
THE ACTION OF THE MAPPING CLASS GROUP ON THE
SPACE OF GEODESIC RAYS OF A PUNCTURED

HYPERBOLIC SURFACE

BRIAN H. BOWDITCH AND MAKOTO SAKUMA

Abstract. Let Σ be a complete finite-area orientable hyperbolic surface with
one cusp, and let R be the space of complete geodesic rays in Σ emanating from
the puncture. Then there is a natural action of the mapping class group of Σ
on R. We show that this action is “almost everywhere” wandering.

1. Introduction

Let Σ be a complete finite-area orientable hyperbolic surface with one cusp,
and R the space of complete geodesic rays in Σ emanating from the puncture.
Then, there is a natural action of the (full) mapping class group Map(Σ) of Σ on
R ≡ S1 (see Section 2). The dynamics of the action of an element of R plays
a key role in the Nielsen-Thurston theory for surface homeomorphisms. It also
plays a crucial role in the variation of McShane’s identity for punctured surface
bundles with pseudo-Anosov monodromy, established by [Bo1] and [AkMS].

It is natural to ask what does the action of the whole group Map(Σ) (or its
subgroups) look like. However, the authors could not find a reference which treats
this natural question, though there are various references which study the action
of (subgroups of) the mapping class groups on the projective measured lamination
spaces, which are homeomorphic to higher dimensional spheres (see for example,
[Mas1, Mas2, MccP, OS]). In particular, such an action is minimal (cf. [FatLP])
and moreover ergodic [Mas1].

The purpose of this paper is to prove that the action of Map(Σ) on R is “almost
everywhere” wandering (see Theorem 2.1 for the precise meaning). This forms a
sharp contrast to the above result of [Mas1].

We would like to thank Katsuhiko Matsuzaki for his helpful comments on the
first version of the paper.

2. Actions

Let Σ = H2/Γ be a complete finite-area orientable hyperbolic surface with
precisely one cusp, where Γ = π1(Σ). Let R be the space of complete geodesic
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rays in Σ emanating from the puncture. Then R is identified with a horocycle,
τ , in the cusp. In fact, a point of τ determines a geodesic ray in Σ emanating
from the puncture, or more precisely, a bi-infinite geodesic path with its positive
end going out the cusp and meeting τ in the given point. Any mapping class ψ
of Σ maps each geodesic ray to another path which can be “straightened out”
to another geodesic ray, and hence determines another point of τ . This gives an
action of the infinite cyclic group generated by ψ on R ≡ τ .

A rigorous construction of this action is described as follows. Choose a repre-
sentative, f , of ψ, so that its lift f̃ to the universal cover H2 is a quasi-isometry.
Then f̃ extends to a self-homeomorphism of the closed disc H2 ∪ ∂H2. For a geo-
desic ray ν ∈ R, let ν̃ be the closure in H2 ∪ ∂H2 of a lift of ν to H2. Then f̃(ν̃)
is an arc properly embedded in H2 ∪ ∂H2, and its endpoints determine a geodesic
in H2, which project to another geodesic ray ν ′ ∈ R. Thus, we obtain an action
of ψ on R, by setting ψν = ν ′. The dynamics of this action plays a key role in
[AkMS]. However, one needs to verify that this action does not depend on the
choice of a representative f of ψ.

In the following, we settle this issue, by using the canonical boundary of a
relatively hyperbolic group described in [Bo2]. Though we are really interested
here only in the case where the group is the fundamental group of a once-punctured
closed orientable surface, and the the peripheral structure is interpreted in the
usual way (as the conjugacy class of the fundamental group of a neighborhood of
the puncture), we give a discussion in a general setting.

Let Γ be a non-elementary relatively hyperbolic group with a given peripheral
structure P , which is a conjugacy invariant collection of infinite subgroups of Γ.
By [Bo2, Definition 1], Γ admits a properly discontinuous isometric action on a
path-metric space, X, with the following properties.

(1) X is proper (i.e., complete and locally compact) and Gromov hyperbolic,
(2) every point of the boundary of X is either a conical limit point or a

bounded parabolic point,
(3) the peripheral subgroups, i.e., the elements of P , are precisely the maximal

parabolic subgroups of Γ, and
(4) every peripheral subgroup is finitely generated.

It is proved in [Bo2, Theorem 9.4] that the Gromov boundary ∂X is uniquely
determined by (Γ,P), (even though the quasi-isometry class of the space X sat-
isfying the above conditions is not uniquely determined). Thus the boundary
∂Γ = ∂(Γ,P) is defined to be ∂X. By identifying Γ with an orbit in X, we obtain
a natural topology on the disjoint union Γ∪ ∂Γ which is compact Hausdorff, with
Γ discrete and ∂Γ closed.

The action of Γ on itself by left multiplication extends to an action on Γ ∪ ∂Γ
by homeomorphism. This gives us a geometrically finite convergence action of Γ
on ∂Γ. Let Aut(Γ,P) be the subgroup of the automorphism group, Aut(Γ), of Γ
which respects the peripheral structure P . This contains the inner automorphism
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group, Inn(Γ). Now, by the naturality of ∂Γ ([Bo2, Theorem 9.4]), the action of
Aut(Γ,P) on Γ also extends to an action on Γ ∪ ∂Γ, which is Γ-equivariant, i.e.,
ϕ · (g · x) = ϕ(g) · (ϕ · x) for every ϕ ∈ Aut(Γ,P), g ∈ Γ and x ∈ Γ∪ ∂Γ. (In order
to avoid confusion, we use · to denote group actions, only in this place.) Under
the natural epimorphism Γ −→ Inn(Γ), this gives rise to the same action on ∂Γ
as that induced by left multiplication. The centre of Γ is always finite, and for
simplicity, we assume it to be trivial. In this case, we can identify Γ with Inn(Γ).

Suppose that p ∈ ∂Γ is a parabolic point. Its stabiliser, Z = Z(Γ, p), in Γ
is a peripheral subgroup. Now Z acts properly discontinuously cocompactly on
∂Γ \ {p}, so the quotient T = (∂Γ \ {p})/Z is compact Hausdorff (cf. [Bo2,
Section 6]). Let A = A(Γ,P , p) be the stabiliser of p in Aut(Γ,P). Then Z is
a normal subgroup of A, and we get an action of M = A/Z on T . If there is
only one conjugacy class of peripheral subgroups, then the orbit Γp is Aut(Γ,P)-
invariant, and it follows that the group A maps isomorphically onto Out(Γ,P) =
Aut(Γ,P)/ Inn(Γ), so in this case we can naturally identify the group M with
Out(Γ,P).

Suppose now that Σ is a once-punctured closed orientable surface, with negative
Euler characteristic χ(Σ). We write Σ = D/Γ, where D = Σ̃, the universal cover,
and Γ ∼= π1(Σ). Let P be the peripheral structure of Γ arising from the cusp
of Σ, namely P consists of the conjugacy class of the fundamental group of a
neighbourhood of the end of Σ. Then (Γ,P) is a relatively hyperbolic group,
because if we fix a complete hyperbolic structure on Σ then D is identified with
H2 and the isometric action of Γ on D = H2 satisfies the conditions (1)–(4) in the
above, namely [Bo2, Definition 1]. Now D admits a natural compactification to a
closed disc, D ∪ C, where C is the dynamically defined circle at infinity. We can
identify C with ∂Γ. In fact, if x is any point of D, then identifying Γ with the
orbit Γx, we get an identification of Γ ∪ ∂Γ with Γx ∪ C ⊆ D ∪ C. As above we
get an action of Aut(Γ,P) on C. If p ∈ ∂C is parabolic, then its stabiliser Z in Γ
is isomorphic to the infinite cyclic group Z, and we get an action of Out(Γ,P) on
the circle T = (C \ {p})/Z. Since Out(Γ,P) is identified with the (full) mapping
class group, Map(Σ), of Σ, we obtain a well defined action of Map(Σ) on the circle
T .

We now return to the setting in the beginning of this section, where Σ =
H2/Γ is endowed with a complete hyperbolic structure. Then we can identify
the (dynamically defined) circle T with the horocycle, τ , in the cusp, which in
turn is identified with the space of geodesic rays, R. This gives an action of
Map(Σ) on R. Since the action of Γ on H2 satisfies the conditions (1)-(4) in the
above (i.e., [Bo2, Definition 1]), we see that, for each mapping class ψ of Σ, its
action on R, defined via the “straightening process” presented at the beginning
of this section, is identical with the action which is dynamically constructed in
the above, independently from the hyperbolic structure. Thus the problem raised
at the beginning of this section is settled.
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In order to state the main result, we prepare some terminology. Let G be
a group acting by homeomorphism on a topological space X. An open subset,
U ⊆ X, is said to be wandering if gU ∩ U = ∅ for all g ∈ G \ {1}. (Note
that this definition is stronger than the usual definition of wandering, where it is
only assumed that the number of g ∈ G such that gU ∩ U ̸= ∅ is finite.) The
wandering domain, WG(X) ⊆ X is the union of all wandering open sets. Its
complement, W c

G(X) = X \WG(X), is the non-wandering set. This is a closed
G-invariant subset of X. Note that if Y ⊆ X is a G-invariant open set, then
WG(Y ) = WG(X)∩Y . If H ◁G is a normal subgroup, we get an induced action of
G/H on X/H. (In practice, the action of H on X will be properly discontinuous.)
One checks easily that WG(X)/H ⊆ WG/H(X/H) with equality if WH(X) = X.

Note that any hyperbolic structure on Σ induces a euclidian metric on T (via the
horocycle τ). If one changes the hyperbolic metric, the induced euclidian metrics
on T are related by a quasisymmetry. However, they are completely singular with
respect to each other (see [Ku, Tu2]). (That is, there is a set which has zero
measure in one structure, but full measure in the other.) In general, this gives
little control over how the Hausdorff dimension of a subset can change.

We say that a subset, B ⊆ T is small if it has Hausdorff dimension stricty less
than 1 with respect to any hyperbolic structure on Σ. Now we can state our main
theorem.

Theorem 2.1. Let Σ be a once-punctured closed orientable surface, with χ(Σ) <
0, and consider the action of Map(Σ) on the circle T , defined in the above. Then
the non-wandering set in T with respect to the action of Map(Σ) is small.

In particular, the non-wandering set has measure 0 with respect to any hyper-
bolic structure, and so has empty interior.

Given that two different hyperbolic structures give rise to quasisymmetically
related metrics on T , it is natural to ask if there is a more natural way to express
this. For example, is there a property of (closed) subsets of T , invariant under
quasisymmetry and satisfied by the non-wandering set, which implies Hausdorff
dimension less than 1 (or measure 0)?

3. The loop-cutting construction

Let Σ = H2/Γ be a complete finite-area orientable hyperbolic surface with pre-
cisely one cusp, where Γ = π1(Σ). Thus the universal cover D = Σ̃ is identified
with the hyperbolic plane H2. Write C for the ideal boundary of D, which we
consider equipped with a preferred orientation. Thus Γ acts on C as a geomet-
rically finite convergence group. Let Π ⊆ C be the set of parabolic points of Γ.
Given p ∈ Π, let θ(p) be the generator of stabΓ(p) which acts on C \ {p} as a
translation in the positive direction. Given distinct x, y ∈ C, let [x, y] ⊆ D ∪ C
denote the oriented geodesic from x to y. If g ∈ Γ is hyperbolic, write a(g), b(g)
respectively, for its attracting and repelling fixed points; α(g) = [b(g), a(g)] for
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its axis; and λ(g) for the oriented closed geodesic in Σ corresponding to g, i.e.,
the image of α(g) ∩ D in Σ. If x, y ∈ C are distinct, then [x, y] ∩ D projects
to an oriented bi-infinite geodesic path, λ(x, y), in Σ. If x, y ∈ Π, then this is
a proper geodesic path, with a finite number, ν(x, y), of self-intersections. Let
∆ = {(p, q) ∈ Π2 | ν(p, q) = 0}, i.e., ∆ consists of pairs (p, q) of parabolic points
such that λ(p, q) is a proper geodesic arc. (By an arc, we mean an embedded
path.) Given p ∈ Π, write Π(p) = {q ∈ Π | (p, q) ∈ ∆}.

Pick an element (p, q) ∈ ∆. Then the proper arc λ(p, q) intersects a sufficiently
small horocycle, τ , in precisely two points. Let τ̃ ⊆ D be the horocircle centred
at p which is a connected component of the inverse image of τ , and let {si}i∈Z
be the inverse image of the two points in τ̃ , located in this order, such that
s0 = [p, q] ∩ τ̃ and θ(p)si = si+2. Then there is a unique element g(p, q) ∈ Γ such
that g(p, q)p = q and g(p, q)−1[p, q] ∩ τ̃ = s1. Namely, g(p, q)−1[p, q] is the closure
of the lift of λ(p, q) with endpoint p which is closest to [p, q], among the lifts of
λ(p, q) with endpoint p, with respect to the preferred orientation of τ̃ . (See Figure
1.)

In the quotient surface Σ, the oriented closed geodesic λ(g(p, q)) is homotopic to
the simple oriented loop obtained by shortcutting the oriented arc λ(p, q) by the
horocyclic arc which is the image of the subarc of τ̃ bounded by s0 and s1. Thus
λ(g(p, q)) is a simple closed geodesic disjoint from the proper geodesic arc λ(p, q).
In particular, [p, θ(p)q] ∩ α(g(p, q)) = ∅. In fact, the map [(p, q) 7→ g(p, q)] :
∆ −→ Γ is characterised by the following properties: for all (p, q) ∈ ∆, we have
g(p, q)p = q, g(q, p)g(p, q) = θ(p), and [p, θ(p)q] ∩ α(g(p, q)) = ∅.

Figure 1. In the right figure, the two red arcs with thick arrows
represent the axes α(g(p, q)) and α(g(q, p)) of the hyperbolic trans-
formations g(p, q) and g(q, p) respectively. The blue arcs with thin
arrows represent the oriented geodesic [p, q] and its images by the
infinite cyclic groups ⟨g(p, q)⟩ and ⟨g(q, p)⟩. The three intersection
points of the blue arcs and the horocircle τ̃ centred at p are s−1, s0
and s1, from left to right.
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Write a(p, q) = a(g(p, q)) and b(p, q) = b(g(p, q)). Then the points p, a(q, p),
b(q, p), q, a(p, q), b(p, q) occur in this order around C. Let I+(p, q) = (q, a(p, q)),
I−(p, q) = (b(q, p), q) and I(p, q) = (b(q, p), a(p, q)) be open intervals in C. Thus
I(p, q) = I−(p, q) ∪ {q} ∪ I+(p, q), I(p, q) ∩ θ(p)nI(p, q) = ∅ for all n ̸= 0, and
I(p, q) ∩ θ(p)nI(q, p) = ∅ for all n.

In the quotient surface Σ, the oriented simple closed geodesics λ(g(p, q)) and
λ(g(q, p)) cut off a punctured annulus containing the geodesic arc λ(p, q), in which
the simple geodesic rays λ(p, a(p, q)) and λ(p, b(q, p)) emanating from the puncture
spiral to λ(g(p, q)) and λ(g(q, p)), respectively. Thus, each of I±(p, q) projects
homeomorphically onto a gap in the horocircle τ , in the sense of [Mcs, p.610].
In fact, each of I±(p, q) is a maximal connected subset of C \ {p} consisting of
points x such that the geodesic ray λ(p, x) is non-simple. Moreover, if λ(p, x) is
non-simple, then x is contained in I±(p, q) for some q ∈ Π(p) (see [Mcs, TaWZ]).

Write I(p) = {I(p, q) | q ∈ Π(p)}. Then we obtain the following as a conse-
quence of [Mcs, Corollary 5] and [BiS] (see also [TaWZ, Section 5]):

Theorem 3.1. The elements of I(p) are pairwise disjoint. The complement,
C \

∪
I(p), is a Cantor set of Hausdorff dimension 0.

Here, of course, the Hausdorff dimension is taken with respect to the euclidean
metric on the horocycle, τ . Up to a scale factor, this is the same as the Euclidean
metric in the upper-half-space model with p at ∞. (Note that we could equally
well use the circular metric on the boundary, C, induced by the Poincaré model,
since all the transition functions are Möbius, and in particular, smooth.)

Write R(p) = {p} ∪ Π(p) ∪ (C \
∪
I(p)) ⊆ C. This is a closed set, whose

complementary components are precisely the intervals I±(p, q) for q ∈ Π(p). Thus
the set R(p) is characterised by the following property: a point x ∈ C belongs to
R(p) if and only if x ̸= p and the geodesic ray λ(p, x) in Σ is simple.

For p ∈ Π, we define maps ϵ(p), q(p) and g(p) from C \ R(p) to {+,−}, Π(p)
and Γ, respectively, by the following rule. If x ∈ C \ R(p), then x ∈ Iϵ(p, q)
for some unique ϵ = ± and q ∈ Π(p). Define ϵ(p)(x) = ϵ, q(p)(x) = q, and
g(p)(x) = g(p, q) or g(q, p)−1 according to whether ϵ = + or −. Note that the
definition is symmetric under simultaneously reversing the orientation on C and
swapping + with −.

It should be noted that if x ∈ C \ R(p), then, in the quotient surface Σ, the
geodesic ray λ(q(p)(x), x) = λ(q, x) is obtained from the non-simple geodesic ray
λ(p, x) by cutting a loop, homotopic to λ(g(p)(x)) = λ(g(p, q)), and straight-
ening the resulting piecewise geodesic (see Figure 2). (In the quotient, we are
allowing ourselves to cut out any peripheral loops that occur at the beginning.)
In particular, if x ∈ Π \ R(p), then both λ(p, x) and λ(q(p)(x), x) are proper
geodesic paths in Σ, and their self-intersection numbers satisfy the inequality
ν(p, x) > ν(q(p)(x), x).

By repeatedly applying these maps, we associate for a given x ∈ C, a sequence
(gi)i in Γ, (pi)i in Π, and (ϵi)i in {+,−} as follows.
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Figure 2. In the figure, we assume ϵ(p)(x) = + and so g(p)(x) =
g(p, q).

Step 0. Pick a parabolic point p ∈ Π, and define p0 = p. Thus, p0 is indepen-
dent of x ∈ C.

Step 1. If x ∈ R(p0), we stop with the 1-element sequence p0, and define (gi)i
and (ϵi)i to be the empty sequence. If x /∈ R(p0), set g1 = g(p0)(x), p1 = g1p0,
ϵ1 = ϵ(p0)(x), and continue to the next step. (The sequences (gi)i and (ϵi)i begin
with index i = 1.)

Step 2. If x ∈ R(p1), we stop with the 1-element sequences g1 and ϵ1 and
2-element sequence p0, p1. If x /∈ R(p1), set g2 = g(p1)(x), p2 = g2p1 and ϵ2 =
ϵ(p1)(x).

We continue this process, forever or until we stop.
We call the resulting sequences (gi)i, (pi)i and (ϵi)i the derived sequences for

x. More specifically, we call (gi)i and (pi)i the derived Γ-sequence and the derived
Π-sequence for x, respectively.

Lemma 3.2. Let x ∈ C, and let (gi)i, (pi)i and (ϵi)i be the derived sequences for
x. Then the following hold.

(1) The sequences (pi)i and (ϵi)i are determined by the sequence (gi)i by the
following rule: pi = hip0 = hip where hi = gigi−1 · · · g1, and ϵi = + or − according
to whether gi = g(pi−1, pi) or g(pi−1, pi)

−1.
(2) A point y ∈ C has the derived Γ-sequence beginning with g1, g2, . . . , gn for

some n ≥ 1, if and only if y ∈
∩n

i=1 I
ϵ(pi−1, pi).

(3) Set R =
∪

p∈ΠR(p). If x /∈ R, then the derived Γ-sequence (gi)i is infinite.

(4) If x ∈ Π, then the derived Γ-sequence (gi)i is finite.

Proof. (1), (2) and (3) follow directly from the definition of the derived sequences.
To prove (4), let x be a point in Π. If x ∈ R(p), then (gi)i is the empty sequence.
So we may assume x ∈ Π \R(p). Then by repeatedly using the observation made
prior to the construction of the derived sequences, we see that the self-intersection
number ν(pi, x) of the proper geodesic path λ(pi, x) is strictly decreasing. Hence
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ν(pn, x) = 0 for some n. This means that x ∈ R(pn) and so the derived sequences
terminate at n. □

The following is an immediate consequence of Lemma 3.2(2).

Corollary 3.3. Suppose that x ∈ C has derived Γ-sequence beginning with g1, . . . , gn
for some n ≥ 1. Then there is an open set, U ⊆ C, containing x, such that if
y ∈ U , then g1, . . . , gn is also an initial segment of the derived Γ-sequence for y.

Recall from Section 2 that A(Γ,P , p) denotes the subgroup of Aut(Γ) preserving
Π setwise and fixing p ∈ Π.

Lemma 3.4. Let ϕ be an element of A = A(Γ,P , p) with p = p0. Then the follow-
ing holds for every point x ∈ C. If (gi)i, (pi)i and (ϵi)i are the derived sequences
for x, then the derived sequences for ϕx are (ϕ(gi))i, (ϕpi)i and (deg(ϕ)ϵi)i.

Proof. This can be proved through induction, by using the fact that the following
hold for each ϕ ∈ A.

(1) ϕ(R(p)) = R(p).
(2) For any q ∈ Π(p), we have:

(a) If ϕ is orientation-preserving, then ϕ(θ(p)) = θ(p), ϕ(Iϵ(p, q)) =
Iϵ(p, ϕ(q)), ϕ(g(p, q)) = g(p, ϕq), and ϕ(g(q, p)) = g(ϕq, p).

(b) If ϕ is orientation-reversing, then ϕ(θ(p)) = θ(p)−1, ϕ(Iϵ(p, q)) =
I−ϵ(p, ϕ(q)), ϕ(g(p, q)) = g(ϕq, p)−1, and ϕ(g(q, p)) = g(p, ϕq)−1.

□

4. Filling arcs

Let x be a point in C and (pi)i the (finite or infinite) derived Π-sequence for
x. Write λi = λ(pi−1, pi) for the projection of [pi−1, pi]∩D to Σ. This is a proper
geodesic arc in Σ. We call the sequence (λi)i the derived sequence of arcs for x.
We say that x is filling if the arcs (λi)i eventually fill Σ, namely, there is some n
such that Σ\

∪n
i=1 λi is a union of open discs. Let F be the subset of C consisting

of points which are filling. In this section, we prove the following proposition.

Proposition 4.1. The set F is open in C, and its complement has Hausdorff
dimension strictly less than 1. In particular, F has full measure.

We begin with some preparation. Let γ be a simple closed geodesic in Σ, and
let X(γ) be the path-metric completion of the component of Σ \ γ containing the
cusp. Then we can identify X(γ) as (H(G)∩D)/G, where G = G(γ) is a subgroup
of Γ containing Z = stabΓ(p), and H(G) ⊆ D ∪ C is the convex hull of the limit
set ΛG ⊆ C. In other words, X(γ) is the “convex core” of the hyperbolic surface
H2/G. Note that G = G(γ) ∼= π1(X(γ)) and p ∈ ΛG.

Let δ be the closure of a component of ∂H(G)∩D. This is a bi-infinite geodesic
in D ∪ C. Let J ⊆ C be the component of C \ δ not containing p. Thus, J is an
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open interval in C, which is a component of the discontinuity domain of G. Note
in particular, that J ∩Gp = ∅.

Lemma 4.2. Suppose x ∈ J \ R(p), and let g = g(p)(x), ϵ = ϵ(p)(x) and q =
q(p)(x). Then, if g ∈ G = G(γ), we have J ⊆ Iϵ(p, q). In particular, g(p)(y) = g
for every y ∈ J .

Proof. To simplify notation we can assume (via the orientation reversing symme-
try of the construction) that ϵ = +. Note that q ∈ Gp ⊆ ΛG, so [p, q] ⊆ H(G).
Also α(g(p, q)) ⊆ H(G) and δ ⊆ ∂H(G). It follows that [p, q], α(g(p, q)) and δ are
pairwise disjoint. Thus, J lies in a component of Y := C \ {p, q, a(p, q), b(p, q)}.
Since ϵ = +, the four points, p, q, a(p, q), b(p, q) are located in C in this cyclic
order, and so I+(p, q) = (q, a(p, q)) is a component of Y . Since J and I+(p, q)
share the point x, we obtain the first assertion that J ⊆ Iϵ(p, q) with ϵ = +. The
second assertion follows from the first assertion and the definition of g(p)(y). □

Lemma 4.3. Suppose that x ∈ J and that the derived Γ-sequence (gi)i for x is
infinite. Then there is some i such that gi /∈ G = G(γ).

Proof. Suppose, for contradiction, that gi ∈ G for all i. It follows that hi =
gigi−1 · · · g1 ∈ G for all i, and so pi = hip ∈ Gp ⊆ ΛG for all i. By Lemma 4.2, we
have g(p)(y) = g(p)(x) = g1 for all y ∈ J . (Here (pi)i is the derived Π-sequence
for x and p = p0.) Now, applying Lemma 4.2 with p1 in place of p, we get that
g(p1)(y) = g(p1)(x) = g2. Continuing inductively we get that g(pi)(y) = gi+1

for all i. In other words, the derived Γ-sequence for y is identical to that for x,
and so, in particular, it must be infinite. We now get a contradiction by applying
Lemma 3.2(4) to any point y ∈ Π ∩ J . □

If we take B to be a standard horoball neighbourhood of the cusp, then B∩γ = ∅
for all simple closed geodesic in Σ, and so we can identify B with a neighbourhood
of the cusp in any X(γ).

Lemma 4.4. There is some θ < 1 such that for each simple closed geodesic, γ,
the Hausdorff dimension of ΛG(γ) is at most θ.

Proof. This is an immediate consequence of [FalM, Theorem 3.11] (see also [Mat,
Theorem 1]) which refines the result of [Tu1], on observing that the groups G(γ)
are uniformly “geometrically tight”, as defined in that paper. Here, this amounts
to saying that there is some fixed r ≥ 0 (independent of γ) such that the convex
core, X(Γ), is the union of B and the r-neighbourhood of the geodesic boundary
of the convex core. From the earlier discussion, we see that r is bounded above
by the diameter of Σ \B, and so in particular, independent of γ. □

Let L ⊆ S be the union of the limit sets ΛG as G = G(γ) ranges over all
subgroups of Γ obtained from a simple closed geodesic γ in Σ. Applying Lemma
4.4, we see that L is a Γ-invariant subset of C of Hausdorff dimension strictly
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less than 1. This is because it is a countable union of the limit sets ΛG whose
Hausdorff dimensions are uniformly bounded by a constant θ < 1.

Recall the set R =
∪

p∈ΠR(p) defined in Lemma 3.2(3). Then R is also Γ-
invariant and has Hausdorff dimension zero by Theorem 3.1.

Lemma 4.5. If x ∈ C \ (R ∪ L), then x is filling. Namely, C \ (R ∪ L) ⊆ F .

Proof. Suppose, for contradiction, that some x ∈ C \ (R ∪ L) is not filling. Then
there must be some simple closed geodesic, γ, in Σ, which is disjoint from every
λi, where (λi)i is the derived sequence of arcs for the point x. Consider the
hyperbolic surface X(γ) and its fundamental group G = G(γ) ⊆ Γ, as described
at the beginning of this section. By hypothesis, x /∈ ΛG, and so x lies in some
component, J , of the discontinuity domain of G. By Lemma 4.3, there must be
some i ∈ N with gi /∈ G. Choose the minimal such i. Thus, hi−1 ∈ G but hi /∈ G,
where hi = gigi−1 · · · g1. We have pi−1 = hi−1p ∈ Π ∩ ΛG and pi = hip ∈ Π \ ΛG.
(The latter assertion can be seen as follows. If pi ∈ ΛG then pi is a parabolic fixed
point of G. Since X(γ) has a single cusp, there is an element f ∈ G such that
pi = fpi−1. Since pi = gipi−1, we have f−1gi ∈ stabΓ(pi−1) = stabG(pi−1). This
implies gi ∈ fG ⊆ G, a contradiction.) Therefore [pi−1, pi] meets ∂H(G), giving
the contradiction that λi crosses γ in Σ. □
Proof of Proposition 4.1. By Lemma 4.5, we have C \ F ⊆ R ∪ L. Since R and
L both have Hausdorff dimension strictly less than 1, the same is true of C \ F .
Thus, we have only to show that F is open. Pick an element x ∈ L. Then there
is some n such that Σ \

∪n
i=1 λi is a union of open discs, where (λi)i is a derived

sequence of arcs for x. By Corollary 3.3, there is an open neighbourhood U of x
in C such that every y ∈ U shares the same initial derived Γ-sequence g1, . . . , gn
with x. Thus, every y ∈ U shares the same beginning derived sequence of arcs
(λi)

n
i=1 with x. Hence every y ∈ U is filling, i.e., U ⊆ F . □

5. Wandering

Recall that Map(Σ) is identified withM = A/Z, where A = A(Γ,P , p) and Z =
Z(Γ, p), respectively, are the stabilisers of p in Aut(Γ,P) and Γ. As described in
Section 2, A acts on C \{p}, and Map(Σ) =M acts on the circle T = (C \{p})/Z.
The wandering domainWM(T ) is equal toWA(C\{p})/Z, becauseWZ(C\{p}) =
C \ {p}. (See the general remark on the wandering domain given in Section 2.)

Note that the set F in Proposition 4.1 is actually an open set of C \ {p}. For
this set F , we prove the following lemma.

Lemma 5.1. F ⊆ WA(C \ {p}).

Proof. We want to show that any x ∈ F has a wandering neighbourhood. By
assumption, some initial segment, λ1, . . . , λn, of the derived sequence of arcs for
x fills Σ. By Corollary 3.3, there is an open neighbourhood, U , of x, such that
for every y ∈ U , the initial segment of length n of the derived sequence of arcs is
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identical with λ1, . . . , λn. Suppose that U ∩ ϕU ̸= ∅ for some non-trivial element
ϕ of Map(Σ) = A/Z. Pick a point y ∈ U ∩ ϕU and set x = ϕ−1y ∈ U . By
assumption, the derived sequences of arcs for both x and y begin with λ1, . . . , λn.
On the other hand, Lemma 3.4 implies that the derived sequence of arcs for
y = ϕx is equal to the image of that for x by ϕ. Hence we see that ϕλi = λi for
all i = 1, . . . , n. It follows by Lemma 5.2 below, that ϕ is the trivial element of
Map(Σ), a contradiction. □

In the above, we have used the following lemma which appears to be well known,
though we were unable to find an explicit reference.

Lemma 5.2. Let λ1, . . . , λn be a set of proper oriented arcs in Σ which together
fill Σ. Suppose that ψ is a mapping class on Σ fixing the proper homotopy class
of each λi. Then ψ is trivial.

Proof of Theorem 2.1. By Proposition 4.1, F is an open set of C \ {p} whose
complement has Hausdorff dimension strictly less than 1. Since WA(C \ {p})
contains F by Lemma 5.1, its complement in C \{p} also has Hausdorff dimension
strictly less than 1. Since WM(T ) = WA(C \ {p})/Z, this implies that the non-
wandering set, T \WM(T ), has Hausdorff dimension strictly less than 1. □
Proof of Lemma 5.2. Fix any complete finite-area hyperbolic structure on Σ, and
use it to identify Σ̃ with H2. Construct a graph, M , as follows. The vertex set,
V (M), is the set of bi-infinite geodesics which are lifts of the arcs λi for all i. Two
arcs µ, µ′ ∈ V (M) are deemed adjacent inM if either (1) they cross (that is, meet
in H2), or (2) they have a common ideal point in ∂H2, and there is no other arc
in V (M) which separates µ and µ′. One readily checks that M is locally finite.
Moreover, the statement that the arcs λi fill Σ is equivalent to the statement that
M is connected. Note that Γ = π1(Σ) acts on M with finite quotient. Note also
that M can be defined formally in terms of ordered pairs of points in S1 ≡ ∂H2

(that is corresponding to the endpoints of the geodesics, and where crossing is
interpreted as linking of pairs). The action of Γ on M is then induced by the
dynamically defined action of Γ on S1.

Now suppose that ψ ∈ Map(Σ). Lifting some representative of ψ and ex-
tending to the ideal circle gives us a homomorphism of S1, equivariant via the
corresponding automorphism of Γ. Suppose that ψ preserves each arc λi, as in
the hypotheses. Then ψ induces an automorphism, f : M −→ M . Given some
µ ∈ V (M), by choosing a suitable lift of ψ, we can assume that f(µ) = µ.

We claim that this implies that f is the identity on M . To see this, first let
V0 ⊆ V (M) be the set of vertices adjacent to µ. This is permuted by f . Consider
the order on V0 defined as follows. Let IR and IL, respectively, be the closed
intervals of S1 bounded by ∂µ which lies to the right and left of µ. Orient each
of IR and IL so that the initial/terminal points of µ, respectively, are those of the
oriented IR and IL. Each ν ∈ V0 determines a unique pair (xR(ν), xL(ν)) ∈ IR×IL
such that xR(ν) and xL(ν) are the endpoints of ν. Now we define the order ≤ on
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V0, by declaring that ν ≤ ν ′ if either (i) xR(ν) ≤ xR(ν
′) or (ii) xR(ν) = xR(ν

′)
and xL(ν) ≤ xL(ν

′). This order must be respected by f , because f preserves the
orders on IR and IL. Since V0 is finite, we see that f |V0 is the identity. The claim
now follows by induction, given that M is connected.

It now follows that the lift of ψ is the identity on the set of all endpoints of
elements of V (M). Since this set is dense in S1, it follows that it is the identity
on S1, and we deduce that ψ is the trivial mapping class as required. □
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