path minimal in its homotopy class relative to its endpoints.
Note also that ǫ̃ and ǫ̃′ have fundamental domains whose ψ̃-images have bounded diameter.
(Since φ(Π) has bounded horizontal size.) Thus, Lemma 3.1 gives us a track, ω, in Ω, with
terminal points in I∪I ′, and carrying map, p : γ∩Ω −→ ω, homotopic to inclusion relative
to I ∪ I ′.

If Ω is isolated, let z, z′ ∈ ∂Ω be terminal points of the carrying graph λ ⊆ Ω. We
now let ω ⊆ Ω be the track given by Lemma 3.3, and a map f : ω −→M , sending δ(ω) a
curve of minimal length in its homotopy class. If β = γ∩Ω 6= ∅, we can take δ(ω) = γ ∩Ω,
and suppose that f(γ ∩ Ω) curve βM in M .

We now apply the construction of Section 4 to give us a track, τ in Σ. Let ρ ⊆ τ be
the part arising from S(Π). The components of B(π) give rise to a special set, Σ, of loops
in τ .

Note that ρ carries a metric, dρ, so that the carrying map, (γ, dγ) −→ (ρ, dρ) is locally
ρ-bilipschitz, where µ depends only on the constants arising in Propostion 2.2, and hence
ultimately, only on the hyperbolicity constant, and the toplogical type of Σ. Lemma 3.1
allows us to extend the path-metric to a path-metric, dτ , on τ .
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Each vertex of τ ∩ S(Π) arose from a vertical leaf. Lifting to Σ̃, we can map each
such vertex to any point in the φ̃-images of the corresponding vertical leaf. We can now
extend over τ , sending each edge to a geodesic segment. Descending to Σ, we get a map
f : ρ −→M . We have already have f defined on τ ∩B(Π). We set f to be equal Ψ on λ.
This gives us our map, f : τ −→M .

In summary, we have constructed a track, τ , with path-metric dτ and a special set of
loops S, a carrying map p : δ −→ τ and a map f : τ −→ M . We now verify that these
satisfy (T1)–(T8) required by Theorem 0.1. The various statement in relation to the thin
part follow from Lemma 3.1 and Lemma 3.3. The statements about the thick part follow
from the construction of ρ.

6. Hyperbolic surfaces.

We now proceed with the proof of Proposition 2.2. In this section we discuss trian-
gulations on Σ. We will use complete finite area structures on the complement of a finite
set, V ⊆ Σ, which will be the vertex set of a triangulation. This will be conventient to
formulate later arguments. We can use this to give a riemannian metric on Σ, as in Lemma
1.1, as disussed at the end of Section 8.

Let θ be an ideal hyperbolic triangle. We write ω(θ) for its centre. If a is an edge
of θ, we write p(θ, a) for the orthogonal projection of ω(θ) to a, which we refer to as the
midpoint of a. The three edge midpoints are connected by three horocyclic arcs, each
of length

√
2. Each of these arcs cuts off a spike of θ. If ζ is one of the spikes, and

t ∈ (0,
√

2], we write δ(ζ, t) for the horocyclic arc of length t in ζ. These arcs foliate ζ.
We write ∆(ζ, t) =

⋃
u≤t δ(ζ, u) for the spike cut off by δ(ζ, t). We write ∆(θ, t) for the

union of the three ∆(ζ, t) as e ranges over the three spikes. Given an edge a, we write
I(θ, a, t) = a \ ∆(θ, t). This is an open interval of length 2 log(

√
2/t) centred at p(θ, a).

Now each spike of θ has two orthogonal foliations: one by horocycles, and one by
geodesics rays. We refer to these as vertical and horizontal respectively. We can extend
these smoothly and symmetrically to give two orthogonal foliations of θ with a tripod
singularity at the centre, ω(θ). We also refer to these extended foliations as vertical and
horizontal .

Suppose for the moment, that Σ is a closed surface. (We discuss the case with bound-
ary at the end of this section.) Let χ be a triangulation of Σ with vertex set V = V (χ) ⊆ Σ.
We write E(χ) for the set of edges and T (χ) for the set of triangles. Given v ∈ V , let
E(χ, v) be the set of edges incident on v. This gives an ideal triangulation of the punctured
surface, S = Σ \V and we give S a hyperbolic structure in which every triangle is an ideal
hyperbolic triangle. To determine this uniquely, we need to specify shift parameters along
the edges.

We suppose that Σ is oriented, so that any orientation on an edge a of χ also determines
a transverse orientation. We write θ− = θ−(a) and θ+ = θ+(a) for the adjacent triangles
on the negative and positive side of a respectively. We write p±(a) = p(θ±(a), a) for the
respective edge midpoints. We write Λ(a) for the signed distance between p−(a) and p+(a)
along a. Note that the sign of Λ(a) depends only on the orientation of Σ. This gives us a
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map Λ : E(χ) −→ R. Indeed any such map determines a hyperbolic structure on S. This
structure will be complete if and only if for each v ∈ V ,

∑
a∈E(χ,v) Λ(a) = 0 (counting an

edge twice if both endpoints are at v).
Suppose now that λ : E(χ) −→ R is another map. Suppose that a ∈ E(χ) is oriented

with adjacent triangles θ±. Let b+, c+ be the other edges of θ+ adjacent to a in the positive
and negative directions respectively, and let b−, c− be the other edges of θ− adjacent to a
in the negative and positive directions respectively. Let Λ(a) = 1

2(λ(b+)+λ(b−)−λ(c+)−
λ(c−)). Note that this does not depend on the orientation of a. Now

∑
a∈E(χ,v) Λ(a) = 0

for each v ∈ V , and so any such λ will determine a complete hyperbolic structure, σ, on
S.

Suppose that λ(a) ≥ 0 for all a, and that λ satisfies a triangle inequality for each
triangle, that is, if θ ∈ T (χ) has edges a1, a2, a3, then λ(a1) ≤ λ(a2) + λ(a3). If a ∈ E(χ),
then, using the above notation, we can define a point, q+(a) ∈ a, a distance 1

2
(λ(a) +

λ(c+)−λ(b+)) from p+(a) in the positive direction along a. We have chosen our structure
such that this is the same as the point a positive distance 1

2
(λ(a) + λ(b−) − λ(c−)) from

p−(a). We similarly define a point q−(a) a distance 1
2(λ(a) + λ(b+) − λ(c+)) from p+(a)

in the negative direction. We also note that if we orient c+ so so that a and c+ meet in
the positive direction of c+, then q+(a) and q+(c+) are the endpoints of a horocyclic arc
in θ+.

Continuing around the vertex, we see that there is closed horocycle about v, meeting
the edges of χ precisely in the points q±. Let D(v) be the horodisc bounded by this
horocycle and set D =

⋃
v∈V D(v). In summary, we have:

Lemma 6.1 : Suppose that λ : E(χ) −→ [0,∞) satisfies the triangle inequalities for all
triangles of χ. Then there is a complete hyperbolic structure on S = Σ\V and a horodisc,
D(v), about v for each v ∈ V such that length(a \D) = λ(a) for all a ∈ E(χ). ♦

Note that, by construction, the points p±(a) all lie outside D̃.
We write Σ̃ for the universal cover of Σ, and Ṽ ⊆ Σ̃ for the preimage of v. Thus

χ lifts to a triangulation χ̃, of Σ̃ with vertex set Ṽ . Suppose that h : Ṽ −→ H is any
Γ-equivariant map. Given a ∈ E(χ̃), with endpoints x, y ∈ Ṽ , we set λ(a) = d(h(x), h(y)).
Thus, Lemma 6.1 gives us a hyperbolic structure, σ, on S, and a union of horodiscs D ⊆ Σ.
Let D̃ be the preimage of D in Σ̃. If a ∈ E(χ̃), then length(a \ D̃) = d(h(x), h(y)), so we
can define map, φ : a \ D̃ −→ H, sending a \ D̃ isometrically to some geodesic segment
(of length λ(a) in H from h(x) to h(y). Since Γ acts freely on Σ, this can be done Γ-
equivariantly. If θ ∈ T (χ̃), we can extend over θ \ D̃ so that each vertical leaf gets sent to
a set of diameter at most H, where H depends only on k. (This is a simple consequence
of the “thin triangles” characterisation of hyperbolicity.) We now get an equivariant map,
φ̃ : θ \ D̃ −→ H. (Of course, φ̃ need not be continuous.) We can now extend φ̃ to Σ̃ \ Ṽ
simply by mapping each horodisc to the corresponding point in h(Ṽ ) ⊆ H.

To apply the above, let γ ⊆ Σ be a multicurve, and let χ be a compatible triangulation
(as in Section 2). Let γM be a realisation in M . We now take any map V −→M sending
each v(α) to some point of its realisation, αM , and let h : Ṽ −→ M̃ = H be an equivariant
lift. This gives rise to a map φ̃ : Σ̃ \V in the manner described above. If α̃ is a component
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of γ̃ corresponding to the edge a(α̃) of χ̃ then φ̃(a(α̃) \ D̃) is an interval in α̃M . This
is a fundamental domain for the G(α̃)-action, where G(α̃) is the setwise stabliser of α̃ in
π1(Σ \ V ).

We extend this discussion to the case where Σ has non-empty boundary. Here the map
λ is still defined on E(χ), but Λ is not defined only on the set EI(χ) ⊆ E(χ) of interior
edges of χ, i.e. those that don’t constitute a boundary component of Σ. (The condition
on Λ at the vertices only applies to those in the interior of Σ.) In this case, we obtain a
hyperbolic structure on Σ \ V , where each boundary edge is a bi-infinite geodesic, with a
spike at the vertex. Each such spike is a component of the set D. the corresponding vertex
of χ.

In summary, we have shown:

Lemma 6.2 : Suppose that γ ⊆ Σ is a multicurve, and that χ is a compatible triangula-
tion. There is a complete finite-area metric on Σ \ V of the type described above, and an
Γ-equivariant map, φ̃ : Σ̃ \ Ṽ −→ M̃ , sending each component of D̃ to be point in M̃ . For
each a ∈ E(χ), a \ D̃ gets mapped isometrically to a geodesic segment. Each vertical leaf
in each triangle of χ gets mapped to a geodesic segment whose length in M̃ in bounded
by some universal constant, F ≥ 0. In the quotient, φ : Σ \ V −→ M extends to a map
φ : Σ −→M , with φ(γ) = γM .

Topologically, φ collapses a regular neighbourhood of each component of each vertex
to a point. It is continuous on the 1-skeleton of χ and on each vertical leaf.

7. The visual distance.

We recall the standard construction of a visual pseudometric based at some point,
p ∈ H (see [GhH]). This is usually described in relation to the boundary, ∂H, of H (where
it is a metric) though it applies equally well to H itself.

Given x, y, p ∈ H, write 〈x, y〉p = 1
2
(d(p, x) + d(p, y) − d(x, y)) for the “Gromov

product”. One variant of the definition of k-hyperbolicity asserts that for all x, y, z, p ∈ H,
we have 〈x, y〉p ≥ min{〈x, z〉p, 〈z, y〉p}−k. Writing sp(x, y) = e−〈x,y〉p , this translates to the
“quasiultrametric” condition: sp(x, y) ≤ ek max{sp(x, z), sp(z, y)}. We define rp(x, y) =
inf{∑n

i=1 sp(xi−1, xi)}, where the infimum is taken over all sequences x0, x1, . . . , xn in H
with x0 = x and xn = y. Clearly rp is pseudometric on H, and rp(x, y) ≤ sp(x, y).
Moreover, if ek ≤

√
2, one can show [GhH] that rp(x, y) ≥ (3 − 2

√
2)sp(x, y). We shall

therefore assume that k ≤ 1
2

log 2. Now the pseudometric rp extends continuously to ∂H,
where it is a metric.

Given two oriented geodesics a and b inH, we write ρp = rp(e−(a), e−(b))+rp(e+(a), e+(b)),
where e− and e+ denote the positive and negative endpoints (possibly in ∂H). This gives
a pseudometric on the set of all geodesics.

We note that, from the construction, if p, q ∈ H, then for any geodesics, a, b, we have
ρq(a, b) ≤ ed(p,q)ρp(a, b).

We will need:
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Lemma 7.1 : There are universal constants r > 0 and R ≥ 0 such that if a, b are
geodesiscs in H and p ∈ a with ρp(a, b) ≤ r, then d(p, b) ≤ R.

Proof : It is a simple exercise in hyperbolic spaces to show that if 〈e−(a), e−(b)〉p and
〈e+(a), e+(b)〉p are both at least some universal constant K, then b must pass within some
bounded distance, say, R, of p.

We now set r = (3−2
√

2)e−R0 . Thus if ρp(a, b) ≤ r then e−〈e+(a),e+(b)〉p = sp(e+(a), e+(b)) ≤
(3 + 2

√
2)rp(e+(a), e+(b)) ≤ (3 + 2

√
2)r = e−R0 , and so 〈e+(a), e+(b)〉p ≥ K. Similarly,

〈e−(a), e−(b)〉p ≥ K, and so d(p, b) ≤ R as required. ♦

8. The proof of Propostion 2.2.

To simplify notation, we will rescale the metric by a factor of 2k/ log 2, so that H is
k0-hyperbolic, where k0 = 1

2 log 2.

Let φ : Σ̃ \ Ṽ −→ H be the Γ-equivariant map constructed in Section 6. In this
section, it will be convenient to pass to the universal over, S̃, of S = Σ \ V , which is also
the universal cover of Σ̃ \ Ṽ . Let G = π1(S).

We write χ̂ for the lift of the triangulation, χ, to S̃. This is dual to a trivalent tree.
Note that an orientation on an edge a ∈ E(χ̂) determines an orientation on all other edges
in such a way that there are no cycles, and every maximal flow line starts at the initial
vertex e−(a) and terminates at e+(a). We also write D̂ for the preimage of D in ⊆ Σ \ V
in Σ̃. We partition E(χ) as EI(χ) ⊔ E∂(χ) into the interior and boundary edges.

Suppose that θ is a triangle of χ̂. Recall from Section 6 that ∆(ζ, t) is the subset of a
spike e, of θ bounded by a horocyclic arc, δ(ζ, t) = ∂∆(ζ, t) of length t ≤

√
2. This has area

t. We write ∆(t) for the union of all ∆(ζ, t) as ζ varies over all spikes of all triangles. Note
that ∆(t)/G ⊆ S has area at most 3Nt, where N is bounded in terms of the topological
type of Σ.

If a ∈ E(χ̂) is oriented, we write I±(a, t) for the closure of a \ ∆(θ±(a), t). This is an
interval of length 2 log(

√
2/t) centred on p±(a) = p(θ±(a), a).

By a straight arc, ǫ, in ∆(ζ, t), we mean a segment, ǫ, connecting two points, p ∈ a
and q ∈ b, where a, b ∈ E(χ̂) are the edges bounding ζ, and such that ǫ is transverse to
both the horizontal and vertical foliations, or possibly a vertical leaf. If this is oriented
from p to q, we write δ(ǫ) for the horocyclic arc with endpoint at p. We write L(ǫ) for the
length of δ(ǫ), and let K(ǫ) = σ(p′, q), where b∩ δ(ǫ) = {p′}. These are the “vertical” and
“horizontal” lengths of ǫ, respectively.

By a zigzag path in ∆(t), we mean a path, β =
⋃n

i=1 ǫi, where each ǫi is a straight
arc, and such that adjacent straight arcs lie in different triangles. Thus β never enters
the same triangle twice. It crosses some sequence of edges of E(χ̂), and, unless otherwise
stated, we assume that these edges are oriented so that they are all crossed in the positive
(transverse) direction. We write L(β) =

∑n
i=1 L(ǫi) for the vertical length, and K(β) =

max{K(ǫi) | i ∈ 1, . . . , n} for the “horizontal shift”.

We write φ̂ : S̃ −→ H for the G-equivariant lift of φ to S̃. If x ∈ S̃ we write
x̄ = φ̂(x) ∈ H. Similarly, we write β̄ = φ̂(β) for any path, β, in S̃.
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We describe a process for constructing zigzag paths in ∆(t), with bounded horizontal

shift, and whose φ̂-images have bounded diameter. The following gives us something
specific to aim for:

Lemma 8.1 : There are constants, t0, K0, R0, such that if a ∈ E(χ̂) is any oriented
edge, then given any t ∈ (0, t0], there is a zigzag path, β, in ∆(t) emanating from p−(a)
and terminating either in I+(b, t) for some b ∈ EI(χ̂), or in b for some b ∈ E∂(χ̂), and with
K(β) < K0 and diam(β̄) ≤ R0. Moroever, we can assume that β ∩ D̂ = ∅.

(Recall we are orienting β so that β never enters θ+(b).)
For this statement, we need to allow the possibility that β just consists of a single

point. (This is exceptional, in that this point need not lie in ∆(t).)
We begin with the following observation.

Lemma 8.2 : There is some universal constant µ > 0 such that if δ is a horocyclic
arc of length t ≤ 1 in a triangle θ, with endpoints in edges a, b, then ρp̄(ā, b̄) ≤ µt, where
a ∩ δ = {p}.

Proof : Let ǫ, ζ ⊆ θ be horocyclic arcs meeting a and b respectively, far out the other spikes
of θ. We can assume (from the construction of φ) that ǭ and ζ̄ are just points of ā and b̄
respectively. By choosing them far enough away, we will have 1

2(σ(p, ǫ) + σ(q, ζ)− σ(ǫ, ζ))

arbitrarily close to log(
√

2/t). Since φ̂ sends edges isometrically to geodesics, we also
have 1

2(d(p̄, ǭ) + d(q̄, ζ̄) − d(ǭ, ζ̄)) arbitrarily close to log(
√

2/t). But, by construction of

f̃ , we have d(p̄, q̄) ≤ diam(δ̄) ≤ F (the universal constant of Lemma 6.2). Thus 〈ǭ, ζ̄〉p̄ =
1
2 (d(p̄, ǭ) + d(p̄, ζ̄) − d(ǭ, ζ̄)) is equal to log(

√
2/t) up to an additive constant, F ′.

But now ρp̄(ā, b̄) = rp̄(ǭ, ζ̄) ≤ (3+2
√

2)sp̄(ǭ, ζ̄) ≤ (3+2
√

2)e− log(
√

2/t)+F ′

= µt, where

µ = (3 + 2
√

2)eF ′

/
√

2. ♦

Lemma 8.3 : There are universal constants K1, R1, r1, with the following property.
Suppose that t ∈ (0, 1] and that a ∈ E(χ̂) is an oriented edge. Then there is a zigzag
path, β ⊆ ∆(t), emanating from p−(a) with K(β) ≤ K1 and diam(β̄) ≤ R1, and satisfying
either:

(1) β terminates in I+(b, t) for some b ∈ EI(χ̂), or in b for some b ∈ E∂(χ̂). or:

(2) L(β) ≥ r1.

Moreover, we have β ∩ D̂ = ∅.

Proof : Let r, R be the constants of Lemma 7.1, let F be the constant of Lemma 6.2,
and let µ be the constant of Lemma 8.2. We set λ = µeR, r1 = r/λ, K1 = 4R + 2 and
R1 = 2F + 4R+ 2.

We shall construct β inductively. Let us assume we have constructed a zigzag path
β = ǫ1 ∪ · · · ∪ ǫn ⊆ ∆(t) \ B̂, where ǫi is a straight arc connecting pi−1 ∈ ai−1 ∈ E(χ̃)
to pi ∈ ai ∈ E(χ̃), and with p0 = p−(a). Thus a0 = a and β crosses, in turn, the edges
a1, . . . , an−1, and terninates at pn ∈ an.

25



Train tracks

We suppose that K(βn) ≤ 2R + 1, that d(p̄0, p̄i) ≤ R for all i, that ρp̄0
(ā0, ān) ≤

λL(βn) and that L(βn) ≤ r1. We need to decide what to do next. We distinguish two
cases.

(1) σ(pn, I+(an, t)) ≤ 2R+ 1.

Let q be the nearest point of I+(an, t) to pn. (Possibly, q = pn.) We let ǫ′ be a straight
are from pn−1 to q, and set β = ǫ1 ∪ · · · ∪ ǫn−1 ∪ ǫ′, and stop.

(2) σ(pn, I+(an, t)) > 2R+ 1.

Let θ = θ+(an) and let δ be the horocyclic arc in γ with endpoint at pn. Let u be the
length of δ. Thus u ≤ t (since δ ⊆ ∆(t)). We again split into two cases.

(2a) L(βn) + u > r1.

We set β = βn ∪ δ and stop. Note that L(β) = L(βn) + u > r1.

(2b) L(βn) + u ≤ r1.

We are assuming that d(p̄0, p̄n) ≤ R. By Lemma 7.1, ρp̄n
(ān, ān+1) ≤ µu and so ρp̄0

(ān, ān+1) ≤
ed(p̄0,p̄n)ρp̄n

(ān, ān+1) ≤ eRµλ = λu. We are also assuming that ρp̄0
(ā0, ān) ≤ λL(βn)

and so ρp̄0
(ā0, ān+1) ≤ λL(βn) + λu = λ(L(βn) + u) ≤ λr1 ≤ r. Thus, by Lemma

7.1, we have d(p̄0, ān) ≤ R. Choose pn+1 ∈ an+1 \ D̂ so that d(p̄0, p̄n+1) ≤ R. Then
σ(q, pn+1) = d(q̄, p̄n+1) ≤ d(q̄, p̄n+1) + d(p̄n, p̄0) + d(p̄0, p̄n+1) ≤ t+ 2R ≤ 2R+ 1.

Let ǫn+1 be a straight arc form pn to pn+1. Since σ(pn, I+(an, t)) ≥ R we see that
ǫn+1 ⊆ ∆(t). Thus βn+1 = βn ∪ ǫn+1 is a zigzag path in ∆(t). Moreover, L(βn+1) =
L(βn) + u ≤ r1, ρp̄0

(ā0, ān+1) ≤ λ(L(βn) + u) = λL(βn+1) and K(βn+1) ≤ 2R+ 1.
In this case, we have verified the inductive hypotheses, and proceed to the next step.
We claim that the process must terminate. For if it continued indefinitely, we would

get L(ǫn) → 0 as n → ∞. But then the projection of βn to S must go out the cusp of S,
and so β̄n goes out one of the rays, ξ(x), in H, which we have disallowed.

We can thus assume we are in case (1) or case (2a), which correspond respectively to
cases (1) and (2) of the statement of the lemma. We know that in both cases, K(β) ≤
4R + 2 = K1 and that d(p̄0, p̄n) ≤ F for all i. For each i, diam δ̄(ǫi) ≤ F , the constant
of Lemma 1.2, and so diam(ǫi) ≤ F +K(ǫi) ≤ F + (4R + 2). It follows that diam(β̄) ≤
F + (F + 4R+ 2) = 2F + 4R+ 2 = R1. ♦

To deduce Lemma 8.1 from Lemma 8.3, we bring the G-action on S̃ into play. This
will rule out case (2) of Lemma 8.1.

First we need another definition. If δ = δ(e, t) is a horocyclic arc in θ ∈ T (χ̂), and
t ≤ e−1, we define the collar of δ to be P (δ) =

⋃{δ(e, u) | t ≤ u ≤ t + 1}, i.e. the 1-
neighbourhood of δ in θ \ ∆(θ, t). This has area (e− 1)t. (The argument would work for
any uniform collar — we have chosen 1 just for notational convenience.) Given a zigzag
path β =

⋃
i ǫi ⊆ ∆(t) with t ≤ e−1, we write P (β) =

⋃
i P (δ(ǫi)). (Recall that δ(ǫi)

is the horcyclic arc with the same initial point as ǫi.) Thus, P (β) ⊆ ∆(et). Note that
area(P (β)) = (e− 1)L(β).

We now set t0 = min{(e− 1)r1/9νe,
√

2e−(2R1+2)}, where R1, r1 are the constants of
Lemma 8.3. Recall that area(∆(et)/G) ≤ 3νet ≤ 3νr1e(e− 1)/9νe = (e− 1)r1/3.

Suppose now that a ∈ E(χ̂) and that β is a zigzag path emanating from p−(a) as
given by Lemma 8.3, and suppose we are in case (2), i.e. L(β) ≥ r1. We want to derive a
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contradiction. Note that P (β) ⊆ ∆(et).

Now areaP (β) = (e−1)L(β) ≥ (e−1)r1 ≥ 3 area(∆(t)/G). Thus, there must a point
of S̃, where at least three G-images of P (β) all meet. Now the corresponding G-images
of β must all cross the horizontal leaf through that point, and so, at least two of them do
so in the same direction. We can call these β and γ = gβ for some g ∈ G \ {1}. Since
P (β) ∩ P (γ) 6= ∅, we see that if b ∈ E(χ̂) is one of the neighbouring edges of χ̂, then
σ(x, y) ≤ 1, where b ∩ β = {x} and b ∩ γ = {y}.

We now follow β and γ back to their respective initial points. In doing so, β and γ
both cross some sequence of edges of χ̂. Let c ∈ E(χ̂) be the last edge for which these
sequences coincide. Let c ∩ β = {z} and c ∩ γ = {w}, and let θ ∈ T (χ̂) be the triangle on
the far side of c from b.

There are three possibilities. It may be that z is the initial point of β, so that
z = p(θ, c). Since g 6= 1, in this case, w cannot be the initial point of w, and so w /∈ I(θ, c, t).
This means that σ(z, w) ≥ log(

√
2/t). We may have the same situation with the roles of

z and w interchanged, so again σ(z, w) ≥ log(
√

2/t). Finally, it may be that neither z nor
w is an initial point. Thus β and γ must diverge after c. In other words, z and w must lie
on opposite sides of the interval I(θ, c, t). In this case, σ(z, w) ≥ 2 log(

√
2/t). In all cases,

σ(z, w) ≥ log(
√

2/t).

However, by Lemma 8.3, we have d(x̄, z̄) ≤ diam(β̄) ≤ R1, and d(ȳ, w̄) ≤ diam(γ̄) ≤
R1. Also, d(x̄, ȳ) ≤ 1, and so σ(z, w) = d(z̄, w̄) ≤ 2R1 + 1. Thus log(

√
2/t) ≤ 2R1 + 1, so

t ≥
√

2e−(2R1+1) ≥ t0. But we chose t ≤ t0 giving a contradiction.

Thus, case (2) of Lemma 8.3 cannot arise in this situation, and so we are in case (1).
In other words β terminates in I+(b, t) for some edge b ∈ E(χ̂).

This proves Lemma 8.1.

We now apply Lemma 8.1 G-equivariantly to each pair (θ, a), where θ ∈ T (χ̂) and
a ∈ E(χ̂) is and edge of θ. This gives us a G-invariant set, B(t), of zigzag arcs. We can
assume that all intersections are transverse crossings. If β, γ ∈ B(t) intersect at some point
x, we say the intersection is positive if β, γ cross the horizontal leaf through x in the same
direction, and negative if they cross it in opposite directions.

We want to eliminate all intersections. For this, we need to assume that we chose t
even smaller. Let t1 = min{t0,

√
2e−(2R0+2K0)} and t2 = min{t1,

√
2e−(4R0+4K0)}.

Lemma 8.4 : If t ≤ t1, then the arcs of B(t) have no positive intersections.

Proof : Suppose β, γ intersect positively at some point of δ(e, t) for a spike e. Then β
and γ both intersect b at points x and y respectively. Now σ(x, y) ≤ K(β) +K(γ) ≤ 2K0.

We now follow β and γ backwards to two points z and w, as in the earlier argument.
This time we get log(

√
2/t) ≤ σ(z, w), so t >

√
2e−(2R0+2K0) ≥ t1. ♦

Lemma 8.5 : If t ≤ t2, then each arc of B(t) meets at most one other.

Proof : Suppose α, β, γ ∈ B(t) are distinct, and that α meets β at x and γ at y. We can
assume that x precedes y along α.
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We follow β backwards and γ forwards from x, again considering the sequence of edges
that they both cross. Let a be the last edge of this sequence. Now, since t ≤ t1, we get
a contradiction, exactly as in Lemma 8.4, unless α terminates in a. But this means that
β must cross the horizontal leaf through y, Let b be the first edge after this leaf. Then b
meets α, β, γ in points, u, z, w respectively.

Now σ(u, w) ≤ K(α) + K(γ) ≤ 2K0, and (as in the proof of Lemma 8.4) we get
σ(z, w) ≤ 2K0 + 2R0. Thus, σ(z, w) ≤ 4K0 + 2R0.

We now follow β and γ backwards from z and w respectively. As in Lemma 8.4 (with
z, w now playing the roles of x, y) we get a contradicton if log(

√
2/t) ≤ (4K0+2R0)+2R0 =

4K0 + 4R0, in particular, if t ≤ t2 ≤
√

2e−(4K0+4R0). ♦

We now set B = B(t2).

We now modify B to give a new set, A, of transverse arcs which are all disjoint. We
need to do this equivariantly, and without eliminating any of the initial points. Since, by
Lemma 8.5, the elements of B intersect at most in pairs, it is enough to deal with these
arcs pairwise.

Suppose β, γ ∈ B intersect at some point x. By Lemma 8.4, this is a negative inter-
section. First note that β and γ lie in different G-orbits. (For if γ = gβ, then we must
have g2β = β, giving the contradiction that g has order 2.) Let α be the concatenation
of the segments of β and γ preceding x. Note that diam ᾱ ≤ diam β̄ + diam γ̄ ≤ 2R0. We
now replace {β, γ} by the single arc, α, carrying out this construction equivariantly for all
such pairs.

Now A projects to a set of disjoint embedded transverse arcs in S. We extend these
transverse arcs to a transverse graph, Υ. Suppose the endpoint of an arc lies in an interior
edge of χ. We connect this endpoint to centre of the triangle containing the endpoint, and
on the far side of the arc. If θ is such a triangle, and the arc terminates as some point, q
in the edge, a, of θ, then by construction, a ∈ I(θ, a, t2). Thus we can take the extension

to lie in (θ \ ∆(t2))/G to S. Note that (back in the cover, S̃, the φ̂-image of θ̂ \ ∆̂(t2) has
bounded diameter bounded by 2 log(

√
2/t2) + F , where F is the bound given by Lemma

6.2. Thus, the diameters of the images of the extensions are bounded.

The map φ lifts to a map φ̃ : Σ̃ −→ M̃ . The map φ̂ factors through φ̃, via the natural
maps S̃ −→ S →֒ Σ. The graph Υ lifts to a graph Υ̃ ⊆ Σ̃. The φ̃-image of any edge of Υ̃
in M̃ had diameter bounded above (by 2 log(

√
2/t2) + 2F + 2R0).

We also note that the number of edges of Υ is bounded above (by some number n0)
depending only on the topological type of Σ.

For Proposition 2.2, we need another observation:

Lemma 8.6 : Let η > 0. In the above, we can construct Υ so that if a ∈ E(χ) with
length(a \D) ≥ 2η, then each component of a \ (Υ ∪D) has length at least η.

Proof : We need to adjust the constructions at a few points, and modify the relevant
constants.

In the proof of Lemma 8.5, we can always choose pn+1 ∈ an+1 so that d(pn+1, ∂D̂) > η
(at the cost of increasing the constant R by η). This ensures that no arc of B(t) can cross
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any such edge within distance η of D̂.
We can strengthen Lemma 8.5 to say that no two arcs of B(t) can cross any adge of

χ̂ in the same direction at points closer than η. We can also strengthen Lemma 8.5 to say
that any arc of B(t) can come within distance η of at most one other arc of B(t). The
arguments are essentially unchanged.

After projecting to Σ, we can arrange that no two arcs cross the same edge within
distance η of each other. If they do, we we can replace them by a single arc consisting of
two initial segments and a short arc close to that edge.

We now construct the transverse graph Υ from the resulting set of arcs as before. ♦

To derive Proposition 2.2 in the form stated, we can collapse each component of D to
a point, and take some riemannian approximation to the resulting metric.
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