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Abstract. We give an account of the Planarity Theorem of Maskit. This gives
a classification of finitely generated groups acting effectively properly discon-
tinuously by orientation-preserving homeomorphisms on a planar surface. One
can also realise such groups as kleinian function groups. We also explain how
one can give another proof of the planarity theorem using Dunwoody’s theory
of tracks.

1. Introduction

In this paper we give a discussion of the Planarity Theorem of Maskit [Mas1],
and some related results. This effectively gives a classification of groups of home-
omorphisms of planar surfaces which have finite-type quotients. In particular,
they can be described in terms of geometrically finite “function groups” acting by
Möbius transformations on the Riemann sphere, which we will view here as the
boundary of hyperbolic 3-space (cf. [Mas2]). Topologically they can be described
as a class of orbifold fundamental groups of a particular class of 3-orbifolds, which
generalise the standard notion of a compression body. They can also be described
in terms of finitely generated groups with planar Cayley graphs, as described in
[G].

Much of what we do here can be seen as exposition of known results, though
the arguments are a bit different, and there are a number of statements which we
could not find in the literature. We will also explain how one can give a different
proof of the Planarity Theorem using the theory of tracks due to Dunwoody [D].

A “planar surface” is a space homeomorphic to a connected open subset of the
2-sphere S2. A general classification of (infinite type) surfaces is given in [R]. The
case of planar surfaces is somewhat simpler. In particular, a planar surface is
uniquely determined by its space of ends — a totally disconnected compactum.
Of particular interest here is the “Cantor surface”, where the space of ends is a
Cantor set.

We begin with a statement of the Planarity Theorem [Mas1].
In the following discussion, all groups will be assumed to act effectively prop-

erly discontinuously by orientation preserving homeomorphisms. (Here “effective”
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means that only the identity element fixes the space pointwise, and “properly dis-
continuous” means that any compact subset meets only finitely many images of
itself.)

Let S be a planar surface. To simplify the exposition, we will assume that
S 6∼= S2 (since that case is elementary). Thus, we can write S = W/N , where
W ∼= R2, and the group N ∼= π1(S) acts freely. (In fact, N is a countable free
group.) Suppose that a group G acts on S. Let Σ = S/G be the quotient orbifold.
We can write Σ = W/Γ, where Γ acts on W , and where N / Γ and G = Γ/N . In
summary, we have Σ = W/Γ = (W/N)/(Γ/N) = S/G. We write C ⊆ Σ for its
set of cone points.

By a multicurve γ ⊆ Σ, we mean a closed subset which is a disjoint union of
simple closed curves in Σ \ C. We will assume that no component of γ is trivial
and that no two are parallel. In other words, each disc or annulus component of
Σ \ γ meets C. We write γ̃ ⊆ S for its preimage in S. We say that γ is liftable
if each component of γ̃ is compact. In this case, each component of γ̃ determines
an infinite cyclic subgroup of N , well defined up to conjugacy. Together, the
collection of all such components generate a normal subgroup, Nγ̃ / N .

In general, we will consider “curves” to be defined up to homotopy (or equiv-
alently isotopy) in Σ \ C. We will sometimes abuse terminology or notation by
identifying such a curve with a particular realisation thereof.

We say that Σ is finite type if it is orbifold-equivalent to the interior of a compact
orbifold with boundary. In such a case, both Γ and G = Γ/N are finitely presented
groups.

Theorem 1.1. (Maskit) Let G act (effectively and properly discontinuously by
orientation preserving homeomorphisms) on a planar surface, S, such that the
quotient Σ = S/G is an orbifold of finite type. Then there is a liftable multicurve
γ ⊆ Σ such that Nγ̃ = N . (Here N ∼= π1(S) and Nγ̃ are defined as above.)

Necessarily, γ has finitely many components. It’s not hard to see that it contains
all curves of the form δ(a), where δ(a) is the boundary of a small disc neighbour-
hood of a cone point a ∈ C (considered to be defined up to homotopy in Σ \ C).
We refer to such curves as cone curves.

In fact, Theorem 1.1 was originally stated with the additional assumption that
the action of G is free, so that Σ is a finite-type surface. The general case can
be easily deduced from this. We simply remove all cone points from Σ, as well
as their preimages in S. We then get a multicurve in Σ \ C, to which we finally
adjoin the set of cone curves.

There is also an inverse to this process, which will allow us to simplify some of
the discussion.

Suppose we have an isolated end of S. Its stabiliser will be finite cyclic, and in
the quotient, it descends to an end of Σ. We can adjoin points respectively to S
and Σ in order to compactify these ends. The point we have added to Σ will be
a cone point if the end-stabiliser in S is non-trivial, otherwise it is a non-singular
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point. For this to work, we need to assume that S is not homeomorphic to R2

nor to an annulus. But those cases are again elementary, and can be treated
separately. After compactifying the isolated ends in S (and again ruling out the
cases where we end up with R2 or an annulus), we can assume that S has no
isolated ends. In other words its space of ends is perfect, hence a Cantor set.
It then follows that S is a Cantor surface, that is homeomorphic to S2 minus a
Cantor set. (See Section 6 for further discussion of this.) In other words, we don’t
lose much by restricting to Cantor surfaces.

The conclusion of Theorem 1.1 can be interpreted topologically. We can con-
struct a 2-complex by gluing a disc along its boundary to each component of γ̃ in
S. The conclusion then says that this space is simply connected. If we imagine all
the discs to be attached on “one side” of S, then we can thicken up this complex
to give a simply connected 3-manifold, with one boundary component identified
with S. We can carry out this construction G-equivariantly, so that the quotient,
M , is a 3-orbifold with one “outer” boundary component identified with Σ.

One can also realise this geometrically as follows. Suppose that a group, G,
acts properly discontinuously by isometry on hyperbolic 3-space, H3. Let ΩG ⊆
∂H3 be its discontinuity domain in the ideal sphere, ∂H3. We have a quotient
hyperbolic orbifold, M(G) = H3/G, as well an orbifold with boundary: MC(G) =
(H3 ∪ ΩG)/G. If G is geometrically finite, then MC(G) has finitely many ends,
each a standard cusp region. (See Sections 5 and 6 for more detailed discussion.)

The following is a slight elaboration of the result of [Mas2]. (See Section 5 for
a more detailed statement.)

Theorem 1.2. Suppose a group G acts properly discontinuously on a Cantor sur-
face, S, with finite-type quotient, Σ = S/G. Then G also admits a geometrically
finite action on H3, such that ΩG has a G-invariant component, Ω0, equivariantly
homeomorphic to S. In this way, Σ can be identified with the boundary compo-
nent, Ω0/G, of MC(G). Moreover, each end of Σ corresponds to a rank-1 cusp
region of MC(G).

In fact, modulo some simple adjustments, MC(G) is topologically the same as
the orbifold M constructed from Σ as described earlier (see Proposition 5.1).

The 3-orbifolds that arise in this way can be completely classified, and so we get
a complete classification of G-actions on planar surfaces with finite-type quotient
(up to G-equivariant homeomorphism). We will describe these in terms of “graphs
of orbifolds” in Section 3.

In fact, we can drop the assumption that the quotient is of finite type, and
instead just assume G to be finitely generated. However, to apply the result, we
need to modify S and Σ slightly, by adjoining a certain canonical set of ends to
each. (See Proposition 6.5.)

The multicurve, γ ⊆ Σ, given by Theorem 1.1 is not in general unique. However,
the ambiguity can be largely understood. For example, if the G-stabiliser of each
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component of γ̃ is non-trivial, then γ is determined up to isotopy in Σ \ C. (See
Proposition 4.3.)

For completeness, we note that Theorem 1.1 also applies if S is S2, R2 or an
annulus. In the first two cases, N is trivial and γ = ∅. In the last case, N ∼= Z,
and γ is the core curve of the annulus S. The possible actions of G are easily
classified in these cases.

In Section 7, we note how one can give another, more direct, proof of the
planarity theorem using the theory of “tracks” as introduced by Dunwoody [D].
In fact, although the hypotheses of the main result of [D] do not hold exactly, one
can follow the argument more or less verbatim with some minor reinterpretations.

This paper arose out of discussions with Agelos Georgakopoulos. I thank him
for explaining to me his results in this area, and for his comments on a preliminary
draft of this paper.

2. Orbifolds

We begin by recalling some basic facts about orbifolds in dimensions 2 and 3.
Here we will assume all orbifolds to be orientable. Unless otherwise stated, we will
assume them to be connected, and in dimension 2 also to have empty boundary.

Let Σ be a 2-orbifold. This consists of a topological surface with a discrete set,
C ⊆ Σ, of cone points and with an integer degree, p(a) ≥ 2, associated to each
a ∈ C. We will write ΣT for the underlying surface (forgetting cone points).

We write πo1(Σ) for the orbifold fundamental group. One way to describe this
is as follows. Given a ∈ C, let ∆(a) be a small disc neighbourhood of a (so that
C ∩∆(a) = {a}). Write δ(a) = ∂∆(a) for the cone curve (as described in Section
1). Now remove the interior of ∆(a), and glue in another disc, D(a), such that
∂D(a) wraps p(a) times around δ(a). We do this for all a ∈ C, so as to give us a

2-complex, Σ̂, with a natural map to Σ. This map induces an isomorphism from
π1(Σ̂) to πo1(Σ).

We say that Σ is topologically finite if there is a compact subset Σ0 ⊆ Σ, with
C ⊆ int(Σ0) and with each component of Σ \ Σ0 homeomorphic to S1 × [0,∞).
We refer to Σ0 as a core for Σ. The components of Σ \Σ0 correspond to the ends
of Σ. The orbifold type of Σ is determined by its genus, the number of ends,
and the set of degrees, p(a), for a ∈ C (counting multiplicities). One can check
that Σ is topologically finite if and only if πo1(Σ) is finitely generated. In this
case, each end of Σ determines a peripheral subgroup of πo1(Σ), or more precisely
a conjugacy class of such subgroups. We write H for the collection of all such
subgroups. Each element of H is a maximal subgroup isomorphic to Z, except
for a couple of trivial cases (see (E0) and (E1) below). We note that another
way to say that Σ is finite-type is to demand that it is orbifold-equivalent to the
interior of a compact orbifold with boundary (which will be orbifold-equivalent to
the core).
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We say that Σ is bad if it is a 2-sphere either with one cone point, or with two
cone points of differing degrees. Otherwise it is good. The latter is equivalent to
saying that it has a manifold cover, i.e. it arises as the quotient of a surface by
a properly discontinuous group of homeomorphisms. In this case, the (orbifold)
universal cover is homeomorphic to either S2 or R2.

Henceforth, we will assume that all our 2-orbifolds are good.
Let Σ be a (good) topologically finite 2-orbifold, and let G = πo1(Σ). If a ∈ C,

then the loop δ(a) encircling a determines a subgroup, G(a) ≤ G, well defined up
to conjugacy, and isomorphic to Zp(a). In fact, the subgroups, G(a) are precisely
the maximal non-trivial finite (cyclic) subgroups of G.

We note that Σ is uniquely determined by the pair (G,H). To see this, note that
the number of ends is equal to the number of conjugacy classes of H (except when
G ∼= Z and Σ is an annulus). The cone degrees are determined by the orders of the
subgroups G(a). After quotienting G by the G(a) and the peripheral subgroups,
we get a compact surface group, whose genus is equal to the genus of Σ.

We have the following classification of topologically finite 2-orbifolds according
the (singular) geometric structure they admit.

(S) “spherical”. Here ΣT is S2. In this case, H = ∅, and |G| <∞.

(E) “euclidean”.
We distinguish three subcases:
(E0): ΣT

∼= R2 and |C| ≤ 1. Here G is finite cyclic (or trivial) and there is just
one peripheral subgroup, namely G itself.
(E1): G is virtually Z. In this case, Σ is either an annulus with no cone points,
or a disc with two cone points each of degree 2. In the former case, G ∼= Z and
there is just one peripheral subgroup namely G (even though Σ has two ends). In
the second case, G is infinite dihedral. There is again one peripheral subgroup,
this time of index 2 in G.
(E2): G is virtually Z2. In this case, H = ∅, and Σ is finitely covered by S1× S1.

(H) “hyperbolic”. In this case Σ admits a finite-area (singular) hyperbolic struc-
ture. In other words, it is the quotient of the hyperbolic plane by a finite-coarea
fuchsian group, where the peripheral subgroups (if any) are precisely the maximal
parabolic subgroups.

We will consider the case (E0) above as “exceptional”, and will want to rule it
out from some of the subsequent discussion.

We will also discuss 3-orbifolds. In this case, we will allow non-empty boundary.
We do not assume a-priori that the 3-orbifolds are good (i.e. have a manifold
covering space) though this will turn out to be true of the 3-orbifolds we consider
(see Lemma 3.2).
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Let M be a 3-orbifold with (possibly empty) boundary, ∂M . The boundary is
a (possibly disconnected) 2-orbifold. Let σ(M) ⊆ M be the singular locus. This
is a graph whose terminal (valence 1) vertices are precisely those which lie in ∂M ,
and give rise to the cone points of ∂M . Every other vertex has valence 3 — its
link in M is a spherical 2-orbifold. Each edge of σ(M) has an associated degree
at least 2. In general, σ(M) may also have circular components. We write πo1(M)
for the orbifold fundamental group.

We say that M is simple if σ(M) is a disjoint union, σ(M) =
⊔
e∈E I(e), of

compact intervals, I(e), indexed by some set E. Note that ∂I(e) = I(e) ∩ ∂M
consists of two cone points of the same degree p(e) ≥ 2.

If M is simple, we can describe πo1(M) similarly as for surface groups. Namely,

we can construct a 3-complex, M̂ , with a natural map to M which induces an
isomorphism from π1(M̂) to πo1(M). The operation on each I(e) is the same as
the 2-orbifold case, just taking a direct product with a compact interval. Note
that the preimage, ∂M̂ , of ∂M , can be identified with the space ˆ∂M as defined
for 2-orbifolds.

3. Graphs of orbifolds

In this section, we describe what we mean by a “graph of orbifolds” which
leads to a generalisation of the standard notion of a compression body. First, we
introduce a “graph of surfaces”.

Definition. A graph of surfaces is connected 2-complex,

Φ =

(⊔
v∈V

Π(v)

)
∪

(⊔
e∈E

I(e)

)
,

where each Π(v) is a surface, and each I(e) is an interval with each of its endpoints
lying in some Π(v). Here V and E are arbitrary indexing sets.

We write Π =
⋃
v∈V Π(v) and τ =

⋃
e∈E I(e), so that Φ = Π ∪ τ .

Given any graph of surfaces, Φ = Π ∪ τ , we can construct a 3-manifold, M =
M(Φ), by “thickening it up”. More formally, we take a copy of Π×[−1, 1] together
with τ times a closed 2-disc, and glue them together according to the combinatorial
structure dictated by Φ. The handles are all attached to Π×{1}, so these surfaces
are all connected together to form a single boundary component, ∂+M , of M . We
can identify Π with Π × {−1} ≡ ∂M \ ∂+M . This is a union of components of
∂M , which we denote by ∂−M . We refer to ∂−M and ∂+M respectively as the
inner and outer boundaries of M . (We can embed M into R3 so that ∂+M is the
boundary of the unbounded component of R3 \M , and such that each component
of ∂−M bounds a handlebody in the complement of M .) We can view Φ as being
embedded in M , so that if we remove an open regular neighbourhood of τ in
M , the result is homeomorphic to ∂+M × [−1, 1]. In particular, M deformation
retracts onto Φ.
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It is also convenient to define a 3-manifold, M0 ⊇M , by capping off each sphere
component of ∂−M by a closed ball. Clearly the inclusions, Φ ↪→M ↪→M0 induce
isomorphisms on π1. The inner boundary, ∂−M0, of M0 is just ∂−M with the
sphere components removed.

As an example, if Π is compact, then M0 is a compression body in the usual
sense. If also ∂−M0 = ∅, then M0 is a handlebody.

More generally, we make the following definition:

Definition. We say that Φ is of finite-type if |V |, |E| < ∞ and each Π(v) is a
finite type surface.

In this case, the ends of Φ, Π, M and ∂+M are all in natural bijective corre-
spondence. Note that each end of M is homeomorphic to S1 × [−1, 1] × [0,∞),
with S1 × {±1} × [0,∞) ⊆ ∂±M . (We will generally use the word “end” to refer
either to an end or to a neighbourhood thereof. In other words, we assume we
have chosen a particular disjoint set of neighbourhoods of the ends.)

Given a graph of surfaces, Φ, we can construct a connected graph, Θ = Θ(Φ),
by collapsing each component of Π to a point. In this way, the indexing sets V
and E are respectively identified with the vertex set, V (Θ), and edge set E(Θ),
of Θ. We refer to Θ as the underlying graph.

The following special case will be used later.

Lemma 3.1. Suppose that Φ is a graph of surfaces such that Θ(Φ) is a tree, and
each component of Π is homeomorphic either to S2 or to R2. Then M0 = M0(Φ) is
homeomorphic to an open subset of the closed 3-ball, B, with its interior, int(M0),
identified with int(B).

In particular, it follows that M = M(Φ) is simply connected, and that ∂+M is
a planar surface.

Lemma 3.1 can be deduced in a number of ways. Note that if Π were S2 then M0

would be a 3-ball; and if Π were R2 then M0 would be R2 × [0, 1]. In general M0

will be the result of connecting together spaces of this form by handles attached to
their boundaries in treelike fashion. It’s not hard to see that the result will satisfy
the conclusion of the lemma. Another way of viewing this in terms of hyperbolic
geometry will be discussed in Section 5.

In fact, we can say a bit more. Note that the inclusion ∂+M ↪→ M induces
a homeomorphism of the respective spaces of ends. Each end either corresponds
to the end of some Π(v) which is homeomorphic to R2, or to an ideal boundary
point of the tree Θ. In particular, if we assume that every vertex of Θ has degree
at least 3 and those for which Π(v) ∼= R2 all have infinite degree, then there are
no isolated ends. It follows that the space of ends in this case will be a Cantor
set, and so ∂+M is the Cantor surface.

We want to generalise the above to 2-orbifolds.
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Definition. A graph of orbifolds is a connected 2 complex,

Φ =

(⊔
v∈V

Π(v)

)
∪

(⊔
e∈E

I(e)

)
,

where each Π(v) a (good) connected 2-orbifold (without boundary) and where
each I(e) is a compact real interval with each of its endpoints in one of the Π(v).
Associated to each I(e) is a natural number p(e) ≥ 1. If p(e) = 1, then neither
endpoint of I(e) is a cone point of the orbifold it lies in. If p(e) ≥ 2, then each
endpoint of I(e) is a cone point of degree p(e). We also assume that no Π(v) is of
type (E0) (a plane with at most one cone point).

As before, we write Π =
⋃
v∈V Π(v) and τ =

⋃
e∈E I(e). We write Θ for the

underlying graph so that V (Θ) ≡ V and E(Θ) ≡ E. Note that by taking under-
lying surfaces, we get a graph of surfaces as before. We write E = E1 tE2 where
E1 = {e ∈ E | p(e) = 1} and E2 = {e ∈ E | p(e) ≥ 2}.

Most of the earlier discussion goes through. In particular, we construct M =
M(Φ) ⊇ Φ, so that ∂−M is identified with Π. We write C ⊆ Π for its set of cone
points.

In fact, M has a natural structure as a simple 3-orbifold. Its singular set consists
of those intervals I(e) for e ∈ E2 (with both endpoints in ∂−M), together with an
interval, I(a), for each cone point a ∈ C \ τ . The interval I(a) has degree p(a).
It has one endpoint at a ∈ ∂−M , and the other in ∂+M . This gives ∂+M the
structure of a 2-orbifold with these cone points.

As before, M retracts onto Φ which further retracts onto the the graph Θ. We
can assume that the map M −→ Θ collapses handles onto edges, so that the
preimage of the midpoint of any edge e is a disc, ∆(e), in M , meeting τ ∪ σ(M)
transversely in a single point of I(e). We can think of ∆(e) as a 2-orbifold with
boundary γ(e) = ∂∆(e) = ∆(e) ∩ ∂M ⊆ ∂−M , and with a single cone point of
order p(e) at this intersection (or no cone point if p(e) = 1). We refer to the
family (∆(e))e∈E as a system of dual discs. We write G(e) = πo1(∆(e)) ∼= Zp(e).

We write ∆ =
⋃
e∈E ∆(e). Note that the closure of M \ ∆ in M is a (discon-

nected) orbifold isomorphic to Π× [−1, 1]. In particular, each component has the
form Π × [−1, 1], for some v ∈ V . We write G(v) = πo1(Π(v)) for its orbifold
fundamental group. Note that if e is incident on v, then there is a monomorphism
from G(e) to G(v). (Here G(e) corresponds to a cone point of Π(v), as discussed
in Section 2.) In this way, the family of groups, (G(v))v∈V and (G(e))e∈E, to-
gether with the above monomorphisms, has the structure of a graph of groups,
with underlying graph Θ. The orbifold version of the van-Kampen theorem tells
us that its fundamental group is precisely G = G(Φ) = πo1(M(Φ)). (See Section 4
for more explanation of this in the present context.)

In terms of Bass-Serre theory, this gives rise to a simplicial action of G on a
tree, T , with quotient Θ = T/G. We write π : T −→ Θ for the quotient map.
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To each v ∈ V (T ) we can associate a copy of the universal cover, P (v), of
Π(πv), together with an action of the stabiliser, G(v) ∼= G(πv), of v. Note that
G permutes the P (v), so performing these constructions equivariantly, we get a
properly discontinuous action of G in P =

⊔
v∈V (T ) P (v), with Π = P/G. We can

extend this to an action on a tree of surfaces, F = P ∪ t, with underlying graph
T , where t =

⊔
e∈E(T ) I(e), and with F/G = Φ. Note that each component of P

is either S2 or R2.
The construction of the manifold M(F ) can now be carried out G-equivariantly,

with orbifold quotient M(Φ) = M(F )/G. In particular, it follows that M(Φ)
is a good orbifold. Moreover, by Lemma 3.1, M(F ) is simply connected and
S = ∂+M(F ) is planar. In fact, from the subsequent discussion, we see that S is
the Cantor surface, unless τ = ∅ and Φ = Π. In the latter case, S is S2 or R2.

In summary, we have shown:

Lemma 3.2. Let Φ = Π ∪ τ be a graph of orbifolds. Then M(Φ) is a good orb-
ifold whose universal cover has a planar boundary component, S, with S/G(Φ) =
∂+M(D). Moreover, S is homeomorphic to R2, S2, an annulus, or a Cantor
surface.

Definition. We will say that a graph of orbifolds Φ = Π ∪ τ is of finite type if
|V |, |E| <∞ and each component of Π is a finite-type orbifold.

In particular, we can decompose the vertex set, V = VS t VE t VH and VE =
V 1
E t V 2

E , according to the type of Π(v) in the classification in Section 2.
Note again that the ends of Φ, Π, M and ∂+M are all in natural bijective

correspondence. In particular, this gives a family of peripheral subgroups, H,
of G = G(Φ). Each element of H is a maximal subgroup isomorphic to Z, and
conjugate into exactly one of the vertex groups, G(v). In other words, we have a
splitting of G as a finite graph of groups, over finite cyclic subgroups, relative to
the family, H.

We will describe in the next section how Φ can be recovered from such data.

4. Determining the action

This section is somewhat orthogonal to the rest of the discussion. We consider
how various aspects of finite-type graphs of orbifolds are determined by combina-
torial data.

To this end, we view two graphs of orbifolds as isomorphic if there is a home-
omorphism between them which respects the orbifold structure on each of the
2-orbifold pieces, and hence also the degrees of the edges. Clearly the thickened-
up manifolds we construct from them will then be isomorphic as orbifolds.

Suppose that Φ = Π ∪ τ is a finite-type graph of orbifolds. This is completely
determined (up to isomorphism) by a finite set of data. This consists of the
underlying graph, Θ, a degree p(e) for each e ∈ E(Θ), and to each v ∈ V (Θ)
we have a genus, a number of ends, and a set of degrees of those cone points
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(counting multiplicities) which are not contained in any of the edges I(e). From
this information, we can reconstruct each orbifold Π(v). (Its cone degrees are
those specified in the data, together with the values of p(e) for e ∈ E2 incident on
v.) We can then connect these orbifolds together by intervals as specified by Θ.
This gives us our graph of orbifolds, Φ.

There are a few restrictions on the possible data, which we mention below.
The following will be convenient to simplify the discussion.

Definition. We say that a vertex v ∈ V is useless if it has valence at most 2 in
Θ and Π(v) is a sphere with at most two cone points.

If v has valence 1 in Θ, then Π(v) ∼= S2, and we remove it together with the
incident edge. If it has valence 2 then we remove it and join together the incident
edges. (Since we are assuming that Π(v) is good, these edges have the same
degree.) The effect on M(Φ) is to cap off a boundary component with a ball,
possibly quotiented out by a cyclic action. Both these operations preserve G(Φ)
and ∂+M(Φ). There is a special case where V = {v}. In this case, M(Φ) is
topologically S2 × S1, possibly with a circular singular set (an S1-factor). Then
G(Φ) is finite cyclic and H = ∅. After iterating these operations we can eliminate
useless vertices, or possibly end up in the special case mentioned above. The
special case can be easily understood explicitly.

For this reason, we will assume:

(S1): There are no useless vertices.

In this case, any collection of data will give rise to a graph of orbifolds with the
following restriction. If the genus at any v ∈ V is 0, then the number of ends plus
the number of incident edges there must be least 3.

We next explain how much of this data can be recovered from the group, G,
together with its peripheral structure, H. To this end, recall that G acts on a
Bass-Serre tree, T , with quotient graph, Θ. The action is “2-acylindrical” meaning
that if e, e′ ∈ E(T ), then G(e) ∩ G(e′) is trivial. It is enough to verify this when
e, e′ are incident on a vertex v ∈ V (T ). But this follows from the earlier discussion
on orbifolds. We can assume that G(e) and G(e′) are each non-trivial. They are
therefore subgroups associated to cone points, and the family of such subgroups
in G(v) form a malnormal family. (Here we are using the assumption that v is
not useless.) In particular, G(e) ∩G(e′) is trivial as claimed. We have also noted
that each peripheral subgroup, H ∈ H, lies in a unique vertex stabiliser G(v). We
also note (again from the orbifold description) that no G(v) splits relative to the
collection of its peripheral subgroups and incident edge groups.

To proceed, it is convenient to consider first the following case.

Definition. We say that Φ is indecomposable if E1 = ∅.
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In other words, p(e) ≥ 2 for all e ∈ E. This means that all the edge stabilisers
are non-trivial. It is equivalent to saying that G does not split as a free product
relative to H.

In this case (from 2-acylindricity) two vertices v, w ∈ V (T ) will be adjacent if
and only if G(v)∩G(w) is non-trivial. Indeed we can completely recover the graph-
of-groups structure as the maximal splitting over finite (cyclic) groups relative to
the peripheral subgroups.

To see this, suppose we have two splittings with the above properties, with
Bass-Serre trees, T and T ′ respectively. If v ∈ V (T ), then since G(v) does not
split, it must fix some vertex v′ ∈ V (T ′). For the same reason, G(v′) fixes a vertex
v′′ ∈ V (T ). Therefore v = v′′ and G(v) = G(v′). This gives a natural bijection
from V (T ) to V (T ′), preserving stabilisers. By an earlier observation this must
preserve adjacency. In other words, we get a G-equivariant isomorphism from T
to T ′, as required.

As observed in Section 2, the group G(v) together with its peripheral structure
determines Π(v) up to orbifold isomorphism. Fitting these together as determined
by Θ and the edge-degrees, we can completely recover Φ.

In summary we have shown:

Lemma 4.1. An indecomposable finite-type graph of orbifolds, Φ, satisfying (S1)
is completely determined up to isomorphism by the group G(Φ) together with its
peripheral structure.

In fact, we can say more than this, as we discuss shortly. First, we discuss the
decomposable case.

Let Φ be a graph of orbifolds. Let τ0 =
⋃
e∈E2

I(e).

Definition. An (indecomposable) factor of Φ is a connected component of Π∪τ0.
In other words Φ consists of a finite number of factors, Φ1, . . . ,Φk, connected

together by a finite number of degree-1 intervals. In particular, it follows that
G = G(Φ) splits as a free product

(
∗ki=1Gi

)
∗Fm relative to H, where Gi = G(Φi),

and Fm is a free group of rank m not containing any element of H. (Possibly
m = 0.) Moreover, none of the Gi splits as a free product relative to H. It follows
by the relative version of the Grushko decomposition theorem that each of the
factors Gi is determined up to conjugacy in G, by the pair (G,H). So also is the
rank m.

We can perform certain sliding operations. In the graph Θ, we can slide an
endpoint of an edge e ∈ E1, across another edge. In Φ, we slide an endpoint of
I(e) from one component of Π to another. Note that this operation corresponds
to a handle slide on M(Φ), so its topological type does not change. In the process,
we can also remove any useless vertices that arise. This does not change G(Φ)
nor ∂+M(Φ). After a finite number of such steps we can eliminate all (non-
singular) sphere components of Π. Unless that is, we end up with just one sphere
component, with a number, m, of intervals attached at both endpoints. In that
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case, after capping off this sphere, M becomes a handlebody, M0, with G =
π1(M0) = πo1(M0) ∼= Fm, and with H = ∅. We can view this as a special case.

It is therefore convenient to assume, in addition to (S1), that:

(S2): no component of Π is a 2-sphere with no cone points.

Now, after sliding handles, we can assume that M(Φ) consists of a handlebody
of genus m ≥ 0, connected to each M(Φi) by a handle attached to ∂+M(Φi).

We have observed that each Gi is determined by (G,H). By Lemma 4.1, Gi in
turn determines Φi hence M(Φi). Also, m is determined, and so finally is M(Φ).

In summary, we have shown:

Lemma 4.2. Let G be a group of the form G = G(Φ), where Φ is a finite-type
graph of orbifolds satisfying (S1) and (S2), and let H be its peripheral structure.
Then the orbifold M(Φ) is completely determined up to isomorphism by the pair
(G,H).

Returning to the case of indecomposable graphs, we can say a bit more.
Let Φ be a finite-type indecomposable graph of orbifolds satisfying (S1). Write

Σ = ∂+M , and let C ⊆ Σ be its set of cone points. Let (∆(e))e∈E be a family
of dual discs as defined in Section 3. This is determined up to an isomorphism
of M(Φ) by the fact that each ∆(e) intersects I(e) exactly once. This comes
from the fact that removing an open regular neighbourhood of τ we get a copy of
Σ× [−1, 1].

In fact, we can make a stronger statement. Let γ(e) = ∂∆(e). This determines
an order-p(e) element g(e) ∈ G, well defined up to inverse and conjugacy. We
claim:

Proposition 4.3. Let e0 ∈ E. Suppose β ⊆ Σ \ C be a simple closed curve
representing g(e0) (up to inverse and conjugacy). Then β is isotopic to γ(e0) in
Σ \ C.

From the earlier discussion, the conclusion is equivalent to asserting that β
bounds a dual disc to I(e).

To prove Proposition 4.3, let ∆ =
⋃
e∈E ∆(e), and let γ = ∆ ∩ Σ =

⋃
e∈E γ(e).

Given v ∈ V , let Ψ(v) ⊆ M be the closure of the component of M \ ∆ cor-
responding to v. (Thus, Ψ(v) is orbifold-isomorphic to Π(v) × [−1, 1].) Let
Υ(v) = Σ ∩Ψ(v). Thus, Υ(v) is the closure of a component of Σ \ γ.

Recall the construction of M̂ from Section 2. This is a 3-complex, with a
natural map, π : M̂ −→M , inducing an isomorphism from π1(M̂) to πo1(M). Let

Σ̂ = π−1Σ. Then the induced map π1(Σ̂) −→ πo1(Σ) is also an isomorphism. We

can assume that π|π−1β is a homeomorphism, so that π−1β is also a curve in Σ̂,

which we will also denote by β. Let ∆̂(e) = π−1∆(e), ∆̂ = π−1∆, Ψ̂(v) = π−1Ψ(v)

and Υ̂(v) = π−1Υ(e). Thus, Ψ̂(v) is the closure of a component of M̂ \ ∆̂, and is
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homeomorphic to Π̂(v)× [−1, 1]. If e is incident on v, then the inclusion of ∆̂(e)

into Ψ̂(v) is injective on π1.
We now assume that β is in general position with respect to γ and realised in

its homotopy class so that |β ∩ γ| is minimal. This means that no arc of β can
bound a bigon in Σ \ C with any arc of γ.

We claim that β ∩ γ = ∅.
To see this, note that the p(e)-fold cover of β in M̂ is trivial in π1(M̂) ≡ πo1(M).

Therefore there is a map, f : D −→ M̂ , of the disc, D, such that f |∂D wraps

p(e) times around β. We can assume that f−1Σ̂ = ∂D, and that f is in general

position with respect to ∆̂. In particular, f−1∆̂ is a collection of disjoint arcs and
circles. In fact, by the π1-injectivity of the maps ∆̂(e) −→ M̂ , we can assume
that there are no circles.

Suppose for contradiction that β ∩ γ 6= ∅, so that f−1∆̂ 6= ∅. Let B ⊆ ∆
be an outermost component of D \ f−1∆̂. This is a bigon with boundary α ∪ δ,
where α ⊆ f−1∆̂ and δ ⊆ ∂D are arcs. Note that f(B) ⊆ Ψ̂(v) for some v ∈ V .
Clearly, f |δ is injective, so f(δ) ⊆ β is an arc with endpoints in γ(e) for some

e ∈ E incident on v. Also f(α) ⊆ ∆̂(e). We can therefore push f(α) out to

the boundary of ∆̂(e), fixing its endpoints, so as to give us a path ε in γ(e), and

such that ε ∪ f(δ) bound a disc in Ψ̂(v). (We don’t know a-priori that ε is an

arc.) Since Ψ̂(v) ∼= Π̂(v)× [−1, 1], ε ∪ f(δ) is also trivial in π1(Π̂(v)) ∼= πo1(Π(v)).
But this implies that f(δ) must bound a bigon with γ(e) (so that we can indeed
take ε to be an arc). (To see this, note that π(f(δ)) gives us an injective loop
at a cone point of Π(v), which represents an element in the corresponding cyclic
subgroup of πo1(G(v)).) But now this gives us a contradiction, proving the claim
that β ∩ γ = ∅.

Therefore β ⊆ Υ(v) ⊆ Π(v) × [−1, 1] for some v ∈ V . Since β is conjugate to
γ(e0) in G, it follows that v is incident on e0. (This follows from the fact, used
earlier, that the action on the Bass-Serre tree is 2-acylindrical.) Since Π(v) is a
2-orbifold, it now follows that β is isotopic to γ in the complement of its cone
points, hence also in Σ \ C.

This proves Proposition 4.3.

5. Kleinian groups

We describe how one can realise the 3-orbifolds discussed earlier as quotients
of kleinian groups.

We elaborate on some basic definitions mentioned in Section 1. By a kleinian
group we mean a group, G, acting properly discontinuously by isometry on hyper-
bolic 3-space H3. We write M = M(G) = H3/G, for the quotient orbifold. The
action extends to the ideal boundary, ∂H3. We partition ∂H3 into the limit set,
ΛG, and the discontinuity domain, ΩG. In fact, G acts properly discontinuously
on H3∪ΩG, and we write MC = MC(G) = (H3∪ΩG)/G. This is a 3-orbifold with
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boundary. Note that we can identify G ≡ πo1(M) ≡ πo1(MC). The action is geo-
metrically finite if MC has a finite number of ends, each isomorphic to a standard
parabolic cusp region [Mar]. In particular, in this case, the peripheral subgroups
of G (identified with πo1(MC)) are precisely the maximal parabolic subgroups. A
cusp can be “rank-1” or “rank-2” depending on whether the maximal parabolic
subgroup is virtually Z or virtually Z2.

Let Φ be a finite-type graph of orbifolds. We construct a larger manifold,
M+(Φ) ⊇ M(Φ) as follows. To ∂+M , we glue a copy of ∂+M × [0,∞); and to
each component, Π(v), of ∂−M we glue a copy of the space Π+(v) defined as
follows. If v ∈ VE ∪ VH , we set Π+(v) = Π(v)× [0,∞). If v ∈ VS, we take Π+(v)
to be a cone over Π(v): in other words a compact 3-orbifold with underlying space
a 3-ball, and with boundary, Π(v).

We can construct an even bigger 3-orbifold, M+
C (Φ), by gluing in ∂+M(Φ) ×

[0,∞] to ∂+M(Φ), and a copy of Π+
C(v) to each Π(v). Here Π+

C(v) = Π+(v) if
v ∈ VS ∪ VE, and Π+

C(v) = Π(v)× [0,∞] if v ∈ VH . We again refer to “outer” and
“inner” boundaries of M+

C (Φ).
Note that the ends of M+

C are of two sorts. They can be “rank-2”: that is
they correspond to ends, Π+(v), for v ∈ V 2

E . Or else they can be “rank-1”: they
correspond to ends of Π+

C(v) for v ∈ VH ∪ V 1
E . When v ∈ VH , these ends have

a neighbourhood of the form S1 × [−1, 1] × [0,∞), with S1 × {−1} × [0,∞) and
S1 × {1} × [0,∞) respectively ends of the inner and outer boundaries. When v ∈
V 1
E , either Π(v) is an annulus, and the end again has the form S1× [−1, 1]× [0,∞),

though now the sets S1 × {±1} × [0,∞) both lie in the outer boundary; or else
Π(v) is a disc with two degree-2 cone points, and we get a quotient of the above
by a Z2 action.

We claim:

Proposition 5.1. Let Φ be a finite-type graph of orbifolds. Then there is a geo-
metrically finite action of G = G(Φ) on H3 having the following properties. There
is a homeomorphism of M+

C (Φ) to MC(G), inducing the identity on G (as the
orbifold fundamental groups). This restricts to a homeomorphism of M+(Φ) to
M(G). Moreover, we can take the subgroup corresponding to each inner boundary
component to be fuchsian (i.e. preserving a plane in H3). The rank-1 and rank-2
ends of M+

C (Φ) correspond respectively to the rank-1 and rank-2 maximal parabolic
subgroups.

Note that since G = πo1(M
+
C (Φ)) is supported on ∂+M , the corresponding

component, S, of ΩG is G-invariant. (Such a kleinian group is traditionally called
a “function group”.) All other components of ΩG are round discs (since their
stabilisers are fuchsian). In the terminology of [Mas2], G is a “Koebe group”.
Note that ∂+M can be naturally identified with S/G.

We remark that an equivalent formulation of Proposition 5.1 could be obtained
by replacing MC(G) with the convex core or M : in other words the quotient by
G of the convex hull if the limit set, ΛG. Topologically, this can be obtained from
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MC(G) by removing a regular neighbourhood of the boundary. (The case where
G is fuchsian is “degenerate” in the sense that the core collapses onto a totally
geodesic subspace.)

We now set about the proof of Proposition 5.1. We have seen in Section 2 that
any 2-orbifold carries a certain geometric structure. From this we can construct
an action of each group G(v) on H3 as described below. To construct the action of
G on H3, we need to piece these actions together in a nice way. There are various
standard “combination” theorems which allow us to do this. The argument in
[Mas2] primarily makes use of the actions on ∂H3. Here we will use the geometry
of H3 instead.

To begin, we note that we can put a complete singular hyperbolic metric on
each Π+(v) with convex boundary, Π(v). In each case we realise Π+(v) as the
quotient of a closed convex subset, P+(v), in H3, by an isometric action of the
group, G(v). (For the moment, P+(v) is only defined up to isometry.) More
precisely, if v ∈ VS, we take P+(v) to be a closed ball in H3 of fixed radius; if
v ∈ VE, we take P+(v) to be a closed horoball; and if v ∈ VH , we take P+(v) to
be closed half space. In the induced path metric, Π(v) = ∂P+(v) is respectively,
S2, R2 and H2. Thus, Π(v) = ∂Π+(v) is respectively a spherical, euclidean or
hyperbolic orbifold. In the last case, we arrange for it to have finite area. In
the euclidean and hyperbolic cases, this involves an arbitrary choice of geometric
structure, though the choice is not relevant to the present discussion.

Now let Φ+ ⊇ Φ be the space obtained from Φ by gluing a copy of Π+(v) to
Π(v) for each v ∈ V . We can put a metric on Φ+ by giving each Π+(v) the metric
described in the previous paragraph. We choose some constant L ≥ 0 big enough,
as required by Lemma 5.2 below, and give each interval I(e) the structure of a
real interval of length L. We can then take the induced path metric on Φ+.

Recall that we can realise Φ as a quotient F/G as described in Section 3. We
can similarly write Φ+ = F+/G, where F+ ⊇ F is obtained by gluing a copy of
P+(v) to P (v) for each v ∈ V (T ). Again, we can give F+ a metric as described
above, so that G acts isometrically, and inducing the given metric on Φ+.

In fact, we can endow F+ with some extra structure. Namely, for each e ∈ E(T ),
we choose an (isometric) identification of the tangent spaces to P (v) and P (w) at
the endpoints of I(e), where v, w ∈ V (T ) are the endpoints of e. Moreover, we
can do this in G-equivariant fashion.

Finally note that (by equivariance) there is some η > 0, such that if e and e′

are distinct edges incident on v, then the endpoints of I(e) and I(e′) are distance
at least η apart in P (v).

We now claim:

Lemma 5.2. Suppose L is chosen sufficiently large as a function of η > 0. Then
we can realise F+ as a closed subset F+ ⊆ H3, inducing the original path metric
on F+, and such that if e is incident on v then I(e) meets P+(v) orthogonally.
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Moreover, if e is also incident on w, then the specified identification of tangent
spaces to P (v) and P (w) is given by parallel transport in H3 along I(e).

In fact, all we require of the sets P+(v) for this to hold is that they be isometric
to closed convex subsets of H3 with smooth boundary. (The action of G is not
relevant to the statement of the lemma.)

It’s not hard to see that the embedding of F+ as described by the conclusion
of Lemma 5.2 is unique up to isometry of H3. Therefore the action of G on
F+ extends to an action on H3. We will see that it satisfies the conclusion of
Proposition 5.1. First, we explain why Lemma 5.2 holds.

We will proceed by constructing a “thickening” of F+ which is isometric to a
closed convex subset of H3.

We begin with the following lemma. Suppose B ⊆ H3 is a (round) ball, horoball
or half-space. Suppose that I ⊆ H3 is a geodesic segment meeting B orthogonally
at one of its endpoints. We write N(B, r) and N(I, s) respectively for the closed
r- and s-neighbourhoods. We will assume that length(I) > r, so that I meets
∂N(B, r) orthogonally at a single point, x. Let H be the closed convex hull of
N(B, r) ∪N(I, s), and let Ξ = H \ (N(B, r) ∪N(I, s)).

Lemma 5.3. Given any η > 0, there is some t = t(η), such that if r, s ≥ t and
B, I, x,Ξ are as above, then Ξ ⊆ N(x, t).

Note that the picture has circular symmetry: rotating about the bi-infinite geo-
desic containing I. It is therefore sufficient to verify the corresponding statement
in H2, which is a simple exercise. We see in fact, that Ξ is a solid torus glued in
at the junction of N(B, r) and N(I, s).

To explain what we are aiming for in the proof of Lemma 5.2, let us suppose for
the moment that we have already embedded F+ into H3. Let t = t(η). Choose
r > t sufficiently large as described below and assume that L > 2r + 2t. Given
v ∈ V (T ) incident on e ∈ E(T ), we write x(v, e) for the point of intersection of
∂N(P+(v), r) with I(e). Let Ξ(v, e) be the set featuring in Lemma 5.3, where
s = η, B = P+(v) and I = I(e). Therefore, Ξ(v, e) ⊆ N(x(v, e), t).

Given the uniform divergence of geodesics in hyperbolic space, we can choose r
big enough so that if e, e′ ∈ E(T ) are distinct edges incident on v, then the distance
between x(v, e) and x(v, e′) is greater than 2t. This implies that Ξ(v, e)∩Ξ(v, e′) =
∅. Since L > 2r + 2t, it also follows that Ξ(v, e) ∩ Ξ(w, e′′) = ∅ for any w 6= v
and any e′′ incident on w. Moreover, if Ξ(v, e) ∩ N(P+(w), r) 6= ∅, then w = v;
and if Ξ(v, e) ∩N(I(e′), η) 6= ∅, then e′ = e.

We now set

Q =
⋃

v∈V (T )

N(P+(v), r) ∪
⋃

e∈E(T )

N(I(e), η) ∪
⋃
v,e

Ξ(v, e),

where the last union is taken over all v ∈ V (T ) and e ∈ E(T ), with e incident on
v. (We have already observed that this last term is a disjoint union.) Note that
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the inclusions, F ↪→ F+ ↪→ Q are both homotopy equivalences. In particular, Q
is simply connected.

Of course, this presupposes that F+ ⊆ H3. However, if we are given F+ ab-
stractly, together with the associated identifications of tangent spaces, we can
construct Q directly, just by constructing the component pieces, and then gluing
them together. (Note that the gluing just involves attaching a set of the form
Ξ(v, e) to an incident set of the form N(P+(v), r) or N(I(e), η), and that the
gluings are all disjoint.) By construction, Q is simply connected, and locally iso-
metric to a closed convex subset of H3. It therefore follows that Q is globally
isometric to a convex subset of H3. In other words, we have embedded Q, hence
also F+ into H3, thereby proving Lemma 5.2.

In fact, we see by construction that the interior of the convex set, Q, is G-
equivariantly homeomorphic to the universal cover of M+(Φ), and so intQ/G is
homeomorphic to M+(G).

Proof of Proposition 5.1. Let Φ+ ⊇ Φ be as constructed above. We can write
Φ+ = F+/G. By Lemma 5.2 we can properly embed F+ ⊆ H3. Since the
constructiion is canonical (once we have fixed some constant L) the action of G
on F+ extends to an isometric action on H3. In fact, we also get a G-equivariant
embedding, Q ⊆ H3. In particular, we see that the action of G on H3 is properly
discontinuous.

As observed above, intQ/G, is homeomorphic to M+(Φ), and we see that its
closure in MC(G) = (H3∪ΩG)/G is homeomorphic to M+

C (Φ). This is also home-
omorphic to MC(G). By construction the ends are in bijective correspondence to
the parabolic cusps. In particular, the complement of open neighbourhoods of the
ends of MC(G) is compact, and so G is geometrically finite. �

6. The Planarity Theorem

We begin with a general discussion of planar surfaces.
By a planar surface we mean a connected space homeomorphic to an open

subset S ⊆ S2. We will assume for the moment that S 6= S2. Then the universal
cover, W , of S is homeomorphic to R2, and we write S = W/N , where N = π1(S).

We write E = E(S) for the space of ends of S. This is a totally disconnected
compact space, and S ∪ E gives a hausdorff compactification of S. It is not hard
to see that S ∪ E is homeomorphic to the quotient space obtained by collapsing
each component of S2 \ S to a point. This is in turn homeomorphic to S2. The
latter statement is an old result of Moore [Mo], though of course one could give a
number of proofs of this fact today. In view of this, there is no loss in assuming
that S2 \ S is totally disconnected, and thus naturally homeomorphic to E . If E
is perfect, then it is a Cantor set. There is only one embedding of the Cantor
set in S2 up to homeomorphism, so in that case, the surface S is unique up to
homeomorphism. (This is also a direct consequence of the classification theorem
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[R].) We refer to this space as the Cantor surface. (It has also been called the
“Cantor sphere” or the “Cantor tree surface”.)

Let S be planar. Suppose that β ⊆ S is a closed subset which is a disjoint
union of essential simple closed curves. We have a dual tree, Tβ, where each edge
e ∈ V (Tβ) corresponds to a component, β(e), of β, and each vertex v ∈ V (Tβ)
corresponds to the closure of a component, Y (v), of S2 \S. Here e is incident on v
if and only if β(e) ⊆ Y (v). In this way, we can represent N = π1(S) as a graph of
groups with underlying graph Tβ. Each edge group, Nβ(e), is infinite cyclic and
supported on the curve β(e). Each vertex group, Nβ(v), has the form π1(Y (v)).

Let Nβ / N be the (normal) subgroup of N generated by the family all of
edge groups, Nβ(e). Then N/Nβ is also represented by a graph of groups with
underlying graph Tβ, with trivial edge-groups, and with vertex groups of the form
Nβ(v)/Jβ(v), where Jβ(v) / Nβ(v) is the normal subgroup of Nβ(v) generated
by the incident edge groups. (Topologically, this is equivalent to gluing a disc
to each component of β, and then taking the fundamental group.) Note that
Nβ(v)/Jβ(v) ∼= π1(Z(v)), where Z(v) is the surface obtained by gluing a disc to
each boundary component of Y (v). It is easily seen that the following statements
are all equivalent: Z(v) ∼= R2; Z(v) is one-ended; Y (v) is one-ended; π1(Z(v)) is
trivial; and Jβ(v) = Nβ(v).

NowN/Nβ is isomorphic to the free product∼= ∗v∈V (Tβ)(Nβ(v)/Jβ(v)). It follows
that N/Nβ is trivial if and only if Nβ(v)/Jβ(v) is trivial for all v ∈ V (Tβ).

In particular, we have shown:

Lemma 6.1. Nβ = N if and only if Y (v) is one-ended for all v ∈ V (Tβ).

Now suppose that G acts properly discontinuously on a planar surface S with
quotient orbifold, Σ = S/G. We write π : S −→ Σ for the quotient map, and
C ⊆ Σ for the set of cone points.

Write S = W/N and Σ = W/Γ, where Γ = πo1(Σ) and W is the orbifold
universal cover. Thus, N / Γ and G = Γ/N . In other words, Σ = S/G =
(W/N)/(Γ/N) = W/Γ.

By a multicurve γ in Σ, we mean a closed subset of Σ\C which is a topological
disjoint union of essential closed curves in Σ \ C. We will assume that no two
elements of γ are parallel (that is, bound an annulus in Σ \ C). We write γ̃ =
π−1γ ⊆ S. We say that γ is liftable if each component of γ̃ is compact. In other
words, each such component maps with some finite degree to some component of
γ. This determines a normal subgroup, Nγ̃ / N , as described above.

Definition. We say that a liftable multicurve, γ ⊆ Σ, is complete if Nγ̃ = N .

Note that any isolated end of S has finite stabiliser in G, and we can compactify
its by adding in an isolated point. In the quotient, this corresponds to adjoining
a point, possibly a cone point. For this reason, it will be convenient to assume,
for the moment, that S has no isolated ends.
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Let γ ⊆ Σ be a liftable multicurve. We take a regular neighbourhood of γ in Σ\
C. This is a disjoint union of annuli, and we collapse each annulus to an interval,
by collapsing the S1-factor to a point. The result will be a graph of orbifolds, Φ,
with each edge assigned the degree of the covering of the corresponding component
of γ. Let M = M(Φ). We can naturally identify Σ with ∂+M . The inclusion
of Σ into M gives us an epimorphism from Γ = πo1(Σ) to G(Φ) = πo1(M). Its
kernel is precisely Nγ̃ /N . If γ is complete then Nγ̃ = N , and so we get a natural
identification of G = Γ/N with G(Φ).

In these terms, we can state the Planarity Theorem of Maskit [Mas1] as follows.

Theorem 6.2. If Σ is of finite type, then it admits a complete liftable multicurve.

If we assume that S has no isolated ends, then the above discussion applies.
In summary, this shows:

Corollary 6.3. Suppose that the group, G, acts properly discontinuously on a
Cantor surface S, and with finite-type quotient, Σ = S/G. Then there is a finite-
type graph of orbifolds, Φ, with G ≡ G(Φ) = πo1(M(Φ)), and a G-equivariant
identification of S with the outer boundary of the universal cover of M (so that Σ
gets identified with ∂+M).

Using Lemma 6.1 it can now be seen that the action of G on S extends to a
properly discontinuous action of G on a 3-ball with S identified as a subset of its
boundary, S2. (Of course, this need not coincide with the original embedding of
S in S2.) In fact we can realise this geometrically.

Putting Corollary 6.3 together with Proposition 5.1, we deduce:

Corollary 6.4. Suppose that the group, G, acts properly discontinuously on a
Cantor surface, S, and with finite-type quotient. Then there a geometrically finite
action of G on H3, and a G-equivariant homeomorphism of S to a G-invariant
component, Ω0, of the discontinuity domain ΩG ⊆ ∂H3.

By construction (or directly applying Ahlfors’s Finiteness Theorem) the quo-
tient Ω0/G is a finite-type Riemann surface. It follows that the ends of Σ ∼= Ω/G
correspond to parabolic elements of the action of G. Of course, one can say more
about the action of G on H3, as described by Proposition 5.1. (As remarked after
Proposition 5.1, we could alternatively identify S with a boundary component of
the convex hull of the limit set of G, so that S/G gets identified with a boundary
component of the convex core of M .)

If we allow for isolated ends in S, then the conclusion of Corollary 6.3 holds,
except we would need to remove a finite set of points from ∂+M , as well as its
preimage in the universal cover of M .

As noted in Section 1, a group G of this sort is necessarily finitely generated.
In fact, if we assume G to be finitely generated, we can drop the assumption on
the quotient begin finite type, modulo modifying the surface S. (See [G] for a
similar statement.)
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Proposition 6.5. Suppose that G is a finitely generated group acting effectively
and properly discontinuously on a planar surface, S. Then there is an open G-
invariant subset, E0 ⊆ E(S), of the space of ends of S, such that G also acts
properly discontinuously on S ∪ E0 with (S ∪ E0)/G a finite-type orbifold.

(Recall that S ∪E(S) ∼= S2, and S ∪E0 ⊆ S ∪E(S) is open, so S ∪E0 is a planar
surface. In fact, from the earlier discussion it must be S2, R2, an annulus or a
Cantor surface.)

To begin with, let Σ0 ⊆ Σ be a compact core for Σ: that is a compact subman-
ifold with boundary containing all the cone points in its interior, and such that
the inclusion Σ0 ↪→ Σ induces an isomorphism on πo1.

Such a core can be constructed by taking an equivariant map of a Cayley graph
of G into S \ π−1C, thickening it up to a manifold, and then filling in any disc
components of the complement so as to give us a closed G-invariant subsurface,
S0 ⊆ S, with Σ0 = S0/G compact.

Now let R be the closure of a component of S \ S0. Since S is planar, ∂R is
connected. Let GR ≤ G be its stabiliser. Then GR acts freely on ∂R with quotient
a circle. Let E(R) be the space of ends of R. Note that the action of G extends
to R ∪ E(R). There are two cases.

Maybe ∂R is a circle, and GR is cyclic of order p. In this case R ∪ E(R) is a
disc and E(R) is a clopen subset of E(S). Either p = 1, or else GR has exactly
one fixed point of order p ≥ 2. Thus (R ∪ E(R))/GR is a disc with at most one
cone point. We set E0(R) = E(R).

Or maybe ∂R is the real line. In this case, both ends of ∂R converge on the
same end x ∈ E(R). Now R∪E(R) is again a disc, with boundary ∂R∪{x}. The
group GR is infinite cyclic and acts on the disc with unique fixed point, x. We set
E0(R) = E(R) \ {x}. This is an open subset of E(S). Moreover, (R ∪ E0(R))/GR

is an annulus (with no cone points).
In view of the above we set E0 to be the union of the sets E0(R) as R ranges

over the closures of all components of S \ S0.
By construction, (S ∪ E0)/G consists of Σ0, together with a finite number of

discs and annuli glued to the boundary components, and such that each such
disc has at most one cone point. This is a finite type orbifold, thereby proving
Proposition 6.5.

We also note the following result in [G]:

Theorem 6.6. [G] Suppose that G is finitely generated group which admits an
effective properly discontinuous action in a planar surface, S. Then G also admits
such an action on a planar surface, S ′, with S ′/G compact.

The argument of [G] uses planarity of Cayley graphs.
One can also give an interpretation in terms of graphs of orbifolds, as we outline

below.
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First, by Proposition 6.5, we can suppose that S/G is of finite type. We can
also suppose that S is a Cantor surface. (Otherwise, it is S2, R2 or an annulus,
and those cases can be easily dealt with.) Corollary 6.3 now gives us a finite-type
graph of orbifolds, Φ = Π ∪ τ , with G = G(Φ) = πo1(M(Φ)). Let Π0 ⊆ Π be
a compact core of Π. (In other words we remove disjoint neighbourhoods of the
ends of Π so that the inclusion int Π0 ↪→ Π is an equivalence of orbifolds.) Let
Φ0 = Π0 ∪ τ ⊆ Φ. We can thicken up Φ0 to give us a 3-orbifold, M(Φ0) ⊆M(Φ),
similarly as with the construction of M(Φ). In other words, M(Φ0) is obtained
by removing a neighbourhood of each end of M(Φ). Note that ∂Π gives rise
to a disjoint collection of annuli in ∂M(Φ0), and that the complement of these
annuli is a core of ∂M(Φ). In particular, one component, Σ′, of ∂M(Φ0) contains
∂M(Φ) ∩M(Φ0).

Let F = P ∪ t be the covering space of Φ = Π ∪ τ constructed as in Section
4. Thus F is a tree of surfaces, each component of P being either S2 or R2. Let
F0 = P0 ∪ t ⊆ P ∪ t = F be the preimage of Φ0 = Π0 ∪ τ , so that Φ0 = P0/G. We
get a quotient map M(F0) −→ M(Φ0), where M(F0) ⊆ M(F ) is the preimage
of M(Φ0) in M(F ). In fact, M(F ) can be constructed from F0 similarly as with
M(F ). Let S ′ ⊆ ∂M(F0) be the preimage of Σ′ ⊆ ∂M(Φ0). This is a G-invariant
component of ∂M(F0), and Σ′ = S ′/G is compact. In fact, S ′ is planar. This
follows by essentially the same argument as Lemma 3.1: it arises as an infinite
connected sum of planar surfaces, each arising from some component of F0. This
therefore proves Theorem 6.6.

We remark that one can also interpret this in terms of kleinian groups. By
Corollary 6.4 and the subsequent remark, we can realise G as kleinian function
group in such a way that S is equivariantly identified with the a boundary com-
ponent of the convex hull of the limit set. We can remove an equivariant family
of horoballs from the core. The boundary of the resulting space has a G-invariant
component, S ′, with S ′/G compact. Topologically, this is the same construction
as that described above.

7. Tracks

We explain how to give a direct proof of the Planarity Theorem using tracks.
Let G act effectively and properly discontinuously on a planar surface, S, with

quotient Σ = S/G a finite-type orbifold. We assume for simplicity that S has
no isolated ends. Let Σ̄ be the compactification of Σ obtained by adjoining the
space of ends. Thus, Σ̄ is topologically a closed surface. We triangulate Σ̄ so
that all cone points and all ends are vertices of the triangulation. We write Λ
for the resulting simplicial complex. We can lift this to a simplicial complex, L,
with S ⊆ L, where the G-action of S extends to a simplicial G-action on L with
Λ = L/G. We write V∞(L) ⊆ V (L) for the set of vertices of infinite degree. Thus
G acts properly discontinuously on L \ V∞(L) and freely on L \ V (L).
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The aim now is to construct a complete liftable multicurve, γ ⊆ Σ ⊆ Λ. As
observed in Section 6, completeness is equivalent to saying the closure of each
component of Σ \ γ̃ is one-ended (see Lemma 6.6).

We now follow the argument in [D].
Suppose that K is either L or Λ. First, we define a “track” in K exactly

as in Section 2 of [D]. In our case, this is a properly embedded connected 1-
submanifold: either a circle or the real line. Since K is orientable, any track for
us will be “untwisted”: that is to say, a regular neighbourhood thereof is a direct
product with an interval.

The discussion of Section 2 of [D] now goes through more or less verbatim. Here
we should interpret K as our complex Λ. In [D] it was assumed that H1(K,Z2) =
0. But this was only used there to show that any track separates. In our case,
this follows instead from the fact that Λ \ V (Λ) is a planar surface.

Moving on to Section 3, a “minimal track”, t ⊆ Λ, is now a circle which cuts
Λ into two components, each containing infinitely many vertices of Λ. The latter
statement is equivalent to saying that the closure of each component of Σ \ t is
non-compact. The “minimal” clause means that the intersection of t with the
1-skeleton of Λ has minimal cardinality for a track with these properties.

We now proceed to Section 4. Again, K = Λ. Our planarity assumption again
substitutes for the cohomological hypothesis, and the statements go through.

We now follow the proof of Theorem 5.1 of [D], to give us a maximal collection
of minimal tracks, whose properties we now interpret.

Our hypotheses are slightly different. For us K = L. In [D] it was assumed
that the action is free. But all that is really required is that it should be free on
L\V (L). Instead of one-endedness of L, we substitute one-endedness of L\V∞(L).
The negation of this hypothesis is equivalent to saying that there is a track which
separates L into two components, each of which contains an infinite subset of
V (L). In other words, we can write V (L) = U t U∗, where U and U∗ are both
infinite, and such that there are only finitely many 1-cells of L with one endpoint
in each of U and U∗. It is such a partition which is actually used of multiendedness
in [D].

At the end of the day, we arrive at a G-invariant disjoint union, t̃, of minimal
tracks in L, which descends to a finite disjoint union, t, of tracks in Λ. No
two components of t are parallel (that is, bound an annulus, that is to say an
“untwisted band”, in Λ). Moreover (from the maximality) the closure of each
component of L \ t̃ in L is one-ended.

We now let γ = t∪
⊔
a∈C δ(a) ⊆ Σ ⊆ Λ, where δ(a) is the cone curve encircling

the cone point a ∈ C. Then γ is a complete liftable multicurve in Σ.
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