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ABSTRACT. We define the strongly separating curve graph to be
the full subgraph of the curve graph of a compact orientable sur-
face, where the vertex set consists of all separating curves which do
not bound a three-holed sphere. We show that, for all but finitely
many surfaces, any automorphism of the strongly separating curve
graph is induced by an element of the mapping class group.

1. INTRODUCTION

The main aim of this paper is to prove a rigidity result (Theorem
1.1) for certain curve graphs associated to compact orientable surfaces.
It is a variation on some well known results in this direction. Our
main motivation for this particular statement is its application to the
quasi-isometric rigidity of the Weil-Petersson metric.

Let ¥ be a compact orientable surface. We write g(X) for its genus,
and p(X) for the number of boundary components. The complezity,
£(2), of X is defined by £(X) = 3g(2)+p(X) —3. (It equals the number
of disjoint simple closed curves needed to cut X into a collection of 3-
holed spheres.)

Let G(X) be the curve graph associated to ; that is, the 1-skeleton
of the curve complex as defined in [H]. It has vertex set C'(X), the set
of non-trivial non-peripheral simple closed curves in ¥, defined up to
homotopy. Two elements of C'(X) are deemed adjacent if they can be
homotoped to be disjoint. Note that the mapping class group, Map(X),
acts cofinitely on G(X). The rigidity theorems of [Iv, Ko, L] tell us
(in particular) that if £(X) > 2, then any automorphism of G(X) is
induced by an element of Map(X). (Note that, since the curve complex
is a flag complex, this is equivalent to the same statement for the curve
complex.)

There are a number of variations of this. Given a subset, A C C(X),
we write G(3, A) for the full subgraph of G(X) with vertex set A. If A
is Map(X)-invariant, then Map(X) also acts on G(2, A). We say that
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G(X, A) is rigid if every automorphism is induced by an element of
Map(X).

For example, if Cs(X) is the set of separating curves, we refer to
Gs(X) = G(3,C4(X)) as the separating curve graph. (Note that if g = 0,
then this is the same as G(X).) The results of [BrM, Ki], together with
that cited above for planar surfaces, tell us G,(X) is rigid if g(3) > 3
or (g(%) = 2 and p(=) > 2) or (9(%) = 1 and p(%) > 2) or (9(%) = 0
and p(X) > 5).

We remark that the non-separating curve graphs, G(X, C(X)\Cs(2)),
of a large class of surfaces of genus at least 2 are also rigid [Ir], though
this is not directly relevant to the present paper.

Let Cp(X) C C4(X) be the set of curves which bound some three-
holed sphere in X. Let Cy(X) = Co(X) \ Co(2), and let G (X) =
G(3,Cs(X)). We refer to elements of Cys(X) as strongly separating
curves and to Gy (X)) as the strongly separating curve graph.

We will show here that G, (X)) is rigid in all but finitely many cases:

Theorem 1.1. If g(X) + p(X) > 7, then Gs5(X) is rigid.

Note that if p(X) < 1, then Gy (X) = G4(X), and so this is covered
by the results of [BrM, Ki.

This still leaves unresolved about a dozen cases, which I suspect are
also rigid. Omne can probably deal with a few more cases with some
elaboration on the arguments here, though a complete answer may
require new ideas.

It is natural to ask more generally for what classes of subsets A C
Cs(X) is G(X, A) rigid. (Note there are only finitely many possibilities
for A for any given topological type.)

The motivation for studying this particular case is the application
given in [Bo2] to the Weil-Petersson metric on Teichmiiller space. There
it was shown that the rigidity of Gs(X) implies the quasi-isometric
rigidity of the Weil-Petersson metric associated to X. In view of The-
orem 1.1, this holds whenever ¢g(3) 4+ p(X) > 7. In particular, The-
orem 1.1, together with the results of that paper, shows that in all
but at most finitely many cases, the Weil-Petersson space is quasi-
isometrically rigid.

We remark that the quasi-isometric rigidity of the Teichmiiller metric
on Teichmiiller space has been proven independently in [EMR]| and
[Bol] (by different methods). For this, one makes use of the rigidity of
the curve graphs [Iv, Ko, L] (in place of the strongly separating curve
graphs as needed for the Weil-Petersson metric).
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In the course of proving the main result of this paper, we also show
that most strongly separating curve graphs are distinct (see Proposition
5.2).

An earlier (rather different) draft of this paper was written at the
Tokyo Institute of Technology, and I am grateful for the hospitality of
that institution, and for the invitation of Sadayoshi Kojima. I thank
Javier Aramayona for his interest and suggestions.

2. OUTLINE OF PROOF

We begin by introducing some terminology and notation used through-
out the paper.

Let 3 be a compact surface. We assume that £(X) > 2. Given
a curve v € (Cy(X) we will (by slight abuse of terminology) use the
term complementary component to refer to the closure of a connected
component of 3\ 7. We write B(7) for the complementary component
which has smaller complexity. (We will only use this notation when it
is unambiguous.) We write C;(X) C Cy(X) for the set of v € Ci(X) for
which B(v) has complexity at most i. When i = 0, B(y) is an S 3.
(Recall that Cy(X) was defined in this way in Section 1.) Given distinct
a, € Cs(X), we write a < [ to mean that B(a) C B(f). We will
always assume curves in Cy(2) to be realised in general position, and
with minimal intersection. Given «, € Cy(X), we write ¢(a, 5) =
| N B| for the geometric intersection number. The following notion
will be central to the proof:

Definition. (When p(¥) > 5.) We say that o, € Cs(X) form a
surrounding pair if B(a) and B(f) are both Sy 4’s and B(a) N B(f) is
an 5073.

(We will need to modify this definition slightly when p(3) < 4, as
we discuss in Section 6.)

Note that 9(B(«) N B(B)) gives a curve w € Cy(X) satisfying w < «
and w < . Indeed, w is uniquely determined by this property, and we
say that the pair «a, 8 surrounds w.

Definition. We say that «, 5,7 € Css(2) form a surrounding triple if
any pair of them form a surrounding pair, and there is some (necessarily
unique) w € Cy(X), with w < a, w < f and w < 7.

(Modulo the definition of “surrounding pair”, the definition of “sur-
rounding triple” will remain unchanged when p(¥) < 4.)

We will say that we can recognise a given property of a collection of
curves in Cy,(2) if it is preserved under any automorphism of Gy (2).
Thus, by the definition of Gy (X), we can recognise disjointness of
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curves. The ultimate goal will be to show that we can recognise all
combinatorial (i.e. Map(X)-invariant) properties.

In particular, an intermediate goal is to recognise surrounding pairs
and surrounding triples. This will allow us to “reconstruct” the graph
Gs(X) from G4s(X) in a canonical way. (We have already observed that
a surrounding pair determines an element of Cy(X), which is a step
in that direction.) Thus, any automorphism of G, (%) extends to an
automorphism to G4(X), and we can apply the results of [Ko, BrM, Ki]
to see that it is induced by an element of Map(X).

In Sections 3 and 4, we begin by considering the case where ¥ is
an Sp7. The key point here is that there is only one heptagon (that
is 7-cycle) in Gss(So7) up to the action of Map(Sy7) (see Proposition
3.1). A surrounding pair can now be recognised as a pair of vertices at
distance 2 apart in some heptagon. In Section 4, we proceed to show
that Gss(S507) is rigid.

For the general case, we need to recognise the topological type of
a multicurve in the surface . This argument is largely independent
of the Sp7 case, and is discussed in Section 5. In Section 6 we then
combine this with what we know about Sy 7 to prove Theorem 1.1 in
general (for g(X) + p(¥) > 7) — except, that is, when ¥ is an Sy,
which we will treat as a special case in Section 7.

3. HEPTAGONS IN THE 7-HOLED SPHERE

We begin with a description of 7-cycles (or “heptagons”) in the sep-
arating curve graph of Sp7. In general, by an n-cycle in G (2), we
mean a cyclically ordered sequence of n vertices, where consecutive
vertices are adjacent. We refer to it as an odd or even cycle depend-
ing on whether n is odd or even. Note that any shortest odd cycle is
necessarily isometrically embedded.

For the purposes of this and the next section, it will be convenient
to view Sp7 as (the complement of) the 2-sphere, S, with a set of 7
preferred points, II C S. (In other words, S is obtained by collapsing
each boundary component of Sy 7 to a point of II. We can recover S 7
by removing a small open disc about each point of II.)

Note that if v € Cgs, then v bounds a disc, B(7), with |B(y)NII| = 3.
We write 7(y) = B(y) NII. Note that, a, € Cys are adjacent if and
only if we can realise a, 5 so that B(a) N B(3) = 0. We say that two
curves are n-distant if they are a distance exactly n apart in G,;.

Note that if ¢(«,5) = 2, then o U 8 cuts S into four discs. In
particular, B(«) N B(5), B(a) U B(5), B(a) \ B(f) and B(B) \ B(«)

are all discs.
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It is easily seen that G,s(S5p 7) has no 3-cycles. Also it has no 4-cycles.
(For if y1,72,73,74 were a 4-cycle, B(y1) U B(y3) and B(v2) U B(74)
would be disjoint connected subsurfaces of S, each containing at least
four points of I, which clearly is not possible.) We will also see (Lemma
3.3) that Gys(So.7) has no 5-cycles. This implies that any 7-cycle must
be isometrically embedded.

In fact, Gss(Sp7) does contain 6-cycles. (For example, take disjoint
discs, Dy, Dy, Fy, Fy, F3, in S so that each |D; NII| = 2 and each |F; N
II| = 1. Now connect each D; to each F; by a set of six disjoint arcs,
a;j. Let 3;; be the boundary of a regular neighbourhood of D;Ua;; U F;.
Then f1, 23, 12, 521, B13, B2a is a 6-cycle.) We will however focus on
the 7-cycles, since these are more symmetrical, and will serve for our
purposes.

Here is a description of a 7-cycle. Let A C ¥ be an embedded circle
with IT € A. This determines a cyclic ordering on II where we index
the punctures as py, ps, ps, P7, P2, P4, Ps- Let [13 be the segment between
P1 and P3 etc. Thus \ = l13 U l35 @) l57 U l72 U l24 U l46 U l61. Let Bz be
a regular neighbourhood of l;_9; Ul; ;4o with B; NI = {p;_2, pi, Dit+2},
and let v; = 0B;. Thus, B; = B(~;). Note that B; N B;y; = ), and
SO V1,72, 73, V4, V5, V6, V7 1S & 7-cycle. Any non-adjacent pairs of curves
intersect exactly twice. (Figure 1.)

FIGURE 1. A 7-cycle in Gg(So7)

Now Map(Sp7) acts on Gss(Sp7). The main aim of this section is to
show:

Proposition 3.1. There is exactly one 7-cycle in Gss(So7) up to the
action of Map(So 7).
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We begin with an analogous statement for 3-sets in a 7-set. Given
any set, ¥, let © = O(V) be the graph whose vertex set, V(©), consists
of subsets of cardinality 3 in ¥; and whose edge set, E(©), consists of
pairs of disjoint such 3-sets.

For the remainder of this section we will assume that |¥| = 7. In this
case it is a connected 4-regular graph on thirty-five vertices. Note also
that there is an edge colouring, x : E(©) — ¥, given by U\ (PUQ) =
{x(e)}, where e is the edge from P to Q.

The following simple observation will be useful:

Lemma 3.2. If P,QQ € V(O) are 2-distant, then |PN Q| =2. If P,Q
are 3-distant, then |P N Q| = 1.

The following is the analogue, in ©, of the the main result of this
section:

Lemma 3.3. If |V| = 7, there are no 3-cycles or 5-cycles in ©(W).
There is exactly one T-cycle up to the action of Sym(W).

Proof. The non-existence of 3-cycles is trivial.

Suppose Py, Py, P3, P;, P5; were a 5-cycle. Then P; and P, are both
2-distant from P, so [Py N P3| = |P, N Py| = 2, and we get the contra-
diction that PN Py # 0.

Writing ¥ = {1,2,3,4,5,6,7}, there is a 7-cycle in ¥ given by 613—
724-135-246-357-461-572. We want to show this is the only one up
to the action of Sym(W).

Suppose, then that Py, P», P35, Py, Ps, Ps, P; is a T-cycle. Since there
is no smaller odd cycle, this must be isometrically embedded in ©.
Suppose that two edges have the same colour, p, say. Since the P;
are all distinct, these edges cannot meet or contain adjacent vertices.
Thus, up to cyclic reordering, the only possibility for this pair of edges
is P, Py and Py, Ps. Now P, and P, are 2-distant, and so |P,N Py| = 2.
Now, P, and Ps are the complements of these sets in ¥ \ {p}, and so
we also have | P, N Ps| = 2. But these are 3-distant, so this contradicts
Lemma 3.2.

Therefore, each colour occurs exactly once around the cycle. Up to
Sym(¥), we can assume they occur in the cyclic order 1234567, starting
with the edge P;, P,. Now consider the sequence Py, P35, P5, P,. We
must proceed by replacing 2 by 1, then 4 by 3, then 6 by 5. So we
must have started with P, being 246 (and ended with P; as 135). But
now the whole 7-cycle starting with P; is completely determined by the
colours on the edges. In fact, it must be precisely the cyclic sequence
given above. This proves the result. 0
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We now move on to the proof of Proposition 3.1. We set ¥ = II.
Recall that we have defined 7 : Cs — V/(II) by 7(y) = IINB(y). This
extends to a map 7w : G,s —> O, sending edges to edges. Composing
with x, we also get a colouring of the edges of G,,, which we also denote
by x : E(Gss) — II. Note that it is now an immediate consequence
that there are no 5-cycles in G, as stated earlier.

We need to make a few observations about configurations of curves
separated by given distances in G,.

If o, 5 € Cy4 are adjacent, we set A = A(a, 8) to be (the closure of)
S\ (B(a) U B(B)). This is an annulus, with 0A = a U 3, and with
A(Oé, 6) NIl = {p}a where p = X(aa ﬁ)

By an arc in A, we mean an arc a C A\II with endpoints da = aNJA.
We generally regard such an arc as defined up to homotopy in A \ II,
allowing ourselves to slide an endpoint of a in 0A. Up to homotopy,
there are exactly three types of arc, depending on whether a meets only
a, only 3, or both a and 3. We refer to these classes as a-type, B-type
or crossing arcs, respectively. Note that an a-type arc and a [-type
arc meet (minimally) in exactly two points. (Figure 2.)

<

FIGURE 2. a: a-type arc. b: S-type arc. ¢: crossing arc.

Suppose now that 3, € Cy, are 2-distant. Then |7(8) N7 ()| = 2,
so m(0) \ m(B) = {q} for some ¢ € II. Let D = D(4, ) be (the closure
of) the component of B(d) \ B(f) containing q. We claim that D is a
bigon:

Lemma 3.4. If 5,6 € Cys are 2-distant, and D = D([3,0), then D N
B(pB) consists of a single arc in 5. (Figure 3.)

Proof. Let v € Css be adjacent to both § and §. Note B(f), B(d) C
S\ B(v), and so D C A(B,v) and D N~ = (. Thus, dD can contain
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FiGure 3. The bigon D

only S-type arcs in A(B,7). There can only be one of these, so the
statement follows easily. O

Suppose now that «, 3 are adjacent and that € € C,, is 3-distant
from both o and 8. Let A = A(«, ) and p = x(«, ) as before.
By Lemma 3.2, |7(e) N 7(a)| = |m(e) N 7w(5)] = 1, and so it follows
that p € w(e). Let F = F(«,;¢) be (the closure of) the component
of AN B(e) containing p. Note that F must intersect either « or f,
possibly both. (In fact, given that there are only three classes of arc
in A, one can easily see that F' can meet each of B(«) and B(f) in at
most a single arc, though we won’t explicitly need this.)

Now let o be any 7-cycle in G,;.

Suppose that a, 8 is an edge of . Let € be the vertex of o opposite
this edge. Thus, € is 3-distant from both « and , as above. Let
F = F(«, B;€), as before.

Suppose that 3N F # (. This implies that any a-type arc in A =
A(a, f) must intersect F'. Let 7 be the vertex of o adjacent to § and
distinct from « (so that v and e are 2-distant). We claim:

Lemma 3.5. Let «, 3,7 be consecutive vertices of o. Let € be the vertex
of o opposite the edge a, 3, and let F = F(«, 8;€). If FN B # 0, then

Lo, y) =2

Proof. Let 6 be the vertex of o between « and € (so that «, 5,7, d, € are
consecutive vertices of o). Let D = D(6,3). By Lemma 3.4, this is a
bigon; that is, D = bUd, where b and d are respectively arcs of g and
5. Now F' C B(e), D C B(d) and B(e) N B(0) =0, so FND = (). Let
w(0) \ m(8) = {q}. Note that ¢ # p, and so ¢ € 7(a) C B(a). Now
dNF CDNF =0, and so dN A contains no a-type arcs. Since d N 3
are the endpoints of d, it cannot contain any g-type arcs either. Thus,
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d N A consists only of crossing arcs, of which there must be exactly 2.

This means that |d N «a| =2 (with d N B(a) consisting of a single arc).
(Figure 4.)

N,

d

FIGURE 4. D = D(6,5), F = F(a, B;¢)

Let R = B(f)UD. Now R is a disc with RNII = 7(8) U {q} =
7n(B)Um(a). Also R C B(B) U B(9), so RN B(y) = 0. It follows that
v and OR are homotopic in S \ II. In other words, they represent the
same element of Cys. But now, 0R C fUd, so |[0R N «a| = 2. Thus,
t(a,7y) <2, and so, in fact, t(a,y) = 2 as required. (Figure 5.) O

FIGURE 5. The curves «, 9, €

Now, as already observed, at most one of FNa or F'NS can be empty.
If F'N 3=, we refer to 8 as a bad endpoint of the edge o, 5. We say
that a vertex of ¢ is bad if it a bad endpoint of both incident edges of
o. Thus, Lemma 3.5 tells us that if 8 is not bad, then the two vertices
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adjacent to 8 in o correspond to curves which intersect twice. (In fact,
Proposition 3.1 will retrospectively rule out bad vertices altogether.)
In Figure 4 above, § would be a bad vertex of the edge a, 5.

Proof of Proposition 3.1. Let ¥ be a T-cycle.

Now no two bad vertices of o can be adjacent. It follows that there
can be at most three bad vertices in total. In fact, we can index
the vertices of o consecutively (mod 7) as 71,72, V3, V4, V5, V6, V7, SO
that none of 71, 73, 74 or 76 are bad. It then follows that ¢(y7,72) =
U2, 7a) = t(13:75) = (5, 77) = 2.

We write B; = B(7;), and label the points of IT as p;, so that 7(v;) =
B NI = {pi—2, pi, pit2}-

Consider first the discs By, Bz, By, Bs. We have BoN By = B3N B, =
BN By = 0. Let A = A(v3,71). Since ¢(93,75) = 2, we see that
v5 N A consists of a single v3-type arc. Similarly, 75 N A consists of
a single y4-type arc. It follows that ¢(y2,75) = 2. Thus, By N Bj is
a disc with By N Bs N1II = {p7r}. Now B3N Bs and By N By are also
discs, with B3 N Bs NI = {p3,ps} and Bo N By NII = {pa,ps}. We
can therefore find an arc [ with IT C [, with endpoints p; and pg and
with the points p1, ps3, ps, 7, P2, P4, Pe Occurring in this order along I,
and so that Bs, Bs, By, B, are respectively regular neighbourhoods of
l13Ul35, I35 Uls7, 79 Ul and loy U lyg, where we have cut [ into six arcs,
I = l13 U l35 Uls7 Ulzg U loy Ul connecting the points of II. Note in
particular, that R = By U Bjs is a disc with RN II = {ps, ps, p7, P2, P4}
Also By N By is a disc with B, N B; N 11 = {p;}. (Figure 6.)

o NN D
NN,

F1GURE 6. The curves 72, V3, V4, V5

Now consider B;. We have B; N 11 = {ps, p7,p2}. Now ¢(5,7v7) = 2,
S0 7 N By consists of a single arc separating p3 from p; and p; in Bs.
We can therefore realise it so that it is disjoint from By N Bs. In fact,
we can take this arc to meet [ just once, in a point of the segment
l35. Similarly, we can realise v7 N By as a single arc, also disjoint from
By N Bs, and meeting [ in a single point of lay. In this way, 77 \ R
consists of exactly two arcs. Since (B;\ R) NII = (), each of these arcs
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can be homotoped into OR in S \ II, fixing their endpoints. We can
therefore realise B; as a regular neighbourhood of l5; U l75.

Now let lg; be any arc in S meeting [ exactly at their common end-
points. Thus A = [ U [ is a circle containing II. Now the homotopy
classes of 7y, and 75 are determined as 0(B; U By) and 0(B7 U By). We
can therefore realise By and Bg respectively as regular neighbourhoods
of l46 U l61 and of l61 U l13.

We are therefore exactly in the situation of the example of a 7-cycle
described earlier (as in Figure 1).

This proves Proposition 3.1. U

We note the following immediate consequence.

Lemma 3.6. Any automorphism of Gss(So7) preserves the set of sur-
rounding pairs.

Proof. In view of Proposition 3.1, we see that a, f form a surrounding
pair if and only if they are 2-distant vertices in some 7-cycle in G,;.
Note that this is determined just by the structure of G,;. O

4. RIGIDITY FOR THE 7-HOLED SPHERE

Recall that Cy = Cy(Sp7) is the set of curves in S\ II which bound
a disc containing exactly two points of II. If w € Cy, this disc is B(w)
and m(w) = B(w) N1II. If w € Cy and a € Cs, then w < o means that
B(w) C B(a).

By an w-arc we mean an arc, a, in S meeting B(w) at one endpoint
(the initial endpoint) and II at the other (terminal endpoint). We
regard a as being defined up to homotopy relative to II, fixing the
terminal endpoint, and allowing the initial endpoint to slide along w.
Note that a determines an element o € Cy,, with w < «, so that B(«)
is a regular neighbourhood of B(w) U a. In fact, every a € Cj, with
w < « arises in this way.

If a, 8 € (s, is a surrounding pair, then there is a unique w € C
with w < @ and w < f. In fact, w = d(B(a) N B(B)). Note that a,
correspond to disjoint w-arcs, a, b (i.e. we can realise a, b to be disjoint).
We say that «, 5 surround w. (Figure 7.)

Recall that a surrounding triple consists of three curves, «a, 3,7 €
Css, such that {a, B}, {5,7} and {7, a} are all surrounding pairs, and
such that there is some w € Cy with w < «, 8,7. In this case, a, 5,7
correspond to three pairwise disjoint w-arcs, a, b, c.

Suppose we just know that «, 8,7 € Css are such that any pair form
a surrounding pair. Then 7(a), 7(8), 7(y) pairwise intersect in sets of
two elements. It follows easily that m(«) Um(3) Un(7y) has either 4 or
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)
Nl

o) B

FIGURE 7. A surrounding pair, «,

5 elements. In the former case, |7(a) N7(B) N 7w(y)| = 1, and one sees
easily that there is a curve in Cyg (namely 9(B(«) U ( ) U B(7))),
disjoint from each of o, 8, 7. In the latter case, |7(a)Nw(5)Nw(y)| = 2,
and one sees easily that «, 8, form a surroundmg triple. We deduce.

Lemma 4.1. Suppose a, 3,7 € Css, then a, B, form a surrounding
triple if and only if any pair of them form a surrounding pair and there
is no curve in Cyss which is disjoint from each of o, 3, 7.

In view of Lemma 3.6, we see that we can recognise when three
elements of Cy, form a surrounding triple.

Let H be the graph whose vertex set is the set of all surrounding
pairs in Cj,, and where two vertices are deemed adjacent if the union
of the two pairs is a surrounding triple. Given any w € Cy, let H(w) be
the full subgraph whose vertex set consists of those surrounding pairs
which surround w. Now adjacent vertices of H determine the same
element of Cp, and so H(w) is a union of components of H. In fact:

Lemma 4.2. If w € Cy, then the graph H(w) is connected.

Proof. This is best seen in terms of w-arcs. Recall that a vertex of
H(w) corresponds to a pair of disjoint w-arcs, and an edge of H(w)
corresponds to a triple of pairwise disjoint w-arcs.

Suppose that a,b,c,d are w-arcs with aNb = () and cNd = (.
We realise them in general position in S. (They do not need to have
minimal intersection in their homotopy classes.) We aim to connect
the vertices a,b and ¢,d by a path in H(w). Write I(a,b;c,d) = (a U
b) N (cUd) \ II for the set of interior intersection points. We proceed
by induction on |I(a, b; ¢, d)|.

The case where that I(a,b;c,d) = () is elementary, so we assume
there is some x € I(a,b;c,d). After permuting a,b and ¢, d, we can
assume that z € a U ¢, and that x is the first intersection point along
c; that is, the initial segment e, of ¢ ending at x, meets a U b only
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at . Let f be the initial segment of a ending at z, and set a’' =
(a\ f)Ue. We can move a’ slightly so that a N a’ meet precisely in
their terminal points, while retaining disjointness from 6. Now, we
can easily find an w-arc, e, disjoint from each of b,a,a’, so a,b,e and
a’, b, e correspond to surrounding triples. It follows that a,b and o', b
correspond to surrounding pairs in the same component of H(w). Note
that |I(a’,b;¢,d)| < |I(a,b;c,d)|. We therefore replace a,b by a’,b and
proceed inductively. 0

We deduce:

Lemma 4.3. There is a natural bijective correspondence between the
elements of Cy and the connected components of H, such that if w € Cy
and o € Cgg, then w < « if and only if a occurs as a curve in a
surrounding pair of some vertex of the corresponding component of H.

Since H can be constructed out of G, we see that we can also
reconstruct Cy and the relation < between Cy and Cys out of G,,.

We can also recognise disjointness. If w € Cy and a € Cy, then w
and « are disjoint if and only if there is some g € Cy, such that w < 8
and «, § are either equal or disjoint. Similarly, if w,w’ € Cy, then w
and w’ are disjoint if and only if there are disjoint curves o, o’ € C,
with w < a and W' < /.

We can therefore reconstruct the graph G(Sp7) = Gs(S07) from the
graph G4 (So.7). It follows that any automorphism of the former extends
to an automorphism of the latter. But we know that G(Sy7) is rigid
by Theorem 1 of [Ko|, so we have shown:

Proposition 4.4. The graph Gs(So7) is rigid.

5. MULTICURVES

In this section, we will explain how to identify classes of multicurves
from the structure of the strongly separating curve graph. We assume
that ¥ is a compact orientable surface, with boundary 93, which we
view as a (possibly empty) set of curves. (Thus, Sy; reverts to being
a bona fide 7-holed sphere.) We will assume that £(X) > 4.

As before, we say that we can recognise a property of a collection of
curves in Oy = Cys(X) if this property preserved under any automor-
phism of Gy(X). In other words, it can be seen just in terms of the
graph structure. We similarly say that we can “tell” if a given property
holds. We also say that another graph can be “constructed” (from Gyy)
etc.

Recall that C} C (s is the set of a € Cy for which B(«) has

complexity 1, that is either an Sp4 or an Sy ;.
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Suppose that a, 8,7 € Css. We can tell if a separates 8 from . (It is
equivalent to saying that any curve in Cj, is disjoint from « must also
be disjoint from either 5 or v.) Therefore, we can recognise elements
of C1: a curve in Cy, lies in CY if and only if it does not separate any
two other elements of C,,.

By a multicurve, 7, in Cys, we mean a non-empty set of pairwise
disjoint curves in C;. We will sometimes abuse notation by regarding
T as a subset of . We claim that we can identify 7 up to the action
of Map(X). This is equivalent to saying that we can recognise the
topological types of each of the components of ¥ \ 7 together with the
elements of 7 which a bound a given component.

Let X be a component of ¥\ 7. Write X C 7 U 9% for its intrinsic
boundary, and dsX = 7 N 0X for the relative boundary. We write
p(X) = |0X], q(X) = |0sX]| and g(X) for the genus of X. Write
Css(2, X) for the set of elements of Css(X) \ 7 contained in X. Note
that Cys(2, X) is either empty or infinite.

Definition. We say that a complementary component, X, is large if
Css(2, X) is infinite.

Thus, if X is not large if and only if is either an Sy 3 with ¢(X) > 2,
or else has the form B(a) for some a € C1(%).

Note that if a € Cyg, then o € Cys(X, X)) for some large component,
X, if and only if it does not lie in 7 and is disjoint from 7 (i.e. is disjoint
from each element of 7). Given two such curves at «, 5 € Cy, then «, 5
lie in the same set Cs (X, X) if and only if they are not separated by
any element of 7. Thus, from 7 we can identify the collection of sets
Css(2, X)) which arise from the large components, X, of ¥\ 7. We next
want to recognise the topological type of such X.

To this end, we define a chain in Cy to be a sequence, Yo, V1, - - - Y,
of disjoint curves such that 7; separates 7, from ~;, whenever i < j < k.

Suppose that X is a component of ¥\ 7 with ¢(X) > 2. Choose
any distinct «, 8 € 0x X, and let n be maximal so that there is a chain
a="0,...,% = 0 in Cs (so that v; € Cys(3, X) for all i # 0,n). Each
component of X'\, v; is either an Sy 3 or an S 5. (Figure 8.) Moreover,
we can tell if the component between 7; and 7,41 is an S; 2, since in
that case, there will be some 6 € Cys(X, X) such that v; separates ¢
from «, and ;.1 separates 0 from . Thus, we know the number, m, of
such 512 components. We see that g(X) =m and p(X) =n —m + 2,
so we have determined the type of X in this case.

Now suppose that ¢(X) = 1, and that X is large (equivalently, not
an Sp4 nor an Sy 7). Write 0x X = {a}. Suppose that § € Css(X, X) N
C1(X) (which we can recognise). Let Y = X \ B(f), so that Y is a
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FiGURE 8. Here, X is the subsurface bounded by aU

component of ¥\ (TUf), and dsY = {a, f}. By the previous paragraph,
we know the type of Y (given (). Therefore we know the collection
of types of all such Y which can arise in this way. Given that B(f) is
either an Sy 4 or an S 1, there are at most two such types. If £(X) > 4,
we now see easily that this data determines the topological type of
X. (Note that if there is only one type for Y, then either g(X) = 0
or p(X) < 3. If there are two types, then p(X) > 4.) However, if
€(X) < 3, then the data does not allow us to distinguish the pairs
{So05,512} or {Soe,S13}. (Forif X is an Sp5 or Sy, then Y must be
an Sp3; and if X is an Spg or Sy 3, then Y must be an Sp4.)

Now suppose that § € C1(X). Let Z = ¥\ B(d). Suppose, that
5(2) > 6, and that X 7& 50’7. We see that Z 7é 50,57'90,6751,2751,3'
Thus, by the previous paragraph, we can determine the type of Z.
Since this holds for all elements of C1(X), we can now easily determine
the topological type of ¥, and also tell whether an element of C(X)
bounds an Sp4 or an S ;.

Retrospectively, we can now go back to the earlier set-up and distin-
guish an Sy 5 from an S, or an Sy from an S; 3 in the complement
of 7. We therefore now know the types of all large components. From
this one can easily determine 7 up to the action of Map(2).

In summary, we have shown:

Lemma 5.1. Suppose £(X) > 6. Suppose that 7,77 C Css(X) are two
multicurves, and that there is an automorphism of Gss(X) taking T to
/

7'. Then there is an element of Map(X) taking T to 7'.

Given a component, X, of 3\ 7, set Cyss(X) and Gs(X) as defined
intrinsically to X. Thus, G.,(X) is the full subgraph of G,(%, X) with
vertex set Css(X). Note that we can tell whether a curve v € Cys (2, X)
lies in Cs(X) (since it does not bound an Sy 3 component of ¥\ (7U7)).
Thus, we can construct Ggs(X) out of Gys(3), given 7.

Note that the above encompasses all cases where g(3) 4+ p(3) > 7.
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We remark that we have also proven the following:

Proposition 5.2. Suppose that ¥, %" are compact surfaces with Gss(X)
isomorphic to G (X'). If £(3) > 6, then ¥ = X.

Of course, this leaves open a number of cases, which we will not
address here.

6. RIGIDITY OF OTHER SURFACES

In this section we will prove Theorem 1.1, except in the case where
Y = Sps. We assume that g(X) + p(X) > 7. We will split into three
cases: First, p(X) > 5, ¥ # Sps; second, p(X) < 4, g(¥) > 4; and
ﬁnally Y e {5374, 5473, 5474}.

Recall that for o, f € Cs(X), a < f means that o # 8 and B(a) C
B(8).

First, consider the case where p(¥) > 5. In this case, we will also
assume that ¥ # Spg.

We begin by giving a criterion for recognising such pairs (as defined
in Section 2).

Lemma 6.1. Suppose that o, 5 € Css(X). Then a, B is a surrounding
pair if and only each of the following three conditions holds:

(S1): B(a) and B(B) are both Sp4’s,

(S2): There is some multicurve, T, in ¥ such that o, B both lie in some
component, X, of ¥\ 7, of type So7, and

(S3): o, B form a surrounding pair intrinsically in X.

(To make sense of (S3), note that necessarily «, 8 € Cgs(X).)

Proof. First, suppose that «, 8 is a surrounding pair in >. Note that
Y =¥\ (B(a) UB(B)) satisfies g(Y) = g(X) and p(Y) = p(X) — 3.
In particular, g(Y) + p(Y) > 4 and Y is not an Sy (since ¥ # Spg).
Thus, we can find a multicurve, 7 C Cy(Y) so that X =Y\ ., B'(7)
is an Sp7. Here, B’(7) is the component of ¥\ v not containing a, /3.
(It might not be the lower-complexity component.) We can, of course,
assume the B’(y) to be disjoint. Now B(«a), B(f) C X, and we see
that «, 5 is a surrounding pair in X. Thus, a, 8 satisfies (S1)—(S3).

Conversely, if a,  satisfies (S1)—(S3), then again we must have B(«), B(5) C

X and so B(a)NB(B) is an Sy 3, so «, [ is a surrounding pair in 3. [

Lemma 6.2. If g(X) +p(X) > 7, p(£) > 5, and X # Sps, then the
collection of surrounding pairs is invariant under any automorphism of

Gis(22)-
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Proof. By Lemma 3.1, it’s enough to show that properties (S1)—(S3)
are all recognisable in terms of Gs(X). We can certainly recognise a
multicurve, 7, in Cgs(X), and by Lemma 5.1, we can tell if a, § lie in a
component X of ¥\ 7 of type Sp7. As explained at the end of Section
5, we can also construct Gy (X). By Lemma 3.6, we can tell if «, 3
form a surrounding pair intrinsically to X. U

The class of surrounding triples (as defined in Section 2) is also
recognisable in G (X):

Lemma 6.3. If g(X) +p(X) > 7, p(X) > 5 and ¥ # Sy, then the
collection of surrounding triples is invariant under any automorphism

of Gss(2).

Proof. We first make the we make the following general observation,
(which holds for any surface ). Suppose that B, By, B3 C X are
connected subsurfaces (in general position) such that the 0B; are all
connected, and such that |0B;N0B;| = 2 whenever i # j. If BiNByNBs
and 3\ (B; U By U Bs) are both nonempty, then they are also both
connected with connected boundary. This is a simple exercise on noting
that a regular neighbourhood of 0B, U 9By U 0Bs is an Sy g.

Given this, we can now recognise a surrounding triple, as a triple
a, 3,7, with each pair forming a surrounding pair, and such that there
is a fourth curve § disjoint from «, 5, v and such that «, 5, ~ all lie in an
So,6 component of ¥\ §. Note that this implies that B(a)NB(5)NB(7)
must be non-empty (it must contain a boundary component of ¥). It
now follows easily from the previous paragraph that B(a)NB(8)NB(7Y)
is in fact an Sy 3, and so we can set w to be its relative boundary in
Y. O

Proof of Theorem 1.1 when p(X) > 5. The remainder of the proof now
follows exactly as for Sp7. We define the graphs H and H(w) in the
same way. It is sufficient to show that H(w) is connected. The ar-
gument follows exactly as with that of Lemma 4.2. We can define an
w-arc to be an arc connecting B(w) to 0¥ \ B(w). Taking a regular
neighbourhood of B(w)UaUe, where € is the boundary component, we
get an Sp 4, namely B(«), where a = 0xB(a) € Cyg, so that w < a. A
surrounding pair corresponds to a disjoint pair of w-arcs, terminating
in distinct boundary components. Similarly, a surrounding triple corre-
sponds to a disjoint triple of w-arcs to distinct boundary components.
The we can now copy the argument of Lemma 4.2 (after collapsing
each component of 0¥ \ B(w) to a point). This allows us to recon-
struct G4(X), and so, using [Ko, BrM, Ki|, we see that G (%) is rigid
in these cases. 0
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We now move on to the cases where p(3) < 4. We can assume
that p(X) > 2 (otherwise Gs(X) = G4(X), and we are covered by
[Ko, BrM, Ki]). Note that, g(3) > 3 in these cases.

We will use the following construction. Let T (X) be the graph whose
vertex set consists of those v € C1(X) for which B(«) is an S}, and
where «, § are deemed adjacent if B(a) N B(B) = (. (This is a full
subcomplex of Gg.(3).) We note:

Lemma 6.4. If g(X) > 3, then T(X) is connected.

Proof. Suppose a, 8 are vertices of T(X). Since the separating curve
graph of a closed surface of genus at least 3 is connected, we can connect
a, by a vertex path o = 79,71,...,7% = 0 in G4(X), so that no
complementary component of any ~; is planar. (To see this, just cap
off the boundary components of ¥ by discs.) Taking n to be minimal,
we see that ;1 must intersect ;.1 for all ¢ # 0,n. Let §; be a vertex
of T(X) contained in the component of ¥\ +; not containing 7;_1, Yi+1-
We see that «, dq,...,0,_1, is a path in T (X) connecting « to 8. O

Let 7(2) be the flag simplicial complex with 1-skeleton 7 (%), so that
every complete subgraph of 7(X) is contained in a simplex of 72(2)
Given n > 1, let §,(X) be the graph whose vertex set consists of n-
simplices of 72(2), and where two such simplices are deemed adjacent
if they have a common (n — 1)-face.

Lemma 6.5. If g(X) > n+ 2, then S,(X) is connected.

Proof. If 0 < m < n — 2, then the link of any m-simplex in 7’(2) is
isomorphic to T ('), where ¥’ is obtained by removing m + 1 disjoint
copies of S1; from ¥. Thus ¢g(¥') = g(X) —m — 1 > 3, and so this is
connected by Lemma 6.4. Since 7‘(2) is itself connected, the statement
now follows easily. 0

We now consider the case where ¢g(3) > 5. (This will cover all cases
with p(X) < 4, except Ss4, Si3 and Sy 4, which we discuss later.) For
this, we need to modify the definition of a surrounding pair:

Definition. (When p(X) < 4 and g(X) > 5.) A surrounding pair is a
pair of curves, a, f € Css(2), such that B(«), B(f) are both S} 3’s and
such that B(a) N B(B) is an Sp 3.

This implies that [0B(a) N OB(5)| = 2. Again, there is a unique
w € Cp(X) with w < a, , namely w = 9(B(a) N B(B)). This property
is also recognisable:

Lemma 6.6. If p(¥) < 4 and g(X) > 5, then the collection of sur-
rounding pairs is invariant under any automorphism of Gs(X).
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Proof. The argument follows exactly as with Lemma 4.2. The criterion
of Lemma 6.1 still holds, except that B(a), B(/) are now both S} 3’s
instead of Sp4’s. Also, in verifying (S1)-(S3), the multicurve 7 will
include curves in B(a) and B(f) which bound S ;’s. O

We also define a surrounding triple the same way as before (modulo
the definition of a surrounding pair). Given Lemma 6.6, we see easily
that «, 8, form a surrounding triple if and only if they pairwise form
surrounding pairs, and there is some 0 € Cy (%) such that «, 8, all
lie in an S5 3 component of X\ 4.

Proof of Theorem 1.1, when p(X) < 4 and g(¥X) > 5. We now proceed,
as usual, to define the graphs H and H(w) for w € Cy. We claim that
H(w) is connected. This is a bit more involved in this case.

Suppose that a € Css(X) with B(a) an Sy 3 and with B(w) C B(«).
Let € € Cgs(X) be any curve with B(e) an Sy ; with B(e) C B(«a)\ B(w).
Thus, B(«a) \ (B(w) U B(e)) is an Sy 3, so there is (up to homotopy)
a unique arc, a, in B(«a) from B(w) to B(e), meeting B(w) and B(e)
precisely at its endpoints. Note that B(«) is a regular neighbourhood
of B(w) Ua U B(e). Conversely, given any € € Cs(X) with B(e) an
S11 disjoint from B(w), we can obtain such an « as the boundary
of a regular neighbourhood of B(w) U a U B(e). (Of course, such a
representation of « is not unique, but that will not matter.)

Now, a vertex of H(w) arises from a pair of disjoint such curves, €, 7,
and disjoint arcs, a, b, connecting B(w) respectively to B(e) and B(n),
in ¥\ (B(w)UB(e) UB(n)). Similarly, a surrounding triple arises from
three disjoint such curves, €,7,(, and three disjoint arcs, a, b, c in the
complement of B(w) U B(e) U B(n) U B(().

Suppose we fix €,7,(, and let H(w;e€,n, ) be the full subgraph of
H(w), where all the vertices arise (as above) from some pair of curves
in {¢,n,(}. Now H(w;e,n, () is connected. This can be seen by the
same argument as in the previous case (applied to the surface ¥\
(B(e) U B(n) U B(()), where the notion of “surrounding pair” reverts
to the previous case, as defined in Section 2).

Now if €,7,(, 0 are all disjoint such curves, we can connect B(w) to
each of B(e), B(n), B(¢), B(8) by disjoint arcs in the complement of
B(w)U B(e) U B(n) U B(¢) U B(A). It then follows that H(w;e,n,() N
H(w;e,n,0) # (. But now, by Lemma 6.5, we can get between any two
triples €,7,( and €,n', (" by a sequence of such moves, replacing one
curve at a time. Since H(«) is a union of such H(w;e€,n, (), it follows
that #H(w) is connected as claimed.

This allows us to construct G,(X) out of Gys(X), and so rigidity fol-
lows as before. U
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Finally we should discuss the cases where ¥ € {S54,S543,S44}-
Again, we need to redefine a “surrounding pair”:

Definition. (When ¥ € {S34, Su3,S14}.) A surrounding pair is a pair
a, f € Cg(X) with B(a), B(f3) each either an Sp4 or an Sy 3.

Given this, we define “surrounding triple” as usual.

Note that B(«) is now determined by a curve which is either a com-
ponent of 0¥ \ B(w), or a curve € € Cs(X) with B(e) an Sy dis-
joint from B(w), together (in either case) with an arc, a, from B(w)
to e. Thus, B(«) is a regular neighbourhood of B(w) U a U € or of
B(w)UaU B(e), respectively. Surrounding pairs and triples then arise
from disjoint curves and arcs similarly as before.

We can define ‘H(w;e€,n, () similarly as in the previous case, where
€, 1, C are disjoint curves, each either a boundary curve or in Cs(X) as
above. The same argument shows that the graph is connected.

Moreover, we claim we can get between any two such triples, €, 7,
and €, 7', (', replacing each curve at time by a disjoint curve. In the
case where p(X) > 4, there are at least two components of 0% \ B(w),
so this follows easily applying Lemma 6.4 to ¥\ B(w). If p(¥) = 3, then
g(X\B(w)) = ¢g(X2) > 4, and so the statement follows since Sy(X\ B(w))
is connected by Lemma 6.5.

The argument can now be completed as before, proving Theorem 1.1
in all cases except S s.

7. THE 8-HOLED SPHERE

In this section we outline the proof of rigidity for G,s(Sps). The
argument is essentially the same as for Sy 7, except we need to start by
finding a different rigid subgraph, in order to recognise pairs of curves
which intersect exactly twice. We will revert to thinking of Sy g as S\1II,
where II is a subset of the 2-sphere, S, with |II| = 8.

Let A be the graph obtained by adding the four longest diagonal
edges to an octagon. More formally, we write V(A) = {vy,...,vs},
where v; is deemed adjacent to v; whenever |[i —j| =1 or |i —j| =4
(taking indices mod 8).

One can realise A as follows. Recall from Section 3, that ©(¥) is the
graph whose vertex set consists 3-sets in ¥ and where two such sets are
deemed adjacent if they are disjoint subsets of W. If ¥ = {1,..., 8},
and P; = {i — 3,4,i + 3}, then the full subgraph of ©(¥) with vertex
set {Py,..., Ps} is isomorphic to A.

In fact, we claim that all copies of A in ©(¥) arise in this way.

First note that there are no 3-cycles in ©(¥), and so any 5-cycle in
O(V) is isometrically embedded. Now any two vertices of A lie in a
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5-cycle in A. It follows that any map of A into ©(¥) sending edges to
edges must be injective.

Suppose that [v; — P;] is any embedding of A into O(¥). Now
v1, Vg, Vg, U5 18 a 4-cycle in A, and so Py, Py, Py, Ps is a 4-cycle in O(WV).
Let P16 = P1UP6 and P52 = P5UP2. Then P16QP52 = Q), and so
|Pig| = |Psa| = 4. In other words, {Pig, P52} is a partition of ¥ into
two 4-sets. The same holds for {Pﬁg, P27}, {ng, P74} and {P857 P41}.
Now, Py # Pig. (Otherwise, we would have P;; = Pjg and Pgs = Pso,
so PLN Py, C PyNPsy,=10. But also PsN P, = P3N P, = (), giving a
contradiction.) Similarly, since the P; are all distinct, one easily sees
that {P167 P52} 7£ {ng, P74}. It follows that {P16 N ng, P16 N P74, P52 N
Psg, Pss N Pry} is a partition of W into four 2-sets. The same holds for
{Pss N Pss, Ps3 N Py, Poy N Pss, Po; N Py }. From this information, one
can easily find a permutation of ¥ so that each P, = {i —3,7,7+ 3} as
in our example. This shows:

Lemma 7.1. There is exactly one embedded copy of A in ©(V) up to
the action of Sym(¥).

We now move on to consider Gys = Gs5(Sos). We set II = W. If
v € Cy = C1(Sos), write B(y) for the disc with [II N B(y)| = 3. Let
7(y) = IIN B(y). Thus, 7 maps G(Sp s, C1) to O(II) sending edges to
edges.

We note that G(Sps, C1) C Ggs(X) contains an embedded copy of A
constructed as follows. Let A € S be an embedded circle with IT C A.
We label the elements of II so that the cyclic order induced from A is
given by pi, pa, p7, P2, Ps, Ps, P3, Pe- Let l; ;13 € A be the segment from
pi to piys. Let B; be a regular neighbourhood of the arc l;_3; U l; ;13
and let 7; = 0B;. The map [v; — 7;] now gives an embedding of A into
G(Sos,Ch).

We claim:

Lemma 7.2. There is exactly one embedded copy of A in G(Sps,C1)
up to the action of Map(Sops).

Let A C G(Sps,C1) be such a copy. After composing with 7, we get
a map of A into ©(II) sending edges to edges, which as we have already
noted, must also be an embedding. By Lemma 7.1, we can now label
the elements of IT as {p1,...,ps} so that w(;) = {pi—3, pi, pisrs} for all
i. (In other words, as in the given example.) Write B; = B(v;).

Now 71,72, V6,75 18 a square in A, and so (B; U Bg) N (BsU By) = 0.
Also |(ByU Bg) N1I| = |(Bs U By) N 11| = 4. It follows that we can find
diSjOiIlt diSCS, B167B52 Q S with B1 U B6 g B16 and B5 U B2 g B52.
Note that 0B;¢ and 0Bs52 are homotopic in S\ II, and so determine a
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curve, yi6 = 7Ys2. We have similar pairs of discs, { Bgs, Bar}, { Bss, Bra}
and {Bgs, By1 }. Note that we have similar curves, ;;, defined whenever
li — j] is 3 or 5.

Now consider the curves vq,7v2,73,74. Let A =S\ (B U By). This
is an annulus with ANTI = {ps,ps}. Now B3N By =0, B3N By # ()
(since pg € B3N By), and ps, ps € B3N A. Thus, we can find (disjoint)
arcs, e, f in B3 N A, respectively connecting p3 and pg to dB.

Let D be (the closure of) the component of By \ By containing p7.
Now By U By C By and (By; \ By) N11 = {p;}. It follows (cf. Lemma
3.4) that DN By is a single arc, b, say. Thus, 0D = bUd, where d C 4
is an arc with endpoints d N By = d N b.

Now, dN(eU f) C ByN Bz = (. It follows that any arc of dN A which
does not include an endpoint could be homotoped into Bs. It follows
that d N By must consist of a single arc, and so |d N By| = 2. Now
R =By UD is a disc with RN II = By; NII, and so JR is homotopic
in S\ II to v41 = y52. Also |ORN | =2, and 0 t(v41,72) = 2.

By symmetry, it follows that each curve ~; intersects each curve of
the form ~,;, either 0 or 2 times.

It is now fairly straightforward to see that {v1,...,vs} must be pre-
cisely the set of curves described in our example. For example, note
that By NI = {p7,ps,p1,p6}, and By N+ is an arc which cuts off a
disc, namely By N By, containing p;. Now By N 11 = {p4, p1,ps}, and
so 1 = 0By is homotopic to 9(By; \ Bs). Similarly, 4 is homotopic to
O(Buy1 \ Bs). It follows that By N By is a disc containing py, ps. One can
now proceed to show that any pair of the curves ~; intersect at most
twice, and that this determines them completely.

This proves Lemma 7.2.

The remainder of the proof of rigidity is now essentially identical
to that for Sp7. We define surrounding pairs in the same way. A
surrounding pair, «, 3, (as defined in Section 2) can be recognised by
the fact that a, 8 € C1(Sps), there is a curve v € Cys(Sog) \ C1(Sos)
disjoint from both « and (, and «, 5 are vertices of some embedded
copy of A in G(Sps,C1). (Note that G(Spg,C1) can be constructed
from Gs5(Sp8).) We now proceed as before.

This shows that G.(Sps) is rigid, completing the proof of Theorem
1.1.
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