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Abstract. We define the strongly separating curve graph to be
the full subgraph of the curve graph of a compact orientable sur-
face, where the vertex set consists of all separating curves which do
not bound a three-holed sphere. We show that, for all but finitely
many surfaces, any automorphism of the strongly separating curve
graph is induced by an element of the mapping class group.

1. Introduction

The main aim of this paper is to prove a rigidity result (Theorem
1.1) for certain curve graphs associated to compact orientable surfaces.
It is a variation on some well known results in this direction. Our
main motivation for this particular statement is its application to the
quasi-isometric rigidity of the Weil-Petersson metric.

Let Σ be a compact orientable surface. We write g(Σ) for its genus,
and p(Σ) for the number of boundary components. The complexity,
ξ(Σ), of Σ is defined by ξ(Σ) = 3g(Σ)+p(Σ)−3. (It equals the number
of disjoint simple closed curves needed to cut Σ into a collection of 3-
holed spheres.)

Let G(Σ) be the curve graph associated to Σ; that is, the 1-skeleton
of the curve complex as defined in [H]. It has vertex set C(Σ), the set
of non-trivial non-peripheral simple closed curves in Σ, defined up to
homotopy. Two elements of C(Σ) are deemed adjacent if they can be
homotoped to be disjoint. Note that the mapping class group, Map(Σ),
acts cofinitely on G(Σ). The rigidity theorems of [Iv, Ko, L] tell us
(in particular) that if ξ(Σ) ≥ 2, then any automorphism of G(Σ) is
induced by an element of Map(Σ). (Note that, since the curve complex
is a flag complex, this is equivalent to the same statement for the curve
complex.)

There are a number of variations of this. Given a subset, A ⊆ C(Σ),
we write G(Σ, A) for the full subgraph of G(Σ) with vertex set A. If A
is Map(Σ)-invariant, then Map(Σ) also acts on G(Σ, A). We say that
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G(Σ, A) is rigid if every automorphism is induced by an element of
Map(Σ).

For example, if Cs(Σ) is the set of separating curves, we refer to
Gs(Σ) = G(Σ, Cs(Σ)) as the separating curve graph. (Note that if g = 0,
then this is the same as G(Σ).) The results of [BrM, Ki], together with
that cited above for planar surfaces, tell us Gs(Σ) is rigid if g(Σ) ≥ 3
or (g(Σ) = 2 and p(Σ) ≥ 2) or (g(Σ) = 1 and p(Σ) ≥ 2) or (g(Σ) = 0
and p(Σ) ≥ 5).

We remark that the non-separating curve graphs, G(Σ, C(Σ)\Cs(Σ)),
of a large class of surfaces of genus at least 2 are also rigid [Ir], though
this is not directly relevant to the present paper.

Let C0(Σ) ⊆ Cs(Σ) be the set of curves which bound some three-
holed sphere in Σ. Let Css(Σ) = Cs(Σ) \ C0(Σ), and let Gss(Σ) =
G(Σ, Css(Σ)). We refer to elements of Css(Σ) as strongly separating
curves and to Gss(Σ) as the strongly separating curve graph.

We will show here that Gss(Σ) is rigid in all but finitely many cases:

Theorem 1.1. If g(Σ) + p(Σ) ≥ 7, then Gss(Σ) is rigid.

Note that if p(Σ) ≤ 1, then Gss(Σ) = Gs(Σ), and so this is covered
by the results of [BrM, Ki].

This still leaves unresolved about a dozen cases, which I suspect are
also rigid. One can probably deal with a few more cases with some
elaboration on the arguments here, though a complete answer may
require new ideas.

It is natural to ask more generally for what classes of subsets A ⊆
Cs(Σ) is G(Σ, A) rigid. (Note there are only finitely many possibilities
for A for any given topological type.)

The motivation for studying this particular case is the application
given in [Bo2] to the Weil-Petersson metric on Teichmüller space. There
it was shown that the rigidity of Gss(Σ) implies the quasi-isometric
rigidity of the Weil-Petersson metric associated to Σ. In view of The-
orem 1.1, this holds whenever g(Σ) + p(Σ) ≥ 7. In particular, The-
orem 1.1, together with the results of that paper, shows that in all
but at most finitely many cases, the Weil-Petersson space is quasi-
isometrically rigid.

We remark that the quasi-isometric rigidity of the Teichmüller metric
on Teichmüller space has been proven independently in [EMR] and
[Bo1] (by different methods). For this, one makes use of the rigidity of
the curve graphs [Iv, Ko, L] (in place of the strongly separating curve
graphs as needed for the Weil-Petersson metric).
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In the course of proving the main result of this paper, we also show
that most strongly separating curve graphs are distinct (see Proposition
5.2).

An earlier (rather different) draft of this paper was written at the
Tokyo Institute of Technology, and I am grateful for the hospitality of
that institution, and for the invitation of Sadayoshi Kojima. I thank
Javier Aramayona for his interest and suggestions.

2. Outline of proof

We begin by introducing some terminology and notation used through-
out the paper.

Let Σ be a compact surface. We assume that ξ(Σ) ≥ 2. Given
a curve γ ∈ Cs(Σ) we will (by slight abuse of terminology) use the
term complementary component to refer to the closure of a connected
component of Σ \ γ. We write B(γ) for the complementary component
which has smaller complexity. (We will only use this notation when it
is unambiguous.) We write Ci(Σ) ⊆ Cs(Σ) for the set of γ ∈ Cs(Σ) for
which B(γ) has complexity at most i. When i = 0, B(γ) is an S0,3.
(Recall that C0(Σ) was defined in this way in Section 1.) Given distinct
α, β ∈ Cs(Σ), we write α < β to mean that B(α) ⊆ B(β). We will
always assume curves in Cs(Σ) to be realised in general position, and
with minimal intersection. Given α, β ∈ Css(Σ), we write ι(α, β) =
|α ∩ β| for the geometric intersection number. The following notion
will be central to the proof:

Definition. (When p(Σ) ≥ 5.) We say that α, β ∈ Css(Σ) form a
surrounding pair if B(α) and B(β) are both S0,4’s and B(α) ∩B(β) is
an S0,3.

(We will need to modify this definition slightly when p(Σ) ≤ 4, as
we discuss in Section 6.)

Note that ∂(B(α)∩B(β)) gives a curve ω ∈ C0(Σ) satisfying ω < α
and ω < β. Indeed, ω is uniquely determined by this property, and we
say that the pair α, β surrounds ω.

Definition. We say that α, β, γ ∈ Css(Σ) form a surrounding triple if
any pair of them form a surrounding pair, and there is some (necessarily
unique) ω ∈ C0(Σ), with ω < α, ω < β and ω < γ.

(Modulo the definition of “surrounding pair”, the definition of “sur-
rounding triple” will remain unchanged when p(Σ) ≤ 4.)

We will say that we can recognise a given property of a collection of
curves in Css(Σ) if it is preserved under any automorphism of Gss(Σ).
Thus, by the definition of Gss(Σ), we can recognise disjointness of
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curves. The ultimate goal will be to show that we can recognise all
combinatorial (i.e. Map(Σ)-invariant) properties.

In particular, an intermediate goal is to recognise surrounding pairs
and surrounding triples. This will allow us to “reconstruct” the graph
Gs(Σ) from Gss(Σ) in a canonical way. (We have already observed that
a surrounding pair determines an element of C0(Σ), which is a step
in that direction.) Thus, any automorphism of Gss(Σ) extends to an
automorphism to Gs(Σ), and we can apply the results of [Ko, BrM, Ki]
to see that it is induced by an element of Map(Σ).

In Sections 3 and 4, we begin by considering the case where Σ is
an S0,7. The key point here is that there is only one heptagon (that
is 7-cycle) in Gss(S0,7) up to the action of Map(S0,7) (see Proposition
3.1). A surrounding pair can now be recognised as a pair of vertices at
distance 2 apart in some heptagon. In Section 4, we proceed to show
that Gss(S0,7) is rigid.

For the general case, we need to recognise the topological type of
a multicurve in the surface Σ. This argument is largely independent
of the S0,7 case, and is discussed in Section 5. In Section 6 we then
combine this with what we know about S0,7 to prove Theorem 1.1 in
general (for g(Σ) + p(Σ) ≥ 7) — except, that is, when Σ is an S0,8,
which we will treat as a special case in Section 7.

3. Heptagons in the 7-holed sphere

We begin with a description of 7-cycles (or “heptagons”) in the sep-
arating curve graph of S0,7. In general, by an n-cycle in Gss(Σ), we
mean a cyclically ordered sequence of n vertices, where consecutive
vertices are adjacent. We refer to it as an odd or even cycle depend-
ing on whether n is odd or even. Note that any shortest odd cycle is
necessarily isometrically embedded.

For the purposes of this and the next section, it will be convenient
to view S0,7 as (the complement of) the 2-sphere, S, with a set of 7
preferred points, Π ⊆ S. (In other words, S is obtained by collapsing
each boundary component of S0,7 to a point of Π. We can recover S0,7

by removing a small open disc about each point of Π.)
Note that if γ ∈ Css, then γ bounds a disc, B(γ), with |B(γ)∩Π| = 3.

We write π(γ) = B(γ) ∩ Π. Note that, α, β ∈ Css are adjacent if and
only if we can realise α, β so that B(α) ∩ B(β) = ∅. We say that two
curves are n-distant if they are a distance exactly n apart in Gss.

Note that if ι(α, β) = 2, then α ∪ β cuts S into four discs. In
particular, B(α) ∩ B(β), B(α) ∪ B(β), B(α) \ B(β) and B(β) \ B(α)
are all discs.
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It is easily seen that Gss(S0,7) has no 3-cycles. Also it has no 4-cycles.
(For if γ1, γ2, γ3, γ4 were a 4-cycle, B(γ1) ∪ B(γ3) and B(γ2) ∪ B(γ4)
would be disjoint connected subsurfaces of S, each containing at least
four points of Π, which clearly is not possible.) We will also see (Lemma
3.3) that Gss(S0,7) has no 5-cycles. This implies that any 7-cycle must
be isometrically embedded.

In fact, Gss(S0,7) does contain 6-cycles. (For example, take disjoint
discs, D1, D2, F1, F2, F3, in S so that each |Di ∩Π| = 2 and each |Fj ∩
Π| = 1. Now connect each Di to each Fj by a set of six disjoint arcs,
aij. Let βij be the boundary of a regular neighbourhood of Di∪aij∪Fj.
Then β11, β23, β12, β21, β13, β22 is a 6-cycle.) We will however focus on
the 7-cycles, since these are more symmetrical, and will serve for our
purposes.

Here is a description of a 7-cycle. Let λ ⊆ Σ be an embedded circle
with Π ⊆ λ. This determines a cyclic ordering on Π where we index
the punctures as p1, p3, p5, p7, p2, p4, p6. Let l13 be the segment between
p1 and p3 etc. Thus λ = l13 ∪ l35 ∪ l57 ∪ l72 ∪ l24 ∪ l46 ∪ l61. Let Bi be
a regular neighbourhood of li−2,i ∪ li,i+2 with Bi ∩ Π = {pi−2, pi, pi+2},
and let γi = ∂Bi. Thus, Bi = B(γi). Note that Bi ∩ Bi+1 = ∅, and
so γ1, γ2, γ3, γ4, γ5, γ6, γ7 is a 7-cycle. Any non-adjacent pairs of curves
intersect exactly twice. (Figure 1.)

p1

p2

p3p4

p5

p6

p7

γ1

γ2

γ3γ4

γ5

γ6

γ7

Figure 1. A 7-cycle in Gss(S0,7)

Now Map(S0,7) acts on Gss(S0,7). The main aim of this section is to
show:

Proposition 3.1. There is exactly one 7-cycle in Gss(S0,7) up to the
action of Map(S0,7).
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We begin with an analogous statement for 3-sets in a 7-set. Given
any set, Ψ, let Θ = Θ(Ψ) be the graph whose vertex set, V (Θ), consists
of subsets of cardinality 3 in Ψ; and whose edge set, E(Θ), consists of
pairs of disjoint such 3-sets.

For the remainder of this section we will assume that |Ψ| = 7. In this
case it is a connected 4-regular graph on thirty-five vertices. Note also
that there is an edge colouring, χ : E(Θ) −→ Ψ, given by Ψ\(P ∪Q) =
{χ(e)}, where e is the edge from P to Q.

The following simple observation will be useful:

Lemma 3.2. If P,Q ∈ V (Θ) are 2-distant, then |P ∩Q| = 2. If P,Q
are 3-distant, then |P ∩Q| = 1.

The following is the analogue, in Θ, of the the main result of this
section:

Lemma 3.3. If |Ψ| = 7, there are no 3-cycles or 5-cycles in Θ(Ψ).
There is exactly one 7-cycle up to the action of Sym(Ψ).

Proof. The non-existence of 3-cycles is trivial.
Suppose P1, P2, P3, P4, P5 were a 5-cycle. Then P3 and P4 are both

2-distant from P1, so |P1 ∩ P3| = |P1 ∩ P4| = 2, and we get the contra-
diction that P3 ∩ P4 6= ∅.

Writing Ψ = {1, 2, 3, 4, 5, 6, 7}, there is a 7-cycle in Ψ given by 613–
724–135–246–357–461–572. We want to show this is the only one up
to the action of Sym(Ψ).

Suppose, then that P1, P2, P3, P4, P5, P6, P7 is a 7-cycle. Since there
is no smaller odd cycle, this must be isometrically embedded in Θ.
Suppose that two edges have the same colour, p, say. Since the Pi
are all distinct, these edges cannot meet or contain adjacent vertices.
Thus, up to cyclic reordering, the only possibility for this pair of edges
is P1, P2 and P4, P5. Now P2 and P4 are 2-distant, and so |P2∩P4| = 2.
Now, P1 and P5 are the complements of these sets in Ψ \ {p}, and so
we also have |P1 ∩ P5| = 2. But these are 3-distant, so this contradicts
Lemma 3.2.

Therefore, each colour occurs exactly once around the cycle. Up to
Sym(Ψ), we can assume they occur in the cyclic order 1234567, starting
with the edge P1, P2. Now consider the sequence P1, P3, P5, P7. We
must proceed by replacing 2 by 1, then 4 by 3, then 6 by 5. So we
must have started with P1 being 246 (and ended with P7 as 135). But
now the whole 7-cycle starting with P1 is completely determined by the
colours on the edges. In fact, it must be precisely the cyclic sequence
given above. This proves the result. �



RIGIDITY OF THE STRONGLY SEPARATING CURVE GRAPH 7

We now move on to the proof of Proposition 3.1. We set Ψ = Π.
Recall that we have defined π : Css −→ V (Π) by π(γ) = Π∩B(γ). This
extends to a map π : Gss −→ Θ, sending edges to edges. Composing
with χ, we also get a colouring of the edges of Gss, which we also denote
by χ : E(Gss) −→ Π. Note that it is now an immediate consequence
that there are no 5-cycles in Gss, as stated earlier.

We need to make a few observations about configurations of curves
separated by given distances in Gss.

If α, β ∈ Css are adjacent, we set A = A(α, β) to be (the closure of)
S \ (B(α) ∪ B(β)). This is an annulus, with ∂A = α ∪ β, and with
A(α, β) ∩ Π = {p}, where p = χ(α, β).

By an arc in A, we mean an arc a ⊆ A\Π with endpoints ∂a = a∩∂A.
We generally regard such an arc as defined up to homotopy in A \ Π,
allowing ourselves to slide an endpoint of a in ∂A. Up to homotopy,
there are exactly three types of arc, depending on whether a meets only
α, only β, or both α and β. We refer to these classes as α-type, β-type
or crossing arcs, respectively. Note that an α-type arc and a β-type
arc meet (minimally) in exactly two points. (Figure 2.)

α β

a b

c

p

Figure 2. a: α-type arc. b: β-type arc. c: crossing arc.

Suppose now that β, δ ∈ Css are 2-distant. Then |π(β) ∩ π(δ)| = 2,
so π(δ) \ π(β) = {q} for some q ∈ Π. Let D = D(δ, β) be (the closure
of) the component of B(δ) \ B(β) containing q. We claim that D is a
bigon:

Lemma 3.4. If β, δ ∈ Css are 2-distant, and D = D(β, δ), then D ∩
B(β) consists of a single arc in β. (Figure 3.)

Proof. Let γ ∈ Css be adjacent to both β and δ. Note B(β), B(δ) ⊆
S \ B(γ), and so D ⊆ A(β, γ) and D ∩ γ = ∅. Thus, ∂D can contain
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γ

β

D

Figure 3. The bigon D

only β-type arcs in A(β, γ). There can only be one of these, so the
statement follows easily. �

Suppose now that α, β are adjacent and that ε ∈ Css is 3-distant
from both α and β. Let A = A(α, β) and p = χ(α, β) as before.
By Lemma 3.2, |π(ε) ∩ π(α)| = |π(ε) ∩ π(β)| = 1, and so it follows
that p ∈ π(ε). Let F = F (α, β; ε) be (the closure of) the component
of A ∩ B(ε) containing p. Note that F must intersect either α or β,
possibly both. (In fact, given that there are only three classes of arc
in A, one can easily see that F can meet each of B(α) and B(β) in at
most a single arc, though we won’t explicitly need this.)

Now let σ be any 7-cycle in Gss.
Suppose that α, β is an edge of σ. Let ε be the vertex of σ opposite

this edge. Thus, ε is 3-distant from both α and β, as above. Let
F = F (α, β; ε), as before.

Suppose that β ∩ F 6= ∅. This implies that any α-type arc in A =
A(α, β) must intersect F . Let γ be the vertex of σ adjacent to β and
distinct from α (so that γ and ε are 2-distant). We claim:

Lemma 3.5. Let α, β, γ be consecutive vertices of σ. Let ε be the vertex
of σ opposite the edge α, β, and let F = F (α, β; ε). If F ∩ β 6= ∅, then
ι(α, γ) = 2

Proof. Let δ be the vertex of σ between γ and ε (so that α, β, γ, δ, ε are
consecutive vertices of σ). Let D = D(δ, β). By Lemma 3.4, this is a
bigon; that is, ∂D = b∪d, where b and d are respectively arcs of β and
δ. Now F ⊆ B(ε), D ⊆ B(δ) and B(ε) ∩ B(δ) = ∅, so F ∩D = ∅. Let
π(δ) \ π(β) = {q}. Note that q 6= p, and so q ∈ π(α) ⊆ B(α). Now
d ∩ F ⊆ D ∩ F = ∅, and so d ∩A contains no α-type arcs. Since d ∩ β
are the endpoints of d, it cannot contain any β-type arcs either. Thus,
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d ∩ A consists only of crossing arcs, of which there must be exactly 2.
This means that |d ∩ α| = 2 (with d ∩B(α) consisting of a single arc).
(Figure 4.)

α β
b

d

q

F

D

p

Figure 4. D = D(δ, β), F = F (α, β; ε)

Let R = B(β) ∪ D. Now R is a disc with R ∩ Π = π(β) ∪ {q} =
π(β) ∪ π(α). Also R ⊆ B(β) ∪ B(δ), so R ∩ B(γ) = ∅. It follows that
γ and ∂R are homotopic in S \ Π. In other words, they represent the
same element of Css. But now, ∂R ⊆ β ∪ d, so |∂R ∩ α| = 2. Thus,
ι(α, γ) ≤ 2, and so, in fact, ι(α, γ) = 2 as required. (Figure 5.) �

α

γ

δ

q

Figure 5. The curves α, δ, ε

Now, as already observed, at most one of F∩α or F∩β can be empty.
If F ∩ β = ∅, we refer to β as a bad endpoint of the edge α, β. We say
that a vertex of σ is bad if it a bad endpoint of both incident edges of
σ. Thus, Lemma 3.5 tells us that if β is not bad, then the two vertices
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adjacent to β in σ correspond to curves which intersect twice. (In fact,
Proposition 3.1 will retrospectively rule out bad vertices altogether.)
In Figure 4 above, β would be a bad vertex of the edge α, β.

Proof of Proposition 3.1. Let Σ be a 7-cycle.
Now no two bad vertices of σ can be adjacent. It follows that there

can be at most three bad vertices in total. In fact, we can index
the vertices of σ consecutively (mod 7) as γ1, γ2, γ3, γ4, γ5, γ6, γ7, so
that none of γ1, γ3, γ4 or γ6 are bad. It then follows that ι(γ7, γ2) =
ι(γ2, γ4) = ι(γ3, γ5) = ι(γ5, γ7) = 2.

We write Bi = B(γi), and label the points of Π as pi, so that π(γi) =
Bi ∩ Π = {pi−2, pi, pi+2}.

Consider first the discs B2, B3, B4, B5. We have B2∩B3 = B3∩B4 =
B4 ∩ B5 = ∅. Let A = A(γ3, γ4). Since ι(γ3, γ5) = 2, we see that
γ5 ∩ A consists of a single γ3-type arc. Similarly, γ2 ∩ A consists of
a single γ4-type arc. It follows that ι(γ2, γ5) = 2. Thus, B2 ∩ B5 is
a disc with B4 ∩ B5 ∩ Π = {p7}. Now B3 ∩ B5 and B2 ∩ B4 are also
discs, with B3 ∩ B5 ∩ Π = {p3, p5} and B2 ∩ B4 ∩ Π = {p2, p4}. We
can therefore find an arc l with Π ⊆ l, with endpoints p1 and p6 and
with the points p1, p3, p5, p7, p2, p4, p6 occurring in this order along l,
and so that B3, B5, B2, B4 are respectively regular neighbourhoods of
l13∪ l35, l35∪ l57, l72∪ l24 and l24∪ l46, where we have cut l into six arcs,
l = l13 ∪ l35 ∪ l57 ∪ l72 ∪ l24 ∪ l46 connecting the points of Π. Note in
particular, that R = B2 ∪B5 is a disc with R ∩Π = {p3, p5, p7, p2, p4}.
Also B2 ∩B5 is a disc with B2 ∩B5 ∩ Π = {p7}. (Figure 6.)

p1 p2p3 p4p5 p6p7

γ3 γ5 γ2 γ4

Figure 6. The curves γ2, γ3, γ4, γ5

Now consider B7. We have B7 ∩Π = {p5, p7, p2}. Now ι(γ5, γ7) = 2,
so γ7 ∩ B5 consists of a single arc separating p3 from p5 and p7 in B5.
We can therefore realise it so that it is disjoint from B2 ∩ B5. In fact,
we can take this arc to meet l just once, in a point of the segment
l35. Similarly, we can realise γ7 ∩ B2 as a single arc, also disjoint from
B2 ∩ B5, and meeting l in a single point of l24. In this way, γ7 \ R
consists of exactly two arcs. Since (B7 \R)∩Π = ∅, each of these arcs
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can be homotoped into ∂R in S \ Π, fixing their endpoints. We can
therefore realise B7 as a regular neighbourhood of l57 ∪ l72.

Now let l61 be any arc in S meeting l exactly at their common end-
points. Thus λ = l ∪ l61 is a circle containing Π. Now the homotopy
classes of γ1 and γ6 are determined as ∂(B7 ∪B2) and ∂(B7 ∪B4). We
can therefore realise B1 and B6 respectively as regular neighbourhoods
of l46 ∪ l61 and of l61 ∪ l13.

We are therefore exactly in the situation of the example of a 7-cycle
described earlier (as in Figure 1).

This proves Proposition 3.1. �

We note the following immediate consequence.

Lemma 3.6. Any automorphism of Gss(S0,7) preserves the set of sur-
rounding pairs.

Proof. In view of Proposition 3.1, we see that α, β form a surrounding
pair if and only if they are 2-distant vertices in some 7-cycle in Gss.
Note that this is determined just by the structure of Gss. �

4. Rigidity for the 7-holed sphere

Recall that C0 = C0(S0,7) is the set of curves in S \ Π which bound
a disc containing exactly two points of Π. If ω ∈ C0, this disc is B(ω)
and π(ω) = B(ω) ∩ Π. If ω ∈ C0 and α ∈ Css, then ω < α means that
B(ω) ⊆ B(α).

By an ω-arc we mean an arc, a, in S meeting B(ω) at one endpoint
(the initial endpoint) and Π at the other (terminal endpoint). We
regard a as being defined up to homotopy relative to Π, fixing the
terminal endpoint, and allowing the initial endpoint to slide along ω.
Note that a determines an element α ∈ Css, with ω < α, so that B(α)
is a regular neighbourhood of B(ω) ∪ a. In fact, every α ∈ Css with
ω < α arises in this way.

If α, β ∈ Css is a surrounding pair, then there is a unique ω ∈ C0

with ω < α and ω < β. In fact, ω = ∂(B(α) ∩ B(β)). Note that α, β
correspond to disjoint ω-arcs, a, b (i.e. we can realise a, b to be disjoint).
We say that α, β surround ω. (Figure 7.)

Recall that a surrounding triple consists of three curves, α, β, γ ∈
Css, such that {α, β}, {β, γ} and {γ, α} are all surrounding pairs, and
such that there is some ω ∈ C0 with ω < α, β, γ. In this case, α, β, γ
correspond to three pairwise disjoint ω-arcs, a, b, c.

Suppose we just know that α, β, γ ∈ Css are such that any pair form
a surrounding pair. Then π(α), π(β), π(γ) pairwise intersect in sets of
two elements. It follows easily that π(α) ∪ π(β) ∪ π(γ) has either 4 or
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α β

a bb

ω

Figure 7. A surrounding pair, α, β

5 elements. In the former case, |π(α) ∩ π(β) ∩ π(γ)| = 1, and one sees
easily that there is a curve in Css (namely ∂(B(α) ∪ B(β) ∪ B(γ))),
disjoint from each of α, β, γ. In the latter case, |π(α)∩π(β)∩π(γ)| = 2,
and one sees easily that α, β, γ form a surrounding triple. We deduce:

Lemma 4.1. Suppose α, β, γ ∈ Css, then α, β, γ form a surrounding
triple if and only if any pair of them form a surrounding pair and there
is no curve in Css which is disjoint from each of α, β, γ.

In view of Lemma 3.6, we see that we can recognise when three
elements of Css form a surrounding triple.

Let H be the graph whose vertex set is the set of all surrounding
pairs in Css, and where two vertices are deemed adjacent if the union
of the two pairs is a surrounding triple. Given any ω ∈ C0, let H(ω) be
the full subgraph whose vertex set consists of those surrounding pairs
which surround ω. Now adjacent vertices of H determine the same
element of C0, and so H(ω) is a union of components of H. In fact:

Lemma 4.2. If ω ∈ C0, then the graph H(ω) is connected.

Proof. This is best seen in terms of ω-arcs. Recall that a vertex of
H(ω) corresponds to a pair of disjoint ω-arcs, and an edge of H(ω)
corresponds to a triple of pairwise disjoint ω-arcs.

Suppose that a, b, c, d are ω-arcs with a ∩ b = ∅ and c ∩ d = ∅.
We realise them in general position in S. (They do not need to have
minimal intersection in their homotopy classes.) We aim to connect
the vertices a, b and c, d by a path in H(ω). Write I(a, b; c, d) = (a ∪
b) ∩ (c ∪ d) \ Π for the set of interior intersection points. We proceed
by induction on |I(a, b; c, d)|.

The case where that I(a, b; c, d) = ∅ is elementary, so we assume
there is some x ∈ I(a, b; c, d). After permuting a, b and c, d, we can
assume that x ∈ a ∪ c, and that x is the first intersection point along
c; that is, the initial segment e, of c ending at x, meets a ∪ b only
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at x. Let f be the initial segment of a ending at x, and set a′ =
(a \ f) ∪ e. We can move a′ slightly so that a ∩ a′ meet precisely in
their terminal points, while retaining disjointness from b. Now, we
can easily find an ω-arc, e, disjoint from each of b, a, a′, so a, b, e and
a′, b, e correspond to surrounding triples. It follows that a, b and a′, b
correspond to surrounding pairs in the same component of H(ω). Note
that |I(a′, b; c, d)| < |I(a, b; c, d)|. We therefore replace a, b by a′, b and
proceed inductively. �

We deduce:

Lemma 4.3. There is a natural bijective correspondence between the
elements of C0 and the connected components of H, such that if ω ∈ C0

and α ∈ Css, then ω < α if and only if α occurs as a curve in a
surrounding pair of some vertex of the corresponding component of H.

Since H can be constructed out of Gss, we see that we can also
reconstruct C0 and the relation < between C0 and Css out of Gss.

We can also recognise disjointness. If ω ∈ C0 and α ∈ Css, then ω
and α are disjoint if and only if there is some β ∈ Css such that ω < β
and α, β are either equal or disjoint. Similarly, if ω, ω′ ∈ C0, then ω
and ω′ are disjoint if and only if there are disjoint curves α, α′ ∈ Css
with ω < α and ω′ < α′.

We can therefore reconstruct the graph G(S0,7) = Gs(S0,7) from the
graph Gss(S0,7). It follows that any automorphism of the former extends
to an automorphism of the latter. But we know that G(S0,7) is rigid
by Theorem 1 of [Ko], so we have shown:

Proposition 4.4. The graph Gss(S0,7) is rigid.

5. Multicurves

In this section, we will explain how to identify classes of multicurves
from the structure of the strongly separating curve graph. We assume
that Σ is a compact orientable surface, with boundary ∂Σ, which we
view as a (possibly empty) set of curves. (Thus, S0,7 reverts to being
a bona fide 7-holed sphere.) We will assume that ξ(Σ) ≥ 4.

As before, we say that we can recognise a property of a collection of
curves in Css = Css(Σ) if this property preserved under any automor-
phism of Gss(Σ). In other words, it can be seen just in terms of the
graph structure. We similarly say that we can “tell” if a given property
holds. We also say that another graph can be “constructed” (from Gss)
etc.

Recall that C1 ⊆ Css is the set of α ∈ Css for which B(α) has
complexity 1, that is either an S0,4 or an S1,1.
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Suppose that α, β, γ ∈ Css. We can tell if α separates β from γ. (It is
equivalent to saying that any curve in Css is disjoint from α must also
be disjoint from either β or γ.) Therefore, we can recognise elements
of C1: a curve in Css lies in C1 if and only if it does not separate any
two other elements of Css.

By a multicurve, τ , in Css, we mean a non-empty set of pairwise
disjoint curves in Css. We will sometimes abuse notation by regarding
τ as a subset of Σ. We claim that we can identify τ up to the action
of Map(Σ). This is equivalent to saying that we can recognise the
topological types of each of the components of Σ \ τ together with the
elements of τ which a bound a given component.

Let X be a component of Σ \ τ . Write ∂X ⊆ τ ∪ ∂Σ for its intrinsic
boundary, and ∂ΣX = τ ∩ ∂X for the relative boundary. We write
p(X) = |∂X|, q(X) = |∂ΣX| and g(X) for the genus of X. Write
Css(Σ, X) for the set of elements of Css(Σ) \ τ contained in X. Note
that Css(Σ, X) is either empty or infinite.

Definition. We say that a complementary component, X, is large if
Css(Σ, X) is infinite.

Thus, if X is not large if and only if is either an S0,3 with q(X) ≥ 2,
or else has the form B(α) for some α ∈ C1(Σ).

Note that if α ∈ Css, then α ∈ Css(Σ, X) for some large component,
X, if and only if it does not lie in τ and is disjoint from τ (i.e. is disjoint
from each element of τ). Given two such curves at α, β ∈ Css then α, β
lie in the same set Css(Σ, X) if and only if they are not separated by
any element of τ . Thus, from τ we can identify the collection of sets
Css(Σ, X) which arise from the large components, X, of Σ\τ . We next
want to recognise the topological type of such X.

To this end, we define a chain in Css to be a sequence, γ0, γ1, . . . , γn,
of disjoint curves such that γj separates γi from γk whenever i < j < k.

Suppose that X is a component of Σ \ τ with q(X) ≥ 2. Choose
any distinct α, β ∈ ∂ΣX, and let n be maximal so that there is a chain
α = γ0, . . . , γn = β in Css (so that γi ∈ Css(Σ, X) for all i 6= 0, n). Each
component of X\

⋃
i γi is either an S0,3 or an S1,2. (Figure 8.) Moreover,

we can tell if the component between γi and γi+1 is an S1,2, since in
that case, there will be some δ ∈ Css(Σ, X) such that γi separates δ
from α, and γi+1 separates δ from β. Thus, we know the number, m, of
such S1,2 components. We see that g(X) = m and p(X) = n−m+ 2,
so we have determined the type of X in this case.

Now suppose that q(X) = 1, and that X is large (equivalently, not
an S0,4 nor an S1,1). Write ∂ΣX = {α}. Suppose that β ∈ Css(Σ, X)∩
C1(Σ) (which we can recognise). Let Y = X \ B(β), so that Y is a
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α = γ0 γ1 γ2γ2 γ3 γ4 = β

Figure 8. Here, X is the subsurface bounded by α ∪ β

component of Σ\(τ∪β), and ∂ΣY = {α, β}. By the previous paragraph,
we know the type of Y (given β). Therefore we know the collection
of types of all such Y which can arise in this way. Given that B(β) is
either an S0,4 or an S1,1, there are at most two such types. If ξ(X) ≥ 4,
we now see easily that this data determines the topological type of
X. (Note that if there is only one type for Y , then either g(X) = 0
or p(X) ≤ 3. If there are two types, then p(X) ≥ 4.) However, if
ξ(X) ≤ 3, then the data does not allow us to distinguish the pairs
{S0,5, S1,2} or {S0,6, S1,3}. (For if X is an S0,5 or S1,2, then Y must be
an S0,3; and if X is an S0,6 or S1,3, then Y must be an S0,4.)

Now suppose that δ ∈ C1(Σ). Let Z = Σ \ B(δ). Suppose, that
ξ(Σ) ≥ 6, and that Σ 6= S0,7. We see that Z 6= S0,5, S0,6, S1,2, S1,3.
Thus, by the previous paragraph, we can determine the type of Z.
Since this holds for all elements of C1(Σ), we can now easily determine
the topological type of Σ, and also tell whether an element of C1(Σ)
bounds an S0,4 or an S1,1.

Retrospectively, we can now go back to the earlier set-up and distin-
guish an S0,5 from an S1,2, or an S0,6 from an S1,3 in the complement
of τ . We therefore now know the types of all large components. From
this one can easily determine τ up to the action of Map(Σ).

In summary, we have shown:

Lemma 5.1. Suppose ξ(Σ) ≥ 6. Suppose that τ, τ ′ ⊆ Css(Σ) are two
multicurves, and that there is an automorphism of Gss(Σ) taking τ to
τ ′. Then there is an element of Map(Σ) taking τ to τ ′.

Given a component, X, of Σ \ τ , set Css(X) and Gss(X) as defined
intrinsically to X. Thus, Gss(X) is the full subgraph of Gss(Σ, X) with
vertex set Css(X). Note that we can tell whether a curve γ ∈ Css(Σ, X)
lies in Css(X) (since it does not bound an S0,3 component of Σ\(τ∪γ)).
Thus, we can construct Gss(X) out of Gss(Σ), given τ .

Note that the above encompasses all cases where g(Σ) + p(Σ) ≥ 7.
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We remark that we have also proven the following:

Proposition 5.2. Suppose that Σ,Σ′ are compact surfaces with Gss(Σ)
isomorphic to Gss(Σ′). If ξ(Σ) ≥ 6, then Σ′ = Σ.

Of course, this leaves open a number of cases, which we will not
address here.

6. Rigidity of other surfaces

In this section we will prove Theorem 1.1, except in the case where
Σ = S0,8. We assume that g(Σ) + p(Σ) ≥ 7. We will split into three
cases: First, p(Σ) ≥ 5, Σ 6= S0,8; second, p(Σ) ≤ 4, g(Σ) ≥ 4; and
finally Σ ∈ {S3,4, S4,3, S4,4}.

Recall that for α, β ∈ Css(Σ), α < β means that α 6= β and B(α) ⊆
B(β).

First, consider the case where p(Σ) ≥ 5. In this case, we will also
assume that Σ 6= S0,8.

We begin by giving a criterion for recognising such pairs (as defined
in Section 2).

Lemma 6.1. Suppose that α, β ∈ Css(Σ). Then α, β is a surrounding
pair if and only each of the following three conditions holds:

(S1): B(α) and B(β) are both S0,4’s,
(S2): There is some multicurve, τ , in Σ such that α, β both lie in some
component, X, of Σ \ τ , of type S0,7, and
(S3): α, β form a surrounding pair intrinsically in X.

(To make sense of (S3), note that necessarily α, β ∈ Css(X).)

Proof. First, suppose that α, β is a surrounding pair in Σ. Note that
Y = Σ \ (B(α) ∪ B(β)) satisfies g(Y ) = g(Σ) and p(Y ) = p(Σ) − 3.
In particular, g(Y ) + p(Y ) ≥ 4 and Y is not an S0,5 (since Σ 6= S0,8).
Thus, we can find a multicurve, τ ⊆ Css(Y ) so that X = Y \

⋃
γ∈τ B

′(γ)

is an S0,7. Here, B′(γ) is the component of Σ \ γ not containing α, β.
(It might not be the lower-complexity component.) We can, of course,
assume the B′(γ) to be disjoint. Now B(α), B(β) ⊆ X, and we see
that α, β is a surrounding pair in X. Thus, α, β satisfies (S1)–(S3).

Conversely, if α, β satisfies (S1)–(S3), then again we must haveB(α), B(β) ⊆
X and so B(α)∩B(β) is an S0,3, so α, β is a surrounding pair in Σ. �

Lemma 6.2. If g(Σ) + p(Σ) ≥ 7, p(Σ) ≥ 5, and Σ 6= S0,8, then the
collection of surrounding pairs is invariant under any automorphism of
Gss(Σ).
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Proof. By Lemma 3.1, it’s enough to show that properties (S1)–(S3)
are all recognisable in terms of Gss(Σ). We can certainly recognise a
multicurve, τ , in Css(Σ), and by Lemma 5.1, we can tell if α, β lie in a
component X of Σ \ τ of type S0,7. As explained at the end of Section
5, we can also construct Gss(X). By Lemma 3.6, we can tell if α, β
form a surrounding pair intrinsically to X. �

The class of surrounding triples (as defined in Section 2) is also
recognisable in Gss(Σ):

Lemma 6.3. If g(Σ) + p(Σ) ≥ 7, p(Σ) ≥ 5 and Σ 6= S0,8, then the
collection of surrounding triples is invariant under any automorphism
of Gss(Σ).

Proof. We first make the we make the following general observation,
(which holds for any surface Σ). Suppose that B1, B2, B3 ⊆ Σ are
connected subsurfaces (in general position) such that the ∂Bi are all
connected, and such that |∂Bi∩∂Bj| = 2 whenever i 6= j. If B1∩B2∩B3

and Σ \ (B1 ∪ B2 ∪ B3) are both nonempty, then they are also both
connected with connected boundary. This is a simple exercise on noting
that a regular neighbourhood of ∂B1 ∪ ∂B2 ∪ ∂B3 is an S0,8.

Given this, we can now recognise a surrounding triple, as a triple
α, β, γ, with each pair forming a surrounding pair, and such that there
is a fourth curve δ disjoint from α, β, γ and such that α, β, γ all lie in an
S0,6 component of Σ\δ. Note that this implies that B(α)∩B(β)∩B(γ)
must be non-empty (it must contain a boundary component of Σ). It
now follows easily from the previous paragraph that B(α)∩B(β)∩B(γ)
is in fact an S0,3, and so we can set ω to be its relative boundary in
Σ. �

Proof of Theorem 1.1 when p(Σ) ≥ 5. The remainder of the proof now
follows exactly as for S0,7. We define the graphs H and H(ω) in the
same way. It is sufficient to show that H(ω) is connected. The ar-
gument follows exactly as with that of Lemma 4.2. We can define an
ω-arc to be an arc connecting B(ω) to ∂Σ \ B(ω). Taking a regular
neighbourhood of B(ω)∪a∪ ε, where ε is the boundary component, we
get an S0,4, namely B(α), where α = ∂ΣB(α) ∈ Css, so that ω < α. A
surrounding pair corresponds to a disjoint pair of ω-arcs, terminating
in distinct boundary components. Similarly, a surrounding triple corre-
sponds to a disjoint triple of ω-arcs to distinct boundary components.
The we can now copy the argument of Lemma 4.2 (after collapsing
each component of ∂Σ \ B(ω) to a point). This allows us to recon-
struct Gs(Σ), and so, using [Ko, BrM, Ki], we see that Gss(Σ) is rigid
in these cases. �
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We now move on to the cases where p(Σ) ≤ 4. We can assume
that p(Σ) ≥ 2 (otherwise Gss(Σ) = Gs(Σ), and we are covered by
[Ko, BrM, Ki]). Note that, g(Σ) ≥ 3 in these cases.

We will use the following construction. Let T (Σ) be the graph whose
vertex set consists of those α ∈ C1(Σ) for which B(α) is an S1,1, and
where α, β are deemed adjacent if B(α) ∩ B(β) = ∅. (This is a full
subcomplex of Gss(Σ).) We note:

Lemma 6.4. If g(Σ) ≥ 3, then T (Σ) is connected.

Proof. Suppose α, β are vertices of T (Σ). Since the separating curve
graph of a closed surface of genus at least 3 is connected, we can connect
α, β by a vertex path α = γ0, γ1, . . . , γn = β in Gs(Σ), so that no
complementary component of any γi is planar. (To see this, just cap
off the boundary components of Σ by discs.) Taking n to be minimal,
we see that γi−1 must intersect γi+1 for all i 6= 0, n. Let δi be a vertex
of T (Σ) contained in the component of Σ \ γi not containing γi−1, γi+1.
We see that α, δ1, . . . , δn−1, β is a path in T (Σ) connecting α to β. �

Let T̂ (Σ) be the flag simplicial complex with 1-skeleton T (Σ), so that

every complete subgraph of T (Σ) is contained in a simplex of T̂ (Σ).
Given n ≥ 1, let Sn(Σ) be the graph whose vertex set consists of n-

simplices of T̂ (Σ), and where two such simplices are deemed adjacent
if they have a common (n− 1)-face.

Lemma 6.5. If g(Σ) ≥ n+ 2, then Sn(Σ) is connected.

Proof. If 0 ≤ m ≤ n − 2, then the link of any m-simplex in T̂ (Σ) is
isomorphic to T (Σ′), where Σ′ is obtained by removing m+ 1 disjoint
copies of S1,1 from Σ. Thus g(Σ′) = g(Σ) −m − 1 ≥ 3, and so this is

connected by Lemma 6.4. Since T̂ (Σ) is itself connected, the statement
now follows easily. �

We now consider the case where g(Σ) ≥ 5. (This will cover all cases
with p(Σ) ≤ 4, except S3,4, S4,3 and S4,4, which we discuss later.) For
this, we need to modify the definition of a surrounding pair:

Definition. (When p(Σ) ≤ 4 and g(Σ) ≥ 5.) A surrounding pair is a
pair of curves, α, β ∈ Css(Σ), such that B(α), B(β) are both S1,3’s and
such that B(α) ∩B(β) is an S0,3.

This implies that |∂B(α) ∩ ∂B(β)| = 2. Again, there is a unique
ω ∈ C0(Σ) with ω < α, β, namely ω = ∂(B(α) ∩B(β)). This property
is also recognisable:

Lemma 6.6. If p(Σ) ≤ 4 and g(Σ) ≥ 5, then the collection of sur-
rounding pairs is invariant under any automorphism of Gss(Σ).
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Proof. The argument follows exactly as with Lemma 4.2. The criterion
of Lemma 6.1 still holds, except that B(α), B(β) are now both S1,3’s
instead of S0,4’s. Also, in verifying (S1)–(S3), the multicurve τ will
include curves in B(α) and B(β) which bound S1,1’s. �

We also define a surrounding triple the same way as before (modulo
the definition of a surrounding pair). Given Lemma 6.6, we see easily
that α, β, γ form a surrounding triple if and only if they pairwise form
surrounding pairs, and there is some δ ∈ Css(Σ) such that α, β, γ all
lie in an S3,3 component of Σ \ δ.

Proof of Theorem 1.1, when p(Σ) ≤ 4 and g(Σ) ≥ 5. We now proceed,
as usual, to define the graphs H and H(ω) for ω ∈ C0. We claim that
H(ω) is connected. This is a bit more involved in this case.

Suppose that α ∈ Css(Σ) with B(α) an S1,3 and with B(ω) ⊆ B(α).
Let ε ∈ Css(Σ) be any curve with B(ε) an S1,1 with B(ε) ⊆ B(α)\B(ω).
Thus, B(α) \ (B(ω) ∪ B(ε)) is an S0,3, so there is (up to homotopy)
a unique arc, a, in B(α) from B(ω) to B(ε), meeting B(ω) and B(ε)
precisely at its endpoints. Note that B(α) is a regular neighbourhood
of B(ω) ∪ a ∪ B(ε). Conversely, given any ε ∈ Css(Σ) with B(ε) an
S1,1 disjoint from B(ω), we can obtain such an α as the boundary
of a regular neighbourhood of B(ω) ∪ a ∪ B(ε). (Of course, such a
representation of α is not unique, but that will not matter.)

Now, a vertex of H(ω) arises from a pair of disjoint such curves, ε, η,
and disjoint arcs, a, b, connecting B(ω) respectively to B(ε) and B(η),
in Σ \ (B(ω)∪B(ε)∪B(η)). Similarly, a surrounding triple arises from
three disjoint such curves, ε, η, ζ, and three disjoint arcs, a, b, c in the
complement of B(ω) ∪B(ε) ∪B(η) ∪B(ζ).

Suppose we fix ε, η, ζ, and let H(ω; ε, η, ζ) be the full subgraph of
H(ω), where all the vertices arise (as above) from some pair of curves
in {ε, η, ζ}. Now H(ω; ε, η, ζ) is connected. This can be seen by the
same argument as in the previous case (applied to the surface Σ \
(B(ε) ∪ B(η) ∪ B(ζ)), where the notion of “surrounding pair” reverts
to the previous case, as defined in Section 2).

Now if ε, η, ζ, θ are all disjoint such curves, we can connect B(ω) to
each of B(ε), B(η), B(ζ), B(θ) by disjoint arcs in the complement of
B(ω) ∪B(ε) ∪B(η) ∪B(ζ) ∪B(θ). It then follows that H(ω; ε, η, ζ) ∩
H(ω; ε, η, θ) 6= ∅. But now, by Lemma 6.5, we can get between any two
triples ε, η, ζ and ε′, η′, ζ ′ by a sequence of such moves, replacing one
curve at a time. Since H(α) is a union of such H(ω; ε, η, ζ), it follows
that H(ω) is connected as claimed.

This allows us to construct Gs(Σ) out of Gss(Σ), and so rigidity fol-
lows as before. �
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Finally we should discuss the cases where Σ ∈ {S3,4, S4,3, S4,4}.
Again, we need to redefine a “surrounding pair”:

Definition. (When Σ ∈ {S3,4, S4,3, S4,4}.) A surrounding pair is a pair
α, β ∈ Css(Σ) with B(α), B(β) each either an S0,4 or an S1,3.

Given this, we define “surrounding triple” as usual.
Note that B(α) is now determined by a curve which is either a com-

ponent of ∂Σ \ B(ω), or a curve ε ∈ Css(Σ) with B(ε) an S1,1 dis-
joint from B(ω), together (in either case) with an arc, a, from B(ω)
to ε. Thus, B(α) is a regular neighbourhood of B(ω) ∪ a ∪ ε or of
B(ω)∪ a∪B(ε), respectively. Surrounding pairs and triples then arise
from disjoint curves and arcs similarly as before.

We can define H(ω; ε, η, ζ) similarly as in the previous case, where
ε, η, ζ are disjoint curves, each either a boundary curve or in Css(Σ) as
above. The same argument shows that the graph is connected.

Moreover, we claim we can get between any two such triples, ε, η, ζ
and ε′, η′, ζ ′, replacing each curve at time by a disjoint curve. In the
case where p(Σ) ≥ 4, there are at least two components of ∂Σ \ B(ω),
so this follows easily applying Lemma 6.4 to Σ\B(ω). If p(Σ) = 3, then
g(Σ\B(ω)) = g(Σ) ≥ 4, and so the statement follows since S2(Σ\B(ω))
is connected by Lemma 6.5.

The argument can now be completed as before, proving Theorem 1.1
in all cases except S0,8.

7. The 8-holed sphere

In this section we outline the proof of rigidity for Gss(S0,8). The
argument is essentially the same as for S0,7, except we need to start by
finding a different rigid subgraph, in order to recognise pairs of curves
which intersect exactly twice. We will revert to thinking of S0,8 as S\Π,
where Π is a subset of the 2-sphere, S, with |Π| = 8.

Let ∆ be the graph obtained by adding the four longest diagonal
edges to an octagon. More formally, we write V (∆) = {v1, . . . , v8},
where vi is deemed adjacent to vj whenever |i − j| = 1 or |i − j| = 4
(taking indices mod 8).

One can realise ∆ as follows. Recall from Section 3, that Θ(Ψ) is the
graph whose vertex set consists 3-sets in Ψ and where two such sets are
deemed adjacent if they are disjoint subsets of Ψ. If Ψ = {1, . . . , 8},
and Pi = {i − 3, i, i + 3}, then the full subgraph of Θ(Ψ) with vertex
set {P1, . . . , P8} is isomorphic to ∆.

In fact, we claim that all copies of ∆ in Θ(Ψ) arise in this way.
First note that there are no 3-cycles in Θ(Ψ), and so any 5-cycle in

Θ(Ψ) is isometrically embedded. Now any two vertices of ∆ lie in a
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5-cycle in ∆. It follows that any map of ∆ into Θ(Ψ) sending edges to
edges must be injective.

Suppose that [vi 7→ Pi] is any embedding of ∆ into Θ(Ψ). Now
v1, v2, v6, v5 is a 4-cycle in ∆, and so P1, P2, P6, P5 is a 4-cycle in Θ(Ψ).
Let P16 = P1 ∪ P6 and P52 = P5 ∪ P2. Then P16 ∩ P52 = ∅, and so
|P16| = |P52| = 4. In other words, {P16, P52} is a partition of Ψ into
two 4-sets. The same holds for {P63, P27}, {P38, P74} and {P85, P41}.
Now, P41 6= P16. (Otherwise, we would have P41 = P16 and P85 = P52,
so P1 ∩ P2 ⊆ P41 ∩ P52 = ∅. But also P3 ∩ P2 = P3 ∩ P1 = ∅, giving a
contradiction.) Similarly, since the Pi are all distinct, one easily sees
that {P16, P52} 6= {P38, P74}. It follows that {P16 ∩P38, P16 ∩P74, P52 ∩
P38, P52 ∩ P74} is a partition of Ψ into four 2-sets. The same holds for
{P63 ∩ P85, P63 ∩ P41, P27 ∩ P85, P27 ∩ P41}. From this information, one
can easily find a permutation of Ψ so that each Pi = {i− 3, i, i+ 3} as
in our example. This shows:

Lemma 7.1. There is exactly one embedded copy of ∆ in Θ(Ψ) up to
the action of Sym(Ψ).

We now move on to consider Gss = Gss(S0,8). We set Π = Ψ. If
γ ∈ C1 = C1(S0,8), write B(γ) for the disc with |Π ∩ B(γ)| = 3. Let
π(γ) = Π ∩ B(γ). Thus, π maps G(S0,8, C1) to Θ(Π) sending edges to
edges.

We note that G(S0,8, C1) ⊆ Gss(Σ) contains an embedded copy of ∆
constructed as follows. Let λ ⊆ S be an embedded circle with Π ⊆ λ.
We label the elements of Π so that the cyclic order induced from λ is
given by p1, p4, p7, p2, p5, p8, p3, p6. Let li,i+3 ⊆ λ be the segment from
pi to pi+3. Let Bi be a regular neighbourhood of the arc li−3,i ∪ li,i+3

and let γi = ∂Bi. The map [vi 7→ γi] now gives an embedding of ∆ into
G(S0,8, C1).

We claim:

Lemma 7.2. There is exactly one embedded copy of ∆ in G(S0,8, C1)
up to the action of Map(S0,8).

Let ∆ ⊆ G(S0,8, C1) be such a copy. After composing with π, we get
a map of ∆ into Θ(Π) sending edges to edges, which as we have already
noted, must also be an embedding. By Lemma 7.1, we can now label
the elements of Π as {p1, . . . , p8} so that π(γi) = {pi−3, pi, pi+3} for all
i. (In other words, as in the given example.) Write Bi = B(γi).

Now γ1, γ2, γ6, γ5 is a square in ∆, and so (B1 ∪B6)∩ (B5 ∪B2) = ∅.
Also |(B1 ∪B6)∩Π| = |(B5 ∪B2)∩Π| = 4. It follows that we can find
disjoint discs, B16, B52 ⊆ S with B1 ∪ B6 ⊆ B16 and B5 ∪ B2 ⊆ B52.
Note that ∂B16 and ∂B52 are homotopic in S \ Π, and so determine a
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curve, γ16 = γ52. We have similar pairs of discs, {B63, B27}, {B38, B74}
and {B85, B41}. Note that we have similar curves, γij, defined whenever
|i− j| is 3 or 5.

Now consider the curves γ1, γ2, γ3, γ4. Let A = S \ (B1 ∪ B2). This
is an annulus with A ∩ Π = {p3, p8}. Now B3 ∩ B2 = ∅, B3 ∩ B1 6= ∅
(since p6 ∈ B3 ∩B1), and p3, p8 ∈ B3 ∩A. Thus, we can find (disjoint)
arcs, e, f in B3 ∩ A, respectively connecting p3 and p8 to ∂B1.

Let D be (the closure of) the component of B4 \ B1 containing p7.
Now B4 ∪ B1 ⊆ B41 and (B41 \ B4) ∩ Π = {p7}. It follows (cf. Lemma
3.4) that D∩B1 is a single arc, b, say. Thus, ∂D = b∪ d, where d ⊆ γ4

is an arc with endpoints d ∩B1 = d ∩ b.
Now, d∩(e∪f) ⊆ B4∩B3 = ∅. It follows that any arc of d∩A which

does not include an endpoint could be homotoped into B2. It follows
that d ∩ B2 must consist of a single arc, and so |d ∩ B2| = 2. Now
R = B1 ∪D is a disc with R ∩ Π = B41 ∩ Π, and so ∂R is homotopic
in S \ Π to γ41 = γ52. Also |∂R ∩ γ2| = 2, and so ι(γ41, γ2) = 2.

By symmetry, it follows that each curve γi intersects each curve of
the form γjk either 0 or 2 times.

It is now fairly straightforward to see that {γ1, . . . , γ8} must be pre-
cisely the set of curves described in our example. For example, note
that B41 ∩ Π = {p7, p4, p1, p6}, and B41 ∩ γ is an arc which cuts off a
disc, namely B41 ∩ B2, containing p7. Now B1 ∩ Π = {p4, p1, p6}, and
so γ1 = ∂B1 is homotopic to ∂(B41 \B2). Similarly, γ4 is homotopic to
∂(B41 \B3). It follows that B1∩B4 is a disc containing p1, p4. One can
now proceed to show that any pair of the curves γi intersect at most
twice, and that this determines them completely.

This proves Lemma 7.2.
The remainder of the proof of rigidity is now essentially identical

to that for S0,7. We define surrounding pairs in the same way. A
surrounding pair, α, β, (as defined in Section 2) can be recognised by
the fact that α, β ∈ C1(S0,8), there is a curve γ ∈ Css(S0,8) \ C1(S0,8)
disjoint from both α and β, and α, β are vertices of some embedded
copy of ∆ in G(S0,8, C1). (Note that G(S0,8, C1) can be constructed
from Gss(S0,8).) We now proceed as before.

This shows that Gss(S0,8) is rigid, completing the proof of Theorem
1.1.
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