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ABSTRACT. Let X be a complete finite-area orientable hyperbolic surface with
one cusp, and let R be the space of complete geodesic rays in ¥ emanating from
the puncture. Then there is a natural action of the mapping class group of ¥
on R. We show that this action is “almost everywhere” wandering.

1. INTRODUCTION

Let ¥ be a complete finite-area orientable hyperbolic surface with one cusp,
and R the space of complete geodesic rays in ¥ emanating from the puncture.
Then, there is a natural action of the (full) mapping class group Map(X) of 3 on
R = S' (see Section 2). The dynamics of the action of an element of R plays
a key role in the Nielsen-Thurston theory for surface homeomorphisms. It also
plays a crucial role in the variation of McShane’s identity for punctured surface
bundles with pseudo-Anosov monodromy, established by [Bol] and [AKMS].

It is natural to ask what does the action of the whole group Map(X) (or its
subgroups) look like. However, the authors could not find a reference which treats
this natural question, though there are various references which study the action
of (subgroups of ) the mapping class groups on the projective measured lamination
spaces, which are homeomorphic to higher dimensional spheres (see for example,
[Mas1, Mas2, MccP, OS]). In particular, such an action is minimal (cf. [FatLP])
and moreover ergodic [Masl].

The purpose of this paper is to prove that the action of Map(X) on R is “almost
everywhere” wandering (see Theorem 2.1 for the precise meaning). This forms a
sharp contrast to the above result of [Mas1].

We would like to thank Katsuhiko Matsuzaki for his helpful comments on the
first version of the paper.

2. ACTIONS

Let ¥ = H?/T be a complete finite-area orientable hyperbolic surface with
precisely one cusp, where I' = 71(3). Let R be the space of complete geodesic
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rays in ¥ emanating from the puncture. Then R is identified with a horocycle,
7, in the cusp. In fact, a point of 7 determines a geodesic ray in X emanating
from the puncture, or more precisely, a bi-infinite geodesic path with its positive
end going out the cusp and meeting 7 in the given point. Any mapping class
of ¥ maps each geodesic ray to another path which can be “straightened out”
to another geodesic ray, and hence determines another point of 7. This gives an
action of the infinite cyclic group generated by ¥ on R = 7.

A rigorous construction of this action is described as follows. Choose a repre-
sentative, f, of 1, so that its lift f to the universal cover H? is a quasi-isometry.
Then f extends to a self-homeomorphism of the closed disc H? U 9H2. For a geo-
desic ray v € R, let ¥ be the closure in H? U 9H? of a lift of v to H?. Then f(#)
is an arc properly embedded in H? U OH?, and its endpoints determine a geodesic
in H?2, which project to another geodesic ray v/ € R. Thus, we obtain an action
of ¥ on R, by setting vv = v/. The dynamics of this action plays a key role in
[AKMS]. However, one needs to verify that this action does not depend on the
choice of a representative f of 1.

In the following, we settle this issue, by using the canonical boundary of a
relatively hyperbolic group described in [Bo2]. Though we are really interested
here only in the case where the group is the fundamental group of a once-punctured
closed orientable surface, and the the peripheral structure is interpreted in the
usual way (as the conjugacy class of the fundamental group of a neighborhood of
the puncture), we give a discussion in a general setting.

Let I' be a non-elementary relatively hyperbolic group with a given peripheral
structure P, which is a conjugacy invariant collection of infinite subgroups of I'.
By [Bo2, Definition 1], I' admits a properly discontinuous isometric action on a
path-metric space, X, with the following properties.

(1) X is proper (i.e., complete and locally compact) and Gromov hyperbolic,

(2) every point of the boundary of X is either a conical limit point or a
bounded parabolic point,

(3) the peripheral subgroups, i.e., the elements of P, are precisely the maximal
parabolic subgroups of I', and

(4) every peripheral subgroup is finitely generated.

It is proved in [Bo2, Theorem 9.4] that the Gromov boundary 90X is uniquely
determined by (I, P), (even though the quasi-isometry class of the space X sat-
isfying the above conditions is not uniquely determined). Thus the boundary
OI' = O(I', P) is defined to be 0X. By identifying I' with an orbit in X, we obtain
a natural topology on the disjoint union I'U dI" which is compact Hausdorff, with
I' discrete and OT" closed.

The action of I' on itself by left multiplication extends to an action on I' U OT'
by homeomorphism. This gives us a geometrically finite convergence action of I'
on JI'. Let Aut(I", P) be the subgroup of the automorphism group, Aut(I"), of I"
which respects the peripheral structure P. This contains the inner automorphism
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group, Inn(T"). Now, by the naturality of OI' ([Bo2, Theorem 9.4]), the action of
Aut(T",P) on I" also extends to an action on I' U OI', which is I'-equivariant, i.e.,
¢-(g-x)=¢(g)(¢-x) for every ¢ € Aut(I',P), g € I"and x € 'UIT". (In order
to avoid confusion, we use - to denote group actions, only in this place.) Under
the natural epimorphism I' — Inn(I"), this gives rise to the same action on O’
as that induced by left multiplication. The centre of I' is always finite, and for
simplicity, we assume it to be trivial. In this case, we can identify " with Inn(T").

Suppose that p € OI' is a parabolic point. Its stabiliser, Z = Z(T',p), in T
is a peripheral subgroup. Now Z acts properly discontinuously cocompactly on
o' \ {p}, so the quotient T" = (9" \ {p})/Z is compact Hausdorff (cf. [Bo2,
Section 6]). Let A = A(I',P,p) be the stabiliser of p in Aut(I',P). Then Z is
a normal subgroup of A, and we get an action of M = A/Z on T. If there is
only one conjugacy class of peripheral subgroups, then the orbit I'p is Aut(I, P)-
invariant, and it follows that the group A maps isomorphically onto Out(I', P) =
Aut(I',P)/Inn(I"), so in this case we can naturally identify the group M with
Out(I", P).

Suppose now that ¥ is a once-punctured closed orientable surface, with negative
Euler characteristic x(X). We write & = D/T", where D = 3, the universal cover,
and I' = m1(X). Let P be the peripheral structure of I' arising from the cusp
of ¥, namely P consists of the conjugacy class of the fundamental group of a
neighbourhood of the end of ¥. Then (I',P) is a relatively hyperbolic group,
because if we fix a complete hyperbolic structure on ¥ then D is identified with
H? and the isometric action of I on D = H? satisfies the conditions (1)—(4) in the
above, namely [Bo2, Definition 1]. Now D admits a natural compactification to a
closed disc, D U C', where C' is the dynamically defined circle at infinity. We can
identify C' with OI'. In fact, if x is any point of D, then identifying I with the
orbit 'z, we get an identification of I' U OI' with ' UC C DU C'. As above we
get an action of Aut(I",P) on C. If p € OC' is parabolic, then its stabiliser Z in I"
is isomorphic to the infinite cyclic group Z, and we get an action of Out(T", P) on
the circle T'= (C'\ {p})/Z. Since Out(I',P) is identified with the (full) mapping
class group, Map(X), of X3, we obtain a well defined action of Map(X) on the circle
T.

We now return to the setting in the beginning of this section, where ¥ =
H?/T is endowed with a complete hyperbolic structure. Then we can identify
the (dynamically defined) circle T" with the horocycle, 7, in the cusp, which in
turn is identified with the space of geodesic rays, R. This gives an action of
Map(X) on R. Since the action of I on H? satisfies the conditions (1)-(4) in the
above (i.e., [Bo2, Definition 1]), we see that, for each mapping class 1 of ¥, its
action on R, defined via the “straightening process” presented at the beginning
of this section, is identical with the action which is dynamically constructed in
the above, independently from the hyperbolic structure. Thus the problem raised
at the beginning of this section is settled.
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In order to state the main result, we prepare some terminology. Let G be
a group acting by homeomorphism on a topological space X. An open subset,
U C X, is said to be wandering if gU NU = () for all ¢ € G\ {1}. (Note
that this definition is stronger than the usual definition of wandering, where it is
only assumed that the number of g € G such that gU N U # () is finite.) The
wandering domain, Wg(X) C X is the union of all wandering open sets. Its
complement, W&(X) = X \ Wg(X), is the non-wandering set. This is a closed
G-invariant subset of X. Note that if Y C X is a G-invariant open set, then
Wea(Y) =We(X)NY. If H<G is a normal subgroup, we get an induced action of
G/H on X/H. (In practice, the action of H on X will be properly discontinuous.)
One checks easily that We(X)/H C We/u(X/H) with equality if Wg(X) = X.

Note that any hyperbolic structure on ¥ induces a euclidian metric on 7" (via the
horocycle 7). If one changes the hyperbolic metric, the induced euclidian metrics
on T are related by a quasisymmetry. However, they are completely singular with
respect to each other (see [Ku, Tu2]). (That is, there is a set which has zero
measure in one structure, but full measure in the other.) In general, this gives
little control over how the Hausdorff dimension of a subset can change.

We say that a subset, B C T is small if it has Hausdorff dimension stricty less
than 1 with respect to any hyperbolic structure on X. Now we can state our main
theorem.

Theorem 2.1. Let ¥ be a once-punctured closed orientable surface, with x(X) <
0, and consider the action of Map(X) on the circle T, defined in the above. Then
the non-wandering set in T with respect to the action of Map(X) is small.

In particular, the non-wandering set has measure 0 with respect to any hyper-
bolic structure, and so has empty interior.

Given that two different hyperbolic structures give rise to quasisymmetically
related metrics on 7', it is natural to ask if there is a more natural way to express
this. For example, is there a property of (closed) subsets of T, invariant under
quasisymmetry and satisfied by the non-wandering set, which implies Hausdorff
dimension less than 1 (or measure 0)7

3. THE LOOP-CUTTING CONSTRUCTION

Let ¥ = H?/T" be a complete finite-area orientable hyperbolic surface with pre-
cisely one cusp, where I' = 71(X). Thus the universal cover D = ¥ is identified
with the hyperbolic plane H2. Write C for the ideal boundary of D, which we
consider equipped with a preferred orientation. Thus ' acts on C' as a geomet-
rically finite convergence group. Let II C C' be the set of parabolic points of I'.
Given p € II, let 0(p) be the generator of stabr(p) which acts on C'\ {p} as a
translation in the positive direction. Given distinct z,y € C| let [z,y] C DUC
denote the oriented geodesic from x to y. If g € I' is hyperbolic, write a(g), b(g)
respectively, for its attracting and repelling fixed points; a(g) = [b(g),a(g)] for
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its axis; and A(g) for the oriented closed geodesic in 3 corresponding to g, i.e.,
the image of a(g) N D in X. If x,y € C are distinct, then [z,y] N D projects
to an oriented bi-infinite geodesic path, A(z,y), in X. If 2,y € II, then this is
a proper geodesic path, with a finite number, v(z,y), of self-intersections. Let
A ={(p,q) € I? | v(p,q) = 0}, i.e., A consists of pairs (p,q) of parabolic points
such that A(p,q) is a proper geodesic arc. (By an arc, we mean an embedded
path.) Given p € II, write II(p) = {q € IT | (p,q) € A}.

Pick an element (p,q) € A. Then the proper arc A(p, ¢) intersects a sufficiently
small horocycle, 7, in precisely two points. Let 7 C D be the horocircle centred
at p which is a connected component of the inverse image of 7, and let {s;}iez
be the inverse image of the two points in 7, located in this order, such that
so = [p,q] N7 and O(p)s; = s;+o. Then there is a unique element g(p, q) € I' such
that g(p,q)p = q and g(p,q)~*[p,q] N7 = s1. Namely, g(p,q)~'[p, ¢] is the closure
of the lift of A(p,¢) with endpoint p which is closest to [p, ¢], among the lifts of
A(p, q) with endpoint p, with respect to the preferred orientation of 7. (See Figure
1.)

In the quotient surface X, the oriented closed geodesic A(g(p, ¢)) is homotopic to
the simple oriented loop obtained by shortcutting the oriented arc A(p, q) by the
horocyclic arc which is the image of the subarc of 7 bounded by sy and s;. Thus
Ag(p,q)) is a simple closed geodesic disjoint from the proper geodesic arc A(p, q).
In particular, [p,0(p)g] N a(g(p,q)) = 0. In fact, the map [(p,q) — g(p,q)] :
A — T’ is characterised by the following properties: for all (p,q) € A, we have

9(p,)p = 4, 9(¢,p)g(p, ¢) = 0(p), and [p, O(p)q] N a(g(p,q)) = 0.

a b(p7 q)
g(q,p 9(p,q)
b(q,p) a(p,q)

\\ It (p,9)

FI1GURE 1. In the right figure, the two red arcs with thick arrows
represent the axes a(g(p, q)) and a(g(q,p)) of the hyperbolic trans-
formations g(p, q) and g(q, p) respectively. The blue arcs with thin
arrows represent the oriented geodesic [p, ¢| and its images by the
infinite cyclic groups (g(p, q)) and (g(g,p)). The three intersection
points of the blue arcs and the horocircle 7 centred at p are s_1, s
and sq, from left to right.



6 BRIAN H. BOWDITCH AND MAKOTO SAKUMA

Write a(p, q) = a(g(p,q)) and b(p,q) = b(g9(p,q)). Then the points p, a(q,p),
b(q,p), ¢, a(p,q), b(p, q) occur in this order around C. Let I*(p,q) = (q,a(p, q)),

I~(p,q) = (b(q,p),q) and I(p,q) = (b(¢,p), a(p, q)) be open intervals in C'. Thus
I(p,q) = I~ (p,q) U{q} U I (p,q), I(p,q) N O(p)"I(p,q) = I for all n # 0, and
I(p,q) NO(p)"I(q,p) = O for all n.

In the quotient surface 3, the oriented simple closed geodesics A(g(p,q)) and
A(g(g, p)) cut off a punctured annulus containing the geodesic arc A(p, ¢), in which
the simple geodesic rays A(p, a(p, q)) and A(p, b(q, p)) emanating from the puncture
spiral to A(g(p,q)) and A(g(q, p)), respectively. Thus, each of I(p,q) projects
homeomorphically onto a gap in the horocircle 7, in the sense of [Mcs, p.610].
In fact, each of I(p,q) is a maximal connected subset of C'\ {p} consisting of
points = such that the geodesic ray A(p,x) is non-simple. Moreover, if A(p, z) is
non-simple, then z is contained in I*(p, q) for some ¢ € II(p) (see [Mcs, TaWZ)).

Write Z(p) = {I(p,q) | ¢ € lI(p)}. Then we obtain the following as a conse-
quence of [Mcs, Corollary 5] and [BiS] (see also [TaWZ, Section 5]):

Theorem 3.1. The elements of Z(p) are pairwise disjoint. The complement,
C\UZ(p), is a Cantor set of Hausdorff dimension 0.

Here, of course, the Hausdorff dimension is taken with respect to the euclidean
metric on the horocycle, 7. Up to a scale factor, this is the same as the Euclidean
metric in the upper-half-space model with p at co. (Note that we could equally
well use the circular metric on the boundary, C', induced by the Poincaré model,
since all the transition functions are Mobius, and in particular, smooth.)

Write R(p) = {p} UTl(p) U (C'\ UZ(p)) € C. This is a closed set, whose
complementary components are precisely the intervals I%(p, q) for ¢ € TI(p). Thus
the set R(p) is characterised by the following property: a point = € C' belongs to
R(p) if and only if x # p and the geodesic ray A(p,x) in ¥ is simple.

For p € 11, we define maps €(p), q(p) and g(p) from C'\ R(p) to {+, -}, II(p)
and I', respectively, by the following rule. If x € C'\ R(p), then =z € I¢(p,q)
for some unique € = + and ¢ € Il(p). Define €(p)(z) = ¢, q(p)(z) = ¢, and
g(p)(z) = g(p,q) or g(q,p)~! according to whether ¢ = + or —. Note that the
definition is symmetric under simultaneously reversing the orientation on C' and
swapping + with —.

It should be noted that if x € C'\ R(p), then, in the quotient surface X, the
geodesic ray A(q(p)(z),z) = A(g, x) is obtained from the non-simple geodesic ray
A(p,x) by cutting a loop, homotopic to A(g(p)(z)) = A(g(p,q)), and straight-
ening the resulting piecewise geodesic (see Figure 2). (In the quotient, we are
allowing ourselves to cut out any peripheral loops that occur at the beginning.)
In particular, if x € II'\ R(p), then both A(p,z) and A(q(p)(x),z) are proper
geodesic paths in ¥, and their self-intersection numbers satisfy the inequality
v(p,z) > v(a(p)(x), z).

By repeatedly applying these maps, we associate for a given x € C, a sequence
(g:); in T, (p;); in I, and (¢;); in {+, —} as follows.
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Ag(p, ) 9(p, q)x

Ap, )

FIGURE 2. In the figure, we assume €(p)(z) = + and so g(p)(z) =
9(p. q)-

Step 0. Pick a parabolic point p € II, and define py = p. Thus, pg is indepen-
dent of z € C.

Step 1. If z € R(py), we stop with the 1-element sequence py, and define (g;);
and (¢;); to be the empty sequence. If = ¢ R(po), set g1 = g(po)(z), p1 = 91Po,
€1 = €(po)(x), and continue to the next step. (The sequences (g;); and (¢;); begin
with index ¢ = 1.)

Step 2. If z € R(p;), we stop with the 1l-element sequences g; and €; and
2-element sequence po,p1. If © ¢ R(p1), set g2 = g(p1)(x), p2 = gop1 and €3 =
€(p1) ().

We continue this process, forever or until we stop.

We call the resulting sequences (g;);, (pi); and (¢;); the derived sequences for
x. More specifically, we call (g;); and (p;); the derived I'-sequence and the derived
[1-sequence for x, respectively.

Lemma 3.2. Let x € C, and let (g;):, (p;)i and (€;); be the derived sequences for
x. Then the following hold.

(1) The sequences (p;); and (€;); are determined by the sequence (g;); by the
following rule: p; = h;po = h;p where h; = g;g;_1--- g1, and €; = + or — according
to whether g; = g(pi—1,pi) or g(Pi-1,p:) "

(2) A point y € C has the derived I'-sequence beginning with g1, gs, ..., gn for
some n > 1, if and only if y € (i, I°(pi—1, pi)-

(3) Set R =U,en B(p). If x ¢ R, then the derived T'-sequence (g;); is infinite.

(4) If x € 11, then the derived I'-sequence (g;); is finite.

Proof. (1), (2) and (3) follow directly from the definition of the derived sequences.
To prove (4), let = be a point in II. If € R(p), then (g;); is the empty sequence.
So we may assume z € I\ R(p). Then by repeatedly using the observation made
prior to the construction of the derived sequences, we see that the self-intersection
number v(p;, x) of the proper geodesic path A(p;, x) is strictly decreasing. Hence
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V(pn, x) = 0 for some n. This means that x € R(p,) and so the derived sequences
terminate at n. O

The following is an immediate consequence of Lemma 3.2(2).

Corollary 3.3. Suppose that x € C' has derived I'-sequence beginning with g1, . . ., g,
for some n > 1. Then there is an open set, U C C', containing x, such that if
y € U, then gy, ..., g, is also an initial segment of the derived I'-sequence for y.

Recall from Section 2 that A(T", P, p) denotes the subgroup of Aut(I") preserving
IT setwise and fixing p € II.

Lemma 3.4. Let ¢ be an element of A = A(I', P, p) with p = py. Then the follow-
ing holds for every point x € C. If (¢;):, (pi)i and (€;); are the derived sequences
for z, then the derived sequences for ¢x are (¢(g;)):, (6pi)i and (deg(d)e;);-

Proof. This can be proved through induction, by using the fact that the following
hold for each ¢ € A.
(1) ¢(R(p)) = R(p)-
(2) For any ¢ € II(p), we have:
(a) If ¢ is orientation-preserving, then ¢(6(p)) = 0(p), ¢(I°(p,q)) =
,P))

I(p, ¢(q)), &(9(p, a)) = 9(p, ¢q), and 6(g(q, p)) = g(¢q, p)-
(b) If ¢ is orientation-reversing, then ¢(6(p)) = 0(p)~', ¢(I(p,q)) =
I=(p, ¢(q)), ¢(9(p,q)) = g(¢q.p)~", and é(g(q,p)) = g(p, dq)~".

4. FILLING ARCS

Let = be a point in C' and (p;); the (finite or infinite) derived Il-sequence for
x. Write A\; = A(p;_1, p;) for the projection of [p;_1,p;] N D to X. This is a proper
geodesic arc in X. We call the sequence (\;); the derived sequence of arcs for x.
We say that x is filling if the arcs ();); eventually fill ¥, namely, there is some n
such that 3\ [J_, \; is a union of open discs. Let F' be the subset of C' consisting
of points which are filling. In this section, we prove the following proposition.

Proposition 4.1. The set F is open in C, and its complement has Hausdorff
dimension strictly less than 1. In particular, F' has full measure.

We begin with some preparation. Let v be a simple closed geodesic in ¥, and
let X(7) be the path-metric completion of the component of 3\ v containing the
cusp. Then we can identify X (v) as (H(G)ND)/G, where G = G(7) is a subgroup
of I" containing Z = stabr(p), and H(G) C D U C' is the convex hull of the limit
set AG C C. In other words, X (7) is the “convex core” of the hyperbolic surface
H?/G. Note that G = G(v) & m1(X (7)) and p € AG.

Let 0 be the closure of a component of 0H (G)ND. This is a bi-infinite geodesic
in DUC. Let J C C be the component of C'\ ¢ not containing p. Thus, J is an
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open interval in C'; which is a component of the discontinuity domain of GG. Note
in particular, that JNGp = 0.

Lemma 4.2. Suppose © € J \ R(p), and let g = g(p)(z), € = e(p)(z) and q =
a(p)(z). Then, if g € G = G(v), we have J C I°(p,q). In particular, g(p)(y) =g
for every y € J.

Proof. To simplify notation we can assume (via the orientation reversing symme-
try of the construction) that e = +. Note that ¢ € Gp C AG, so [p,q] € H(G).
Also a(g(p,q)) € H(G) and § C 0H(G). It follows that [p, q], a(g(p, q)) and ¢ are
pairwise disjoint. Thus, J lies in a component of Y := C'\ {p, ¢, a(p, q),b(p,q)}.
Since € = +, the four points, p,q,a(p,q),b(p,q) are located in C in this cyclic
order, and so I (p,q) = (q,a(p,q)) is a component of Y. Since J and I (p,q)
share the point =, we obtain the first assertion that J C I¢(p, q) with e = +. The
second assertion follows from the first assertion and the definition of g(p)(y). O

Lemma 4.3. Suppose that x € J and that the derived I'-sequence (g;); for x is
infinite. Then there is some i such that g; ¢ G = G(7).

Proof. Suppose, for contradiction, that g; € G for all i. It follows that h; =
9igi—1---g1 € G for all ¢, and so p; = h;p € Gp C AG for all 2. By Lemma 4.2, we
have g(p)(y) = g(p)(z) = g1 for all y € J. (Here (p;); is the derived Il-sequence
for  and p = pg.) Now, applying Lemma 4.2 with p; in place of p, we get that
g(p1)(y) = g(p1)(x) = ¢2. Continuing inductively we get that g(p;)(y) = git1
for all 7. In other words, the derived I'-sequence for y is identical to that for x,
and so, in particular, it must be infinite. We now get a contradiction by applying
Lemma 3.2(4) to any point y € 11N J. O

If we take B to be a standard horoball neighbourhood of the cusp, then BNy = ()
for all simple closed geodesic in ¥, and so we can identify B with a neighbourhood
of the cusp in any X (7).

Lemma 4.4. There is some 6 < 1 such that for each simple closed geodesic, v,
the Hausdorff dimension of AG(~y) is at most 6.

Proof. This is an immediate consequence of [FalM, Theorem 3.11] (see also [Mat,
Theorem 1]) which refines the result of [Tul], on observing that the groups G(v)
are uniformly “geometrically tight”, as defined in that paper. Here, this amounts
to saying that there is some fixed r > 0 (independent of ) such that the convex
core, X (I'), is the union of B and the r-neighbourhood of the geodesic boundary
of the convex core. From the earlier discussion, we see that r is bounded above
by the diameter of ¥\ B, and so in particular, independent of . 0

Let L C S be the union of the limit sets AG as G = G(7) ranges over all
subgroups of I' obtained from a simple closed geodesic v in ¥. Applying Lemma
4.4, we see that L is a I'-invariant subset of C' of Hausdorff dimension strictly
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less than 1. This is because it is a countable union of the limit sets AG whose
Hausdorff dimensions are uniformly bounded by a constant 6 < 1.

Recall the set R = |, R(p) defined in Lemma 3.2(3). Then R is also I'-
invariant and has Hausdorff dimension zero by Theorem 3.1.

Lemma 4.5. Ifx € C'\ (RU L), then x is filling. Namely, C'\ (RUL) C F.

Proof. Suppose, for contradiction, that some z € C'\ (RU L) is not filling. Then
there must be some simple closed geodesic, ~, in 3, which is disjoint from every
Ai, where ();); is the derived sequence of arcs for the point x. Consider the
hyperbolic surface X () and its fundamental group G = G(y) C I, as described
at the beginning of this section. By hypothesis, =z ¢ AG, and so x lies in some
component, J, of the discontinuity domain of G. By Lemma 4.3, there must be
some i € N with ¢g; ¢ G. Choose the minimal such i. Thus, h;_; € G but h; ¢ G,
where h; = gigi—1---g1. We have p;_y = h;_1p € IINAG and p; = hyp € I1 \ AG.
(The latter assertion can be seen as follows. If p; € AG then p; is a parabolic fixed
point of G. Since X(7) has a single cusp, there is an element f € G such that
pi = [pi_1. Since p; = g;p;_1, we have f~lg; € stabp(p;_1) = stabg(p;_1). This
implies ¢g; € fG C G, a contradiction.) Therefore [p;_1,p;] meets OH(G), giving
the contradiction that \; crosses ~v in 2. 0

Proof of Proposition 4.1. By Lemma 4.5, we have C'\ F C RU L. Since R and
L both have Hausdorff dimension strictly less than 1, the same is true of C'\ F.
Thus, we have only to show that F' is open. Pick an element x € L. Then there
is some n such that ¥\ (J;_,; \; is a union of open discs, where ();); is a derived
sequence of arcs for x. By Corollary 3.3, there is an open neighbourhood U of x

in C' such that every y € U shares the same initial derived I'-sequence g1, ..., g,
with . Thus, every y € U shares the same beginning derived sequence of arcs
(M), with z. Hence every y € U is filling, i.e., U C F'. O

5. WANDERING

Recall that Map(X) is identified with M = A/Z, where A = A(T', P,p) and Z =
Z (T, p), respectively, are the stabilisers of p in Aut(I',P) and I". As described in
Section 2, A acts on C'\ {p}, and Map(X) = M acts on the circle T' = (C'\{p})/Z.
The wandering domain Wy, (T) is equal to W4 (C\{p})/Z, because Wz(C\ {p}) =
C\ {p}. (See the general remark on the wandering domain given in Section 2.)

Note that the set F' in Proposition 4.1 is actually an open set of C'\ {p}. For
this set F', we prove the following lemma.

Lemma 5.1. ' C Wy4(C\ {p}).

Proof. We want to show that any x € F has a wandering neighbourhood. By
assumption, some initial segment, \q,..., \,, of the derived sequence of arcs for
x fills 3. By Corollary 3.3, there is an open neighbourhood, U, of z, such that
for every y € U, the initial segment of length n of the derived sequence of arcs is
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identical with Ay,..., \,. Suppose that U N ¢U # () for some non-trivial element
¢ of Map(X) = A/Z. Pick a point y € U N ¢U and set x = ¢~y € U. By
assumption, the derived sequences of arcs for both z and y begin with A\y,..., \,.
On the other hand, Lemma 3.4 implies that the derived sequence of arcs for
y = ¢x is equal to the image of that for = by ¢. Hence we see that ¢\; = \; for
all i = 1,...,n. It follows by Lemma 5.2 below, that ¢ is the trivial element of
Map(X), a contradiction. O

In the above, we have used the following lemma which appears to be well known,
though we were unable to find an explicit reference.

Lemma 5.2. Let \y,..., \, be a set of proper oriented arcs in ¥ which together
fill 3. Suppose that 1 is a mapping class on X fixing the proper homotopy class
of each \;. Then 1 is trivial.

Proof of Theorem 2.1. By Proposition 4.1, F' is an open set of C'\ {p} whose
complement has Hausdorff dimension strictly less than 1. Since Wyu(C \ {p})
contains I’ by Lemma 5.1, its complement in C'\ {p} also has Hausdorff dimension
strictly less than 1. Since Wy (T') = Wa(C \ {p})/Z, this implies that the non-
wandering set, 7'\ Wy, (T), has Hausdorff dimension strictly less than 1. O

Proof of Lemma 5.2. Fix any complete finite-area hyperbolic structure on 3, and
use it to identify ¥ with H?. Construct a graph, M, as follows. The vertex set,
V(M), is the set of bi-infinite geodesics which are lifts of the arcs A; for all i. Two
arcs w, ;' € V(M) are deemed adjacent in M if either (1) they cross (that is, meet
in H?), or (2) they have a common ideal point in OH?, and there is no other arc
in V(M) which separates p and p/. One readily checks that M is locally finite.
Moreover, the statement that the arcs A; fill X is equivalent to the statement that
M is connected. Note that I' = 71 (X) acts on M with finite quotient. Note also
that M can be defined formally in terms of ordered pairs of points in S! = JH?
(that is corresponding to the endpoints of the geodesics, and where crossing is
interpreted as linking of pairs). The action of I' on M is then induced by the
dynamically defined action of I" on S*.

Now suppose that v € Map(X). Lifting some representative of ¢ and ex-
tending to the ideal circle gives us a homomorphism of S!, equivariant via the
corresponding automorphism of I'. Suppose that 1) preserves each arc \;, as in
the hypotheses. Then ¢ induces an automorphism, f : M — M. Given some
pu € V(M), by choosing a suitable lift of ¢, we can assume that f(u) = p.

We claim that this implies that f is the identity on M. To see this, first let
Vo C V(M) be the set of vertices adjacent to p. This is permuted by f. Consider
the order on Vj defined as follows. Let Ir and I, respectively, be the closed
intervals of S! bounded by du which lies to the right and left of . Orient each
of I and Iy, so that the initial /terminal points of p, respectively, are those of the
oriented /g and I,. Each v € Vj determines a unique pair (zg(v), 2z (v)) € Ig x I,
such that zg(v) and xp(v) are the endpoints of v. Now we define the order < on
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Vo, by declaring that v < v/ if either (i) xg(v) < zg(v) or (ii) zgr(v) = zr(V')
and z7(v) < x (V). This order must be respected by f, because f preserves the
orders on Ir and I;. Since V; is finite, we see that f|Vj is the identity. The claim
now follows by induction, given that M is connected.

It now follows that the lift of v is the identity on the set of all endpoints of
elements of V(M). Since this set is dense in S, it follows that it is the identity

on S', and we deduce that v is the trivial mapping class as required. O
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