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Abstract. We study the coarse geometry of the Teichmüller space of a com-
pact orientable surface in the Teichmüller metric. We describe when this admits
a quasi-isometric embedding of a euclidean space, or a euclidean half-space. We
prove quasi-isometric rigidity for Teichmüller space of a surface of complexity
at least 2: a result proven independently by Eskin, Masur and Rafi. We de-
duce that, apart from some well known coincidences, the Teichmüller spaces are
quasi-isometrically distinct. (See also Lemma 2.5 for further discussion.) We
also show that Teichmüller space satisfies a quadratic isoperimetric inequality.
A key ingredient for proving these results is the fact that Teichmüller space
admits a ternary operation, natural up to bounded distance, which endows the
space with the structure of a coarse median space whose rank is equal to the
complexity of the surface. From this, one can also deduce that any asymp-
totic cone is bilipschitz equivalent to a CAT(0) space, and so in particular, is
contractible.

1. Introduction

In this paper we explore various properties of the large scale geometry of the
Teichmüller space of a compact orientable surface in the Teichmüller metric. In
particular, we prove a number of results relating to the coarse rank of Teichmüller
space, as well as quasi-isometric rigidity. Our starting point is a combinatorial
model of Teichmüller space [Ra, D1], which we use to show that Teichmüller space
admits a coarse median structure in the sense of [Bo1]. From this, a number of
facts follow immediately, though others require additional work. As we will note,
some of these results have been obtained in some form before, while others seem
to be new. The paper makes use of constructions in [Bo4], which studies the large-
scale geometry of the mapping class group from a similar perspective. The idea
of using medians (or “centroids”) in the mapping class group originates in [BeM].
We remark that Teichmüller space in the Weil-Petersson metric also admits a
coarse median [Bo5]; which also has consequences for the large-scale geometry of
that space.

Let Σ be a compact orientable surface of genus g with p boundary components.
Let ξ = ξ(Σ) = 3g + p − 3 be the complexity of Σ. Unless otherwise stated, we
will assume in this introduction that ξ(Σ) ≥ 2. We will sometimes use Sg,p to
denote a generic surface of this type.

Date: First draft: 20th March 2015. Revised: 30th March 2016.
1



2 BRIAN H. BOWDITCH

We write T(Σ) for the Teichmüller space of Σ, that is, the space of marked
finite-area hyperbolic structures on the interior of Σ. We give T(Σ) the Te-
ichmüller metric, ρ. This endows it with the structure of a complete Finsler
manifold, diffeomorphic to R2ξ(Σ). Note that the mapping class group, Map(Σ),
acts properly discontinuously on T(Σ). The properties we are mainly interested
in here are quasi-isometry invariant, so for most of the paper we will be refer-
ring instead to the “decorated marking graph”, R(Σ), which is a slight variation
on the “augmented marking graph” of [D1]. Both these spaces are equivariantly
quasi-isometric to T(Σ).

The central observation of this paper is that Teichmüller space admits an
equivariant median, with similar properties to that of the mapping class group
[BeM, Bo1]. More specifically, we show:

Theorem 1.1. There is a ternary operation, µ : T(Σ)3 −→ T(Σ), which is canon-
ical up to bounded distance, and which endows T(Σ) with the structure of a coarse
median space of rank ξ(Σ).

A more precise formulation of this (for R(Σ)) is given as Theorem 4.1. Roughly
speaking, this means that T(Σ) behaves like a median algebra of rank ξ(Σ) up
to bounded distance. In fact, any finite subset of T(Σ) lies inside a larger finite
subset of T(Σ) which can be identified with the vertex set of a finite CAT(0) cube
complex of dimension at most ξ(Σ), in such a way that the median operation in
T(Σ) agrees up to bounded distance with the usual median operation in a cube
complex (see Section 2.5). As with the mapping class group, or the Weil-Petersson
metric, the median can be characterised in terms of subsurface projection maps.
Moreover, it is Map(Σ)-equivariant up to bounded distance.

The proof of Theorem 1.1 depends on various properties of subsurface projec-
tion, as laid out in [Bo4]. It has also been recently noted in [BeHS2], that these
properties are satisfied in any “hierarchically hyperbolic space”, which includes
the mapping class group and Teichmüller space.

Theorem 1.1 is used here to prove various facts about the quasi-isometry type
of T(Σ).

For example, the following is an immediate consequence:

Theorem 1.2. For any compact surface Σ, T(Σ) satisfies a coarse quadratic
isoperimetric inequality.

Here the term “coarse quadratic isoperimetric inquality” refers to the standard
quasi-isometric invariant formulation of the quadratic isoperimetric inequality,
and will be made more precise in Section 5.

We note that Theorem 1.2 is also a consequence of the fact that Teichmüller
space admits a bicombing, see [KR].

In fact, using some results about the local geometry of T(Σ), one can show that
it satisfies a quadratic isoperimetric inequality in a more traditional sense (see
Proposition 5.2).
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We also have the following result, which has been proven by different methods
in [EMR1]. An argument using asymptotic cones has been found independently
by Durham [D2] (see the remark after Theorem 1.8). Another proof has been
given in [BeHS1].

Theorem 1.3. There is a quasi-isometric embedding of a euclidean n-dimensional
half-space into T(Σ) if and only if n ≤ ξ(Σ).

Of course, this implies that Rn quasi-isometrically embeds in T(Σ) for any
n < ξ(Σ). The question of quasi-isometric embeddings of Rξ(Σ) requires additional
work. We will show:

Theorem 1.4. There is a quasi-isometric embedding of the euclidean space, Rξ(Σ),
into T(Σ) if and only if Σ has genus at most 1, or is a closed surface of genus 2.

Theorem 1.4 turns out to be equivalent to finding an embedded (ξ(Σ) − 1)-
sphere in the curve complex of Σ, which we will see happens precisely in the
above cases (see Proposition 5.7).

Note that Theorem 1.3 immediately implies that if Σ and Σ′ are both compact
orientable surfaces and T(Σ) is quasi-isometric to T(Σ′), then ξ(Σ) = ξ(Σ′). (One
can distinguish some further cases by bringing Theorem 1.4 into play.) In fact we
have:

Theorem 1.5. If T(Σ) is quasi-isometric to T(Σ′) then ξ(Σ) = ξ(Σ′), and if
ξ(Σ) = ξ(Σ′) ≥ 4, then Σ and Σ′ are homeomorphic. Moreover, if one of Σ or Σ′

is homeomorphic to S1,3, then they both are.

This statement can be paraphrased by saying that if two Teichmüller spaces
are quasi-isometric then they are isometric, since it is well known each of the
pairs {S2,0, S0,6}, {S1,2, S0,5} and {S1,1, S0,4} have isometric Teichmüller spaces.
They are all different apart from the above coincidences. Theorem 1.5 is a simple
consequence of Theorem 1.6 below, together with the corresponding statement for
the mapping class group.

Recall that we have a thick part, TT (Σ), of T(Σ). Up to bounded Hausdorff
distance, it can be defined in a number of equivalent ways. For example, given
ε > 0, it can be defined as the set those finite area hyperbolic structures with
systole (i.e. length of the shortest closed geodesic) at least ε. For this, we need
to chose ε sufficiently small so that TT (Σ) is connected. Note that Map(Σ) acts
cocompactly on TT (Σ). So, for example, TT (Σ) is a bounded Hausdorff distance
from any Map(Σ)-orbit.

Theorem 1.6. If φ : T(Σ) −→ T(Σ) is any quasi-isometry, then the Hausdorff
distance from φ(TT (Σ)) and TT (Σ) is finite, and bounded above in terms of ξ(Σ)
and the quasi-isometric parameters of φ.

Our proof will use asymptotic cones. However, it has been pointed out to
me by Kasra Rafi that it is also a consequence of the results of Mosher [Mo]
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and Minsky [Mi1, Mi2] which imply that a quasigeodesic in Teichmüller space is
stable if and only if it lies a bounded distance from the thick part. Thus, up to
bounded distance, the thick part can be characterised as the union of all stable
quasigeodesics.

Now, up to bounded Hausdorff distance, TT (Σ) can be viewed as a uniformly
embedded copy of (any Cayley graph of) Map(Σ). It follows that φ gives rise
to a quasi-isometry of Map(Σ) to TT (Σ). By quasi-isometric rigidity of Map(Σ),
[BeKMM, Ham] (see also [Bo4]), it follows that φ|TT (Σ) agrees up to bounded
distance with the map induced by an element of Map(Σ).

Building on this, we get one of the main results of this paper, namely the
quasi-isometric rigidity of the Teichmüller metric:

Theorem 1.7. If ξ(Σ) ≥ 2, there is some m ≥ 0, depending only on ξ(Σ) and
quasi-isometry parameters, such that if φ : T(Σ) −→ T(Σ) is a quasi-isometry,
then there is some g ∈ Map(Σ) such that ρ(φx, gx) ≤ m for all x ∈ T(Σ).

This result has been obtained independently by Eskin, Masur and Rafi [EMR2],
using different methods.

Retrospectively, of course, Theorem 1.6 is an immediate consequence of Theo-
rem 1.7.

Theorem 1.7 is a coarse version of the well known result of Royden [Ro] that
any isometry of T(Σ) is induced by an element of Map(Σ).

The proofs of Theorems 1.3 to 1.7 involve studying an asymptotic cone, T∞(Σ),
of T(Σ) (see [G, VaW]). As a consequence of Theorem 1.1, we know that T∞(Σ)
is a topological median algebra of rank ξ(Σ), and can be bilipschitz embedded in
a finite product of R-trees [Bo1, Bo2]. In particular, it is bilipschitz equivalent to
a median metric space. We also derive the following facts:

Theorem 1.8. Any asymptotic cone, T∞(Σ), of T(Σ) has locally compact dimen-
sion ξ(Σ). It is bilipschitz equivalent to a CAT(0) space (and so, in particular, is
contractible).

Here the locally compact dimension of a topological space is the maximal di-
mension of any locally compact subset.

Another proof that the asymptotic cone has locally compact dimension at most
ξ(Σ) has been found independently by Durham [D2]. From this, the “only if”
part of Theorem 1.3 follows. It also follows from the discussion in [BeHS1].

In fact, analysing the structure of T∞(Σ) will be a significant part of the work
of this paper.

We remark that there are various other spaces naturally associated to a com-
pact surface. Of particular note are the Weil-Petersson metric on Teichmüller
space, the (Cayley graph of the) mapping class group, and the curve complex.
Some discussion of the quasi-isometry types of these and other related spaces can
be found in [Y]. Various results regarding rank and rigidity of such spaces can
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be found, for example, in [BeKMM, Ham, EMR1, EMR2, Bo1, Bo4, Bo5], and
references therein.

Theorem 1.1 of this paper is proven in Section 4 (modulo the lower bound on
rank, which will be a consequence of Theorem 1.3). Theorems 1.2, 1.3, 1.8 and
half of 1.4 are proven in Section 5. Theorems 1.5 and 1.6 are proven is Section
7, and the proof of Theorem 1.7 is completed in Section 8. The remaining half of
Theorem 1.4 is proven in Section 9.

Much of the work for this paper was carried out while visiting Tokyo Institute
of Technology in 2014. I am grateful to that institution for its support and
hospitality, and to Sadayoshi Kojima for his invitation. The material about quasi-
isometric embeddings was added in 2015, together with a different proof of the
existence of median. I also thank Kasra Rafi for his interest and comments.

2. Background

In this section, we review a few items of background material.

2.1. Conventions and terminology.
If x, y ∈ R, we often use the notation x ∼ y to mean that |x − y| is bounded

above by some additive constant. The factors determining the relevant constant
at any given moment, if not specified, should be clear from context. Ultimately, it
should only depend on the parameters of the hypotheses, namely the complexity
of the surface, or quasi-isometry constants etc. If a, b are points in a metric space,
we write a ∼ b to mean that they are a bounded distance apart. Again, the
relevant bounds should be clear from context, and ultimately depend only on the
parameters of the hypotheses.

If x, y > 0, we will similarly write x � y to mean that y is bounded above and
below by increasing linear functions of x. Again, the factors determining these
functions should be clear from context.

We will generally behave as though the relations ∼ and � were transitive,
though clearly each application of the transitive law will implicitly entail a change
in the defining constants.

Except when we are working in the asymptotic cone, maps between our various
metric spaces are generally defined up to bounded distance. It will generally be
assumed that maps between graphs send vertices to vertices.

In the context of asymptotic cones, we will be using ultraproducts of various sets
or graphs associated to a surface, for example curves, multicurves and markings.
In this case, we will understand a “curve” to mean an element of the ultraproduct
of the set of curves, and a “standard curve” to mean an element of the original
set, that is, a curve in the traditional sense. We apply similar terminology to
multicurves and subsurfaces etc. We will elaborate on this later.

Let φ : (M,ρ) −→ (M ′, ρ′) be a map (not necessarily continuous) between met-
ric spaces. We say that φ is coarsely lipschitz if for all x, y ∈ M , ρ′(φx, φy) is



6 BRIAN H. BOWDITCH

bounded above by a linear function of ρ(x, y). We say it is a quasi-isometric em-
bedding if, in addition, ρ(x, y) is bounded above by a linear function of ρ′(φx, φy).
A quasi-isometry is a quasi-isometric map with cobounded image (i.e., every point
of M ′ is at a bounded distance from φ(M)).

2.2. Marking graphs.
Let Σ be a compact orientable surface of genus g with p boundary components.

Let ξ = ξ(Σ) = 3g + p − 3 be the complexity of Σ. We will write Sg,p to denote
the topological type of Σ.

As usual, a curve in Σ will mean a homotopy class of essential non-peripheral
simple closed curves (except when it refers to an element of the ultraproduct
of such, as mentioned above). We write ι(α, β) for the geometric intersection
number of two curves, α, β. We write Map(Σ) for the mapping class group of
Σ. A multicurve in Σ is a set of pairwise disjoint curves. Here we will generally
allow empty multicurves. We write S = S(Σ) for the set of multicurves on Σ. A
multicurve is complete if it cuts Σ into S0,3’s. A complete multicurve has exactly
ξ(Σ) components.

Central to the discussion are the notions of “markings” and “marking graphs”.
A specific construction of a marking graph is described in [MaM2]; though the
notion is quite robust, and there are many variations which could serve for our
purposes. We summarise below the essential properties we need.

Given two finite sets, a, b, of curves on Σ, we write ι(a, b) = max{ι(α, β) | α ∈
a, β ∈ b}. We abbreviate ι(a, β) = ι(a, {β}). Note that ι(a, a) measures the “self
intersection” of a. (In fact, this quantity being finite is equivalent to a being
finite. Indeed, |a| is bounded in terms of ι(a, a).) We say that a collection, a,
of curves fills Σ if ι(a, γ) > 0 for all curves γ. (Less formally, this means that⋃
a, realised so as to minimise total intersection, cuts Σ into discs and peripheral

annuli.) By a p-marking on Σ, we mean a finite set, a, of curves which fill Σ and
with ι(a, a) ≤ p. Note that, for any p ∈ N, Map(Σ) acts naturally on the set of
p-markings, with finite quotient.

Definition. By a marking graph we mean a connected Map(Σ)-invariant graph,
M, whose vertex set, M0, consists of a set of p-markings for some p < ∞, and
such that ι(a, b) ≤ q for all adjacent a, b ∈M0, for some q <∞.

Here, of course, “Map(Σ)-invariant” means thatM0 is closed under the natural
action of Map(Σ) induced by its action on the set of curves, and that adjacency
is also respected by this action. Note that the conditions imply that the action is
cofinite, i.e. the quotient is a finite graph.

It will be convenient to impose some more conditions on our marking graph.
First, we suppose that some marking should contain a complete multicurve. (Note
that it follows that if a ∈ M0 contains a multicurve, τ , then a is a bounded
distance from some b ∈ M0, where b contains a complete multicurve containing
τ .) We also require the following. If a, b ∈M0 both contain a multicurve τ , then
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they can be a connected by a path inM, whose vertices all contain τ , and whose
length is bounded above in terms of the distance between a and b in M.

The above properties are easy to arrange. In fact, they hold for the marking
graph described in [MaM2]. Alternatively one can construct a graph, M(p, q),
as follows. Given q ≥ p > 0 and the set of vertices is the set of all p-markings,
and we and deem markings a, b to be adjacent if ι(a, b) ≤ q. One can check that
if p, q are large enough, then the above conditions are satisfied for M(p, q). (In
fact, p = q = 4 is sufficient for it to be a marking graph as defined.) This was
the definition used in [Bo1]. We note that whatever marking graph we choose, it
will embed into M(p, q) for large enough p, q. Moreover, this embedding will be
a quasi-isometry.

We now fix M = M(Σ) to be any marking graph satisfying the above con-
ditions. Henceforth by a marking of Σ we will mean an element of M0 for this
marking graph. We write ρ∧ for the combinatorial metric onM, where each edge
is assigned unit length. (This notation will be explained in Section 2.3 below.)

2.3. Subsurfaces.
By a subsurface in Σ, we mean a subsurface X of Σ, defined up to homotopy,

such that the intrinsic boundary, ∂X, of X is essential in Σ, and such that X is
not a three-holed sphere. We write X for the set of subsurfaces. We can partition
X as XA tXN into annular and non-annular subsurfaces. Given a curve, γ, in Σ,
we write X(γ) ∈ XA, for the regular neighbourhood of γ. Given X ∈ X , write
∂ΣX for the relative boundary of X in Σ, thought of as a multicurve in Σ.

Given X, Y ∈ X , we have the following pentachotomy:

X = Y .
X ≺ Y : X 6= Y , and X can be homotoped into Y but not into ∂Y .
Y ≺ X: Y 6= X, and Y can be homotoped into X but not into ∂X.
X ∧ Y : X 6= Y and X, Y can be homotoped to be disjoint.
X t Y : none of the above.

We will be using subsurface projections to curve graphs and marking complexes.
We can associate to each X ∈ X the curve graph, G(X), in the usual way. Thus,

if X ∈ XN , then the vertex set, G0(X), is the set of curves in X, where two curves
are adjacent if they have minimal possible intersection number. If ξ(Σ) ≥ 2, this
is 0. We write σ∧X for the combinatorial metric on G(X). (The caret superscript
will be explained later.) It is shown in [MaM1] that G(X) is Gromov hyperbolic.

We will need to deal with annular surfaces differently. We begin with a general
discussion.

Suppose that A is a compact topological annulus. Let G(A) be the graph
whose vertex, G0(A), consists of arcs connecting the two boundary components
of A, defined up to homotopy fixing their endpoints, and where two such arcs
are deemed adjacent in G(A) if they can be realised so that the meet at most at
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their endpoints. We write σ∧A for the combinatorial metric on G(A). It is easily
seen that G(A) is quasi-isometric to the real line. In fact, we will choose points
x, y in the different boundary components, and let G0(A) be the full subgraph of
G(A), whose vertex set, G0

0(A), consists of those arcs with endpoints at x and y.
Now G0(A) can be identified with real line, R, with vertex set Z. In fact, if t is
the Dehn twist in A, and δ ∈ G0

0(A) is any fixed arc, then the map [r 7→ trδ]
gives an identification of Z with the vertex set. One can also check that the
inclusion of G0(A) into G(A) is an isometric embedding. Moreover, G(A) is the 1-
neighbourhood of its image. It follows that |σ∧A(δ, trδ)− |r|| ≤ 1, for all r ∈ Z. In
fact, since x, y and δ can be chosen arbitrarily, this holds for all δ ∈ G0(A). (The
fact that we have only an additive error here is important for later discussion.)

Now given X ∈ X , we have a well defined “subsurface projection” map: θ∧X :
M(Σ) −→ G(X), well defined up to bounded distance (see [MaM2]). (Here we
are using the notation “θ∧X” to remind us that the we are dealing with marking
graphs and curve graphs. In [Bo1, Bo4] the notation θX was used, first in a general
setting, and then specialised to the marking graph. Here we will use the notation
θX for projection between “decorated” graphs. which will play an equivalent role
in this paper. This also explains the notation ρ∧ and σ∧X introduced above.)

We also have a projection map ψ∧X : M(Σ) −→ M(X). In fact, these maps
can be defined intrinsically to subsurfaces. In this way, if Y � X, then θ∧Y ◦ψ∧X =
θ∧Y : M(Σ) −→ G(Y ) and ψ∧Y ◦ ψ∧X = ψ∧Y : M(Σ) −→ M(Y ). Moreover, if
γ ∈ a ∈M(Σ) with γ ≺ X, we may always assume that γ ∈ ψ∧Xa.

If X ∈ XN , we have a map χ∧X : M(X) −→ G(X) where χ∧X simply selects
one curve from the marking. If X ∈ XA, we set M(X) equal to G, and take
χ∧X :M(X) −→ H(X) to be the identity map. In all cases, we have θ∧X = χ∧X ◦ψ∧X
(at least up to bounded distance).

If Y � X or Y t X, then we also have a projection, θ∧XY ∈ G(X).
The distance formula of [MaM2] relates distances in M(Σ) to subsurface pro-

jection distances. In particular, they show:

Lemma 2.1. There is some r0 ≥ 0 depending only on ξ(Σ), such that if r ≥ r0

a, b ∈ M(Σ) then the set A∧(a, b; r) = {X ∈ X | σ∧X(θ∧Xa, θ
∧
Xb) ≥ r} is finite.

Moreover, ρ(a, b) �
∑

X∈A∧(a,b) σ
∧
X(θ∧Xa, θ

∧
Xb).

Here the linear bounds implicit in � depend only on ξ(Σ) and r. (A similar
formula for Teichmüller space was given in [Ra]. It is given as Proposition 4.8
here.)

One immediate consequence is the following:

Lemma 2.2. Given r ≥ 0, there is some r′ ≥ 0, depending only on ξ(Σ) and r
such that if a, b ∈M(Σ) and σ∧X(θ∧Xa, θ

∧
Xb) ≤ r for all X ∈ X , then ρ∧(a, b) ≤ r.

Another important ingredient is the following lemma of Behrstock [Be] (given
as Lemma 11.3 of [Bo1]).
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Lemma 2.3. There is a constant, l, depending only on ξ(Σ) with the follow-
ing property. Suppose that X, Y ∈ X with X t Y , and that a ∈ M0. Then
min{σ∧X(θ∧Xa, θ

∧
XY ), σ∧Y (θ∧Y a, θ

∧
YX)} ≤ l.

2.4. Median algebras.
Let (M,µ) be a median algebra; that is, a set, M , equipped with a ternary

operation, µ : M3 −→ M , such that µ(a, b, c) = µ(b, c, a) = µ(b, a, c), µ(a, a, b) =
a and µ(a, b, µ(c, d, e)) = µ(µ(a, b, c), µ(a, b, d), e), for all a, b, c, d, e ∈ M . (For
an exposition, see for example [BaH].) Given a, b ∈ M , write [a, b] = {x ∈
M | µ(a, b, x) = x}, for the median interval from a to b. A subset, A, of M is
a subalgebra if µ(a, b, c) ∈ A for all a, b, c ∈ A. It is convex if [a, b] ⊆ A for all
a, b ∈ A. One checks easily that [a, b] is itself convex. One defines homomorphisms
and isomorphisms between median algebras in the obvious way. One also checks
that the map [x 7→ µ(a, b, x)] is a median retraction of M to [a, b].

If a, b ∈ M , then [a, b] admits a partial order, ≤, defined by x ≤ y if x ∈ [a, y]
(or equivalently y ∈ [b, x]). If [a, b] has intrinsic rank 1 (as defined below), then
this is a total order.

A (directed) wall in M is (equivlalent to) an epimorphism of M to the two-point
median algebra. One can show that any two points of M are separated by some
wall (i.e., they have different images under the epimorphism).

An n-cube in M is a subalgebra isomorphic to the direct product on n two-
point median algebras: {−1, 1}n. The rank of M is the maximal n such that M
contains an n-cube (deemed infinite, if there is no such bound).

There is a stronger notion of “n-colourability” defined in [Bo1]. We say that two
walls, φ : M −→ [0, 1] and φ′ : M −→ [0, 1], cross if the product homomorphism,
(φ, φ′) : M −→ [0, 1]2 is surjective. We say that M is n-colourable if we can
partition the walls into n “colours” so that no two walls of the same colour cross.
It is not hard to see that this implies that M has rank at most n.

We will refer to a 2-cube as a square. We will generally denote a square by
cyclically listing its points as a1, a2, a3, a4, so that {ai, ai+1} is a side for all i.
Note that ai ∈ [ai−1, ai+1] for all i (which one can check is, in fact, an equivalent
way of characterising a square, provided we assume the ai to be pairwise distinct).

Two ordered pairs, a, b and a′, b′ of elements of M are said to be parallel if
[a, b′] = [a′, b]. This is equivalent to saying that a, b′ ∈ [a′, b] and a′, b ∈ [a, b′]. It
is also equivalent to saying that (a = b and a′ = b′) or (a = a′ and b = b′) or
a, b, b′, a′ form a square. Note that this is an equivalence relation on the set of
ordered pairs in M .

If a, b is parallel to a′, b′, and x ∈ [a, b], then µ(a, b, µ(a′, b′, x)) = µ(µ(a, b, a′), µ(a, b, b′), x) =
µ(a, b, x) = x. Similarly, swapping a, b with a′, b′, one sees that the maps [x 7→
µ(a, b, x)] and [x 7→ µ(a′, b′, x)] are inverse median isomorphisms between [a, b]
and [a′, b′].

We need to give some discussion to “gate maps”. Suppose C ⊆M is (a-priori)
any subset. A map ω : M −→ C is a gate map if ωx ∈ [c, x] for all x ∈ M and
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c ∈ C. If such a map exists, then it is unique, and ω|C is the identity. Moreover,
C must be convex (since if a, b ∈ C and d ∈ [a, b], then ωd ∈ [a, d] ∩ [d, b] = {d},
so d ∈ C). In fact, given that C is convex, ωx is characterised by the fact that
[x, ωx] ∩ C = {ωx}. In particular, we see that if y ∈ [x, ωx] then ωy = ωx. We
also claim that ω is a median homomorphism. For this, it is enough to show that
if c ∈ [a, b], then ωc ∈ [ωa, ωb]. But now the statements c ∈ [a, b], ωc ∈ [c, ωb]
and ωb ∈ [b, ωc] together imply ωc ∈ [a, ωb]. Thus (by the same observation, with
a, b, c replaced by ωb, a, ωc) we get ωc = ωωc ∈ [ωa, ωb] as required. In other
words, since ω|C is the identity, ω is a median retraction of M onto C. In fact, if
C is convex, then any median retraction to C is a gate map. (For if x ∈ M and
y ∈ [x, ωx] ∩ C, then y = ωy ∈ [ωx, ωωx] = [ωx, ωx] = {ωx}, so y = ωx.)

In general, a gate map to a closed convex set might not exist. However, it will
exist, for example, if C is compact, or if all intervals in M are compact. (The
latter will hold in the cases of interest to us here.) Also, if a, b ∈ M , then it is
easily checked that the map [x 7→ µ(a, b, x)] is a gate map to [a, b].

If D ⊆M is convex, and ω : M −→ C is a gate map, then ωD is convex. To see
this, suppose that a, b ∈ D, and that x ∈ [ωa, ωb] ⊆ C. Then, ωx = x. Let c =
µ(a, b, x) ∈ D. Since ω is a median homomorphism, we have x = µ(ωa, ωb, x) =
µ(ωa, ωb, ωx) = ωc, so x ∈ ωD, as required. (Note that, if D ∩ C 6= ∅, then
ω(D) = D ∩ C.)

If C,C ′ ⊆M are closed convex, with respective gate maps ωC , ωC′ , we say that
C,C ′ are parallel if ωC′ |C and ωC |C ′ are inverse bijections (necessarily median
isomorphisms). In this case, C,C ′ are either disjoint or equal. As an example,
we have seen that if a, b and a′, b′ are parallel pairs, then the intervals [a, b] and
[a′, b′] are parallel. (Again, note that if B ∩B′ 6= ∅, then C = C ′ = B ∩B′.)

More generally, suppose that we have closed convex sets, B,B′ ⊆M , with gate
maps ω : M −→ B and ω′ : M −→ B′. Let C = ωB′ ⊆ B and C ′ = ω′B ⊆ B′.
By an earlier observation, we know that C,C ′ are convex.

If a ∈ B′, then since ω′ωa ∈ [a, ωa] we see that ωω′ωa ∈ [ωa, ωωa] = {ωa},
so ωω′ωa = ωa. It follows that ωω′x = x for all x ∈ C. Similarly, ω′ω|C ′ is the
identity. We see that ω′|C and ω|C ′ are inverse bijections between C and C ′. We
refer to them as parallel maps.

In summary, we have shown:

Lemma 2.4. Suppose that B,B′ ⊆M are closed convex subsets with gate maps ω :
M −→ B and ω′ : M −→ B′. Let C = ωB′ ⊆ B and C ′ = ω′B ⊆ B. Then C,C ′

are parallel convex sets, with ω′|C and ω|C ′ the inverse parallel isomorphisms.

Now let λ = ωω′ : M −→ C and λ′ = ω′ω : M −→ C ′. These are median
retractions, hence gate maps to C and C ′. Note that ω′λ = ω′ and ωλ′ = ω. In
other words, ω is the gate map to C ′ composed with a parallel map to C. Similarly
for ω′.

Suppose that a ∈ A and b ∈ B′. Then λa = ωω′a ∈ [a, ω′a]. Also ω′a ∈ [a, λ′b],
so λa ∈ [a, λb]. Similarly λ′b ∈ [b, λa]. We also have λa, λ′b ∈ [a, b].
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We will also use the notion of a topological median algebra. This consists of a
hausdorff topological space, M , and a continuous ternary operation µ : M3 −→M
such that (M,µ) is a median algebra. We say that M is locally convex if every
point has a base of convex neighbourhoods. We say that M is weakly locally convex
if, given any open set U ⊆ M and any x ∈ U , there is another open set, V ⊆ U ,
containing x such that if y ∈ V , then [x, y] ⊆ U . (In fact, finite rank together
with weakly locally convex implies locally convex, see Lemma 7.1 of [Bo1].) All
the topological median algebras that arise in this paper will be locally convex.

Examples of topological median algebras are median metric spaces. A median
metric space is (equivalent to) a median algebra with a metric ρM , such that for
all a, b ∈ M , [a, b] = {x ∈ M | ρM(a, b) = ρM(a, x) + ρM(x, b)}. Discusson of this
can be found, for example, in [Ve, Bo3].

The following gives a means of obtaining a median metric space in the context
of interest to us.

Lemma 2.5. Suppose that (M,ρ) is a geodesic metric space equipped with a
ternary operation, µ : M3 −→ M such that (M,µ) a finite-rank median alge-
bra. Suppose that there is some κ ≥ 1 such that for all a, b, c, d ∈ M we have
ρ(µ(a, b, c), µ(a, b, d)) ≤ κρ(c, d). Then, ρ is bilipschitz equivalent to a median
metric, ρM , which induces the given median µ.

In fact, the bilipschitz constant can be chosen explicitly to depend only on κ
and rank(M). The metric ρM is not canonically determined by ρ. However, if
C ⊆ M is convex and such that µ restricted to C a median metric, then we can
assume that ρM equals ρ on C.

Under the stronger assumption that µ is finitely colourable, Lemma 2.5 is proven
in [Bo3]. This is achieved by embedding M into a finite product of R-trees by
a bilipschitz median homomorphism and pulling back the l1 metric. (This is
sufficient for the applications of this paper.) In fact, as observed in [Bo4], if we
just assume finite rank, then essentially the same argument suffices to give us a
median metric. We remark that one can weaken the geodesic hypothesis to assume
only that M is lipschitz path-connected (though we don’t need that here).

If we assume in addition that M is complete, then it also follows from [Bo2]
that every interval in M is compact.

Note that, in the situation described above, where B,B′ ⊆M are closed convex
subsets, then the gate maps to B and B′ are both 1-lipschitz. If b ∈ B and
b′ ∈ B′, we have noted that λb, λ′b′ ∈ [b, b′] and λ′b′ ∈ [λb, b′]. It follows that
ρM(b, b′) = ρM(b, λb) + ρM(λb, λ′b′) + ρM(λ′b′, b′). Also, ρM(b, C) = ρM(b, λb) and
ρM(b′, C ′) = ρM(b′, λ′b′). In particular, we get ρM(b, b′) ≥ ρM(b, C) + ρM(b′, C ′),
where C,C ′ are the images of B′ and B under the respective gate maps, as above.
(This observation will be used in the proof of Lemma 8.2.)

Note that any R-tree is a median metric space of rank 1. Hence, a direct product
of n R-trees with the l1 metric is median metric space of rank n. We recall the
following definition from [Bo4]:
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Definition. An R-tree is almost furry if it has no point of valence 2.

In other words, the complement of any point is either connected or has at least
3 components.

We note the following from [Bo4]:

Proposition 2.6. Suppose that M is a median metric space of rank n, that D is
a direct product of n almost furry R-trees, and that f : D −→M is a continuous
injective map with closed image. Then f is a median homomorphism, and f(D) ⊆
M is convex.

2.5. Coarse median spaces.
Let (Λ, ρ) be a geodesic metric space. The following definition was given in

[Bo1]:

Definition. We say that (Λ, ρ, µ) is a coarse median space if it satisfies:

(C1): There are constants, k, h(0), such that for all a, b, c, a′, b′, c′ ∈ Λ,

ρ(µ(a, b, c), µ(a′, b′, c′)) ≤ k(ρ(a, a′) + ρ(b, b′) + ρ(c, c′)) + h(0).

(C2): There is a function h : N −→ [0,∞) such that 1 ≤ |A| ≤ p <∞, then there
is a finite median algebra (Π, µΠ) and a map λ : Π −→ Λ such that

ρ(λµΠ(x, y, z), µ(λx, λy, λz)) ≤ h(p)

for all x, y, z ∈ Π and such that ρ(a, λπa) ≤ h(p) for all a ∈ A.

We say that (Λ, ρ, µ) has rank at most n if Π can always be chosen to have rank
at most n as a median algebra.

We say that (Λ, ρ, µ) is n-colourable if we can always choose Π to be n-colourable
as a median algebra.

Given a, b ∈ Λ, write [a, b] = {µ(a, b, x) | x ∈ Λ}, for the coarse interval from a
to b. If c ∈ [a, b], then one can check that µ(a, b, c) ∼ c.

Definition. We say that C ⊆ Λ is r-quasiconvex if [a, b] ⊆ N(C; r) for all a, b ∈ C.
We say that C is quasiconvex if it is r-quasiconvex for some r ≥ 0.

Note that a quasiconvex set, C, is always quasi-isometrically embedded, or more
precisely, there is some s depending only on r and the parameters of Λ, such that
the inclusion of N(C; s) into Λ is a quasi-isometric embedding.

We can define a coarse gate map to be a map ω : Λ −→ C such that µ(x, ωx, c) ∼
ωx for all x ∈ Λ and c ∈ C. Similarly as with gate maps in a median algebra, the
existence of such a map implies that C is quasiconvex.

We note the following:

Lemma 2.7. Suppose that a, b, c ∈ Λ and r ≥ 0, with ρ(µ(a, b, c), c) ≤ r. Then
ρ(a, c) + ρ(c, b) ≤ k1ρ(a, b) + k2, where k1, k2 are constants depending only on r
and the parameters of Λ.
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Proof. This is equivalent to saying that ρ(a, c) is linearly bounded above in terms
of ρ(a, b). By (C1), ρ(µ(a, c, a), µ(a, c, b)) ≤ kρ(a, b) + h(0). Also, µ(a, c, a) and
µ(a, c, b) are respectively at a bounded distance from a and c, so the statement
follows. �

In other words, if c lies “between” a and b in the coarse median sense, then
ρ(a, c) + ρ(c, b) agrees with ρ(a, b) up to linear bounds.

A map, φ : (Λ, ρ, µ) −→ (Λ′, ρ′, µ′), between two coarse median spaces is said to
be a h-quasimorphism if ρ′(φµ(x, y, z), µ(φx, φy, φz)) ≤ h for all x, y, z ∈ Λ. We
abbreviate this to quasimorphism if the constant, h, is understood from context.

A particular example of a coarse median space is a Gromov hyperbolic space.
In this case, the median is the usual centroid of three points (a bounded distance
from any geodesic connecting any two of these points). Such a coarse median
space has rank at most 1. (In fact, any rank-1 coarse median space arises in this
way.)

2.6. Asymptotic cones.
Let Z be a countable set. By Zorn’s lemma, Z admits a non-principal ultrafilter,

and we assume Z to be equipped with some such. In general our constructions
might depend on the choice of ultrafilter. It is unclear to what extent they do
here; but in any case, all the properties we describe are valid for any such choice
(which we fix, once and for all).

Given a Z-sequence of sets, ~A = (Aζ)ζ , we write U ~A for its ultraproduct, that

is, U ~A =
(∏

ζ∈Z Aζ

)
/≈, where (aζ)ζ ≈ (bζ)ζ if aζ = bζ almost always. If Aζ = A

is constant, we write UA = U ~A. We can identify A as a subset of UA via constant
sequences. We then refer to an element of A in UA as being standard.

For example, in this context, we will refer to an element of UG0(Σ) as a “curve”,
and an element of G0(Σ) ⊆ UG0(Σ) as a “standard” curve. We can also talk about
“subsurfaces” (in UX ) and “standard subsurfaces” in X . We will sometimes
abuse terminology and view a (non-standard) multicurve as a set of disjoint (non-
standard) curves.

Note that the ultraproduct of the reals, UR, is an ordered field, where the order
is given by x < y if and only if xζ < yζ for almost all ζ. We say that x ∈ UR is
infinitesimal if |x| < y for all y ∈ R with y > 0. We say that x ∈ UR is limited if
|x| < y for some y ∈ R. If we quotient UR by the infinitesimals (i.e. two numbers
are equivalent if they differ by an infinitesimal), we get the “extended reals”, R∗,
which is an ordered abelian group containing R as the convex subgroup of limited
extended reals.

Suppose that ((Λζ , ρζ))ζ is a Z-sequence of metric spaces. Then (U~Λ,Uρ) is
a (UR)-metric space. After identifying points an infinitesimal distance apart, we
get a quotient (Λ∗, ρ∗), which is an R∗-metric space. We say that two points of
Λ∗ lie in the same component if they are a limited distance apart. Thus, each
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component of Λ is a metric space in the usual sense (that is, the metric takes real
values). In fact, one can show that such a component is a complete metric space.

In particular, suppose that (Λ, ρ) is a fixed metric space, and that t ∈ UR is
a positive infinitesimal. Let (Λζ , ρζ) = (Λ, tζρ). In this case, we write (Λ∗, ρ∗)
for the resulting R∗-metric space (where the scaling factors, tζ , are implicitly
understood). We will use Λ∞ to denote an arbitrary component of Λ∗, and ρ∞

for the restriction of ρ∗. Thus, (Λ∞, ρ∞) is a complete metric space in the usual
sense. This is called an asymptotic cone of Λ and we refer to Λ∗ as the extended
asymptotic cone. Given a Z-sequence of points xζ ∈ Λζ , and x ∈ Λ∗, write xζ → x
to mean that x is the class corresponding to (xζ)ζ . If Λ is a geodesic space, so
is Λ∞. We put the metric topology on each component of Λ∗, and topologise Λ∗

as the disjoint union of its components. Note that Λ∗ has a preferred basepoint,
namely that corresponding to any constant sequence in Λ. The component of Λ∗

containing this basepoint is sometimes referred to as the asymptotic cone of Λ.
(Again, the choice of scaling factors is implicitly assumed.)

If a group Γ acts by isometry on Λ, we get an action of its ultraproduct, UΓ,
on Λ∗.

If (Λ, ρ) and (Λ′, ρ′) are metric spaces, and φ : Λ −→ Λ′ is a coarsely lipschitz
map, we get an induced map φ∗ : Λ∗ −→ (Λ′)∗, which is lipschitz (in the sense that
the multiplicative bound is real). This restricts to a lipschitz map φ : Λ∞ −→
(Λ′)∞ (were “lipschitz” here has its usual meaning). If φ is a quasi-isometric
embedding, then φ∞ is bilipschitz onto its range. In particular, if φ is a quasi-
isometry then, φ∞ is a bilipschitz homeomorphism.

A similar discussion applies if we have a Z-sequence of uniformly coarsely lip-
schitz maps, φζ : Λ −→ Λ′.

If (Λ, ρ, µ) is a coarse median space, then we get a ternary operation µ∗ :
(Λ∗)3 −→ Λ∗ which restricts to µ∞ : (Λ∞)3 −→ Λ∞. One can check that (Λ∗, µ∗)
is a median algebra, with (Λ∞, µ∞) as a subalgebra. Note that (Λ∞, µ∞) is a
topological median algebra, in the sense that the median is continuous with respect
to the topology induced by ρ∞.

If Λ has finite rank, ν, then Λ∗ has rank at most ν as a median algebra. It is
easy to see that Λ∞ satisfies the hypotheses of Lemma 2.5 and so Λ∞ is bilipschitz
equivalent to a median metric space. (See [Bo2] for more discussion.) Also,
intervals in Λ∞ are compact. (In particular, we have a gate map for any closed
convex subset.)

A standard example is that of a Gromov hyperbolic space, Λ, in which case,
Λ∗ is an R∗-tree. Each component, Λ∞, is an R-tree. For example, if Λ is the
hyperbolic plane, then Λ∞ is the unique complete 2ℵ0-regular tree. If Λ is a
horodisc, then Λ∞ is a closed subtree thereof. In both cases, Λ∞ is almost furry
(in the sense of Proposition 2.6).
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3. A combinatorial model

In this section, we describe a combinatorial model, R = R(Σ), for T(Σ). It is
a slight variation on the “augmented marking complex” described in [Ra] and in
[D1]. In order to distinguish it, we will refer to the model described here as the
“decorated marking complex”. The model R(Σ) contains M(Σ) as a subgraph.
We define R(Σ) as follows.

A vertex, a, of R consists of a marking, ā ∈ M0, together with a map ηa :
ā −→ N such that if α, β ∈ ā, with ηa(α) > 0 and ηa(β) > 0, then ι(α, β) = 0.
Thus, â = {α ∈ ā | ηa(α) > 0} is a (possibly empty) multicurve in Σ. We refer
to such an a as a decorated marking, and to ηa(α) as the decoration on α. Two
decorated markings, a, b ∈ R0 are deemed adjacent in R if one of the following
three conditions hold:

(E1): ā = b̄ and |ηa(α)− ηb(α)| ≤ 1 for all α ∈ ā.

(E2a): â = b̂, ηa|â = ηb|b̂ and ā, b̄ are adjacent in M.

(E2b): â = b̂, ηa|â = ηb|b̂ and b = trαa, where α ∈ ā, tα is the Dehn twist about α,
and |r| ≤ 2ηa(α).

We refer to condition (E1) as “vertical adjacency” and to (E2) (that is (E2a) or
(E2b)) as “horizontal adjacency”. Given that M is connected, it is easily seen
that R is connected also. We write ρ for the combinatorial metric on R (assigning
each edge unit length).

We say that an element a ∈ R0 is thick if â = ∅. The thick part, RT , ofR is the
full subgraph of R whose vertex set consists of thick decorated markings. Note
that there is a natural embedding, υ :M−→ RT ⊆ R, extending this inclusion.
It is easily seen that this is a quasi-isometry, with respect to the intrinsic path
metric induced on RT . Note that this is again robust — if we were to take
a different marking complex satisfying the conditions laid out in Section 2, we
would get a quasi-isometric space.

Given a ∈ R, define the map h : R −→ [0,∞) by setting h(a) = ρ(a,RT ). It
is easily checked that if a ∈ R0, then h(a) =

∑
γ∈ā hγ(a) =

∑
γ∈â hγ(a), where

hγ(a) = ηa(γ). This will be used in Section 7.
In Section 2 above we described subsurface projections, θ∧X :M(Σ) −→ G(X).

Here we need to modify that in the case where X is an annulus. So suppose
that X ∈ XA. The open annular cover of Σ corresponding to X has a natural
compactification to a compact annulus, A(X) (cf. [MaM2]).

Now, to any annulus, A, we have associated a graph (G(A), σ∧A), as described
in Section 2.3. From this, we can define the decorated arc graph, H(A). Its vertex
set, H0(A) is G0(A)×N, where (δ, i) and (ε, j) are deemed adjacent if either δ = ε
and |i − j| = 1, or if i = j and σ∧A(δ, ε) ≤ 2i. We write σA for the induced
combinatorial metric. One can see that H(A) is quasi-isometric to a horodisc in
the hyperbolic plane. In fact, if HT (A) is the full subgraph of H(A) with vertex
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set G0(A)×N, then the inclusion ofHT (A) in G(A) is an isometric embedding with
1-cobounded image. Moreover the map sending (trδ, i) to the point (r, 1 + i log 2)
in the upper-half-plane model gives a quasi-isometry of HT (A) to the horodisc
R× [1,∞).

Returning toX ∈ XA, we write (G(X), σ∧X) = (G(A(X)), σ∧A(X)), and (H(X), σX) =

(H(A(X)), σA(X)). Write HT (X) = G(X) ⊆ H(X).
Let θ∧X : M −→ G0(X) be the usual subsurface projection map (which we

assume sends vertices to vertices). This commutes with the Dehn twist, t, about
the core curve of X. In particular, it follows from the above discussion that
|σ∧A(θ∧Xm, θ

∧
Xt

rm)− |r|| ≤ 1 for all r ∈ Z and m ∈ M. If a ∈ R0, set θXa =
(θ∧X ā, i), where i = ηa(α) if α ∈ ā, and i = 0 if α /∈ ā.

If X ∈ XN , we simply set (H(X), σX) = (G(X), σ∧X). We define θX : R0 −→
H0(X) just by setting θXa = θ∧X(ā).

Lemma 3.1. If X ∈ X , then the map θX : R0 −→ H0(X) extends to a coarsely
lipschitz map θX : R −→ H(X).

Proof. In other words, we claim that if a, b ∈ R0 are adjacent inR, then σX(θXa, θXb)
is bounded above (in terms of ξ(Σ)). We deal with the three types of edges in
turn.
(E1): We have ā = b̄. If X ∈ XN then θXa = θXb. If X ∈ XA, then the first
coordinates of θXa and θXb are equal, and their second coordinates are differ by
at most 1. Thus, σX(θXa, θXb) ≤ 1.

(E2a): We have â = b̂ and ηa|â = ηb|b̂, and that σ∧X(θ∧Xa, θ
∧
Xb) is bounded. If

X ∈ XN , we are done. If X ∈ XA, the first coordinates are a bounded distance
apart in G(X), and the second coordinates are equal (to ηaα = ηbα or to 0, de-
pending on whether or not the core curve, α, of X lies in â).

(E2b): We have b = trαa (so that â = b̂). Suppose first that X is not a regular
neighbourhood of α. In this case, we have σ∧X(θ∧X ā, θ

∧
X b̄) bounded. (To see this,

let γ be any curve not homotopic into Σ \ X, with ι(γ, α) = 0, and with with
ι(γ, δ) bounded for all δ ∈ ā. Such a curve is easy to construct — note that we
allow γ = α. Now, tαγ = γ, and we see that ι(γ, ε) = ι(γ, t−rα ε) is bounded for all
ε ∈ b̄. It follows that θ∧X ā and θ∧X b̄ are both a bounded distance from the projec-
tion of the curve γ to X in G(X).) Since H(X) = G(X) in this case, we see that
σX(θXa, θXb) is bounded. We are therefore reduced to considering the case where
X is an annulus with core curve α. From the earlier discussion, we know that
σ∧X(θ∧X ā, θ

∧
X b̄) = σ∧X(θ∧X ā, θ

∧
Xt

r
αā) differs by at most 1 from |r|. Moreover, |r| ≤ 2i,

where i = ηaα = ηbα. Note that i is also the second coordinate of θXa and of θXb.
By construction of H(X), we see that σX(θXa, θXb) ≤ 2 in this case. �

If X = Σ, we write χΣ = θΣ : R(Σ) −→ G(Σ). Up to bounded distance, this
simply selects some curve from the marking.

Also, if X, Y ∈ X with Y t X or Y ≺ X, we write θXY = θ∧XY ∈ G(X) =
H0(X) ⊆ H(X) for the usual subsurface projection (as in [MaM2]).
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Given a ∈ R, α ∈ â and i ∈ N, write ai = ai(α) ∈ R for the decorated marking
obtained by changing the decoration on α to i. (That is, āi = ā, ηai(β) = ηa(β)
for all β ∈ ā \ {α}, and ηai(α) = i.) Write t = tα for Dehn twist about α. Write
Ha(α) = {trai | r ∈ Z, i ∈ N}.

Lemma 3.2. Suppose a ∈ R, α ∈ â and X = X(α). There is a quasi-isometric
embedding κ : H(X) −→ R with image a bounded Hausdorff distance from Ha(α),
and with θX ◦ κ a bounded distance from the identity on H(X).

Proof. Let δ = θ∧X ā. We can assume that δ ∈ H0
T (X) ⊆ H0(X). Thus, H0

T (X) =
{(trδ, i) | r ∈ Z, i ∈ N}. Define κ|H0

T (X) by κ((trδ, i)) = trai. Thus, by construc-
tion, κ(HT (X)) = Ha(α) and θX ◦ κ|(G0

0(X)) is the identity. If b, c ∈ H0
T (X),

the κb, κc are connected by an edge of R (of type (E1) or (E2b)). Thus, we can
extend this to an embedding of HT (X) in R, and hence to a coarsely lipschitz
map, κ : H(X) −→ R. Given that it has a left quasi-inverse, this must be a
quasi-isometric embedding. �

Note that, in fact, we can see that the multiplicative constant of the quasi-
isometry is 1 in this case, i.e. distances agree up to an additive constant. In other
words, we see that if b, c ∈ Ha(α), then |ρ(b, c)− θX(b, c)| is bounded.

We can extend this to a statement about twists on multicurves. Given a, b ∈ R,
suppose that there is some τ ⊆ â ∩ b̂ such that b is obtained from a by applying
powers of Dehn twists about elements of τ , and changing the decorations on these
curves. In this case, we get:

Lemma 3.3. If a, b ∈ R are as above, then
∣∣ρ(a, b)−

∑
α∈τ σX(α)(a, b)

∣∣ is bounded.

(We will only really need that ρ(a, b) �
∑

α∈τ σX(α)(a, b).)
Note that for allX ∈ X ,H(X) is uniformly hyperbolic (in the sense of Gromov).

In particular, they each admit a median operation µX : H(X)3 −→ H(X), well
defined up to bounded distance, and such that (H(X), µX) is a coarse median
space of rank 1.

We will need the following observation:

Lemma 3.4. RT (Σ) is uniformly embedded in R(Σ).

Proof. In fact, RT (Σ) is exponentially distorted in R(Σ). Given a, b ∈ R0
T (Σ),

let n = ρ(a, b). Let a = a0, . . . , an = b be vertex path from a to b in R(Σ).
Certainly, ρ(ai, āi) = ρ(ai,R0

T (Σ) ≤ n for all i. So by construction of R(Σ), we
have ρ(ai, ai+1) ≤ 2n, so ρ(a, b) ≤ 2nn. �

There are many variations on the construction of R which would give rise to
quasi-isometrically equivalent graphs. As observed in Section 2.2, our marking
graph, M, quasi-isometrically embeds into M(p, q) for all sufficiently large p, q.
This naturally induces an embedding of R into the decorated marking graph,
R(p, q), similarly constructed from M(p, q). Moreover, it is easily checked that
this inclusion is a quasi-isometry. Therefore, for our purposes, it doesn’t matter
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which marking graph we choose. Similarly, in (E2b) we could replace the exponent
base, 2, with any fixed number strictly bigger than 1.

The construction of the “augmented marking graph” in [D1] fits (more or less)
into this picture. There, the marking graph,M, is taken to be the marking graph
as defined in [MaM2]. There is a restriction that â is required to be a subset of the
“base” of a marking a (but any multicurve with bounded intersection with a will
be the base of some nearby marking, so this requirement does not change things
on a large scale). Our edges of type (E1), (E2a) and (E2b) correspond to “vertical
moves”, “flip moves” and “twist moves” in the terminology there. Note that the
exponent e is used instead of 2 for the twist moves. In any case, it is easily seen
from the above, that the augmented marking complex of [D1] is equivariantly
quasi-isometric to the decorated marking complex as we have defined it.

It was shown in [D1] that the augmented marking graph is equivariantly quasi-
isometric to T(Σ). We deduce:

Proposition 3.5. There is a Map(Σ)-equivariant quasi-isometry of T(Σ) toR(Σ).

Note that this quasi-isometry necessarily maps TT (Σ) to within a bounded
Hausdorff distance of RT (Σ). (This can be seen explicitly from the various con-
structions, but also follows from the fact that the constructions are equivariant
and that Map(Σ) acts coboundedly on both TT (Σ) and RT (Σ).)

For the proof of Theorem 1.7 we will need to give some consideration to the
complexity-1 case (see the “thick case” of the proof of Lemma 8.2). We briefly
describe that here. (See also the discussion at the end of Section 4.)

So suppose that Σ is an S1,1 or an S0,4. In this case, we can take G0(Σ), as
usual, to be the set of curves in Σ. We deem α, β to be adjacent in G0 if they have
minimal intersection (that is, ι(α, β) = 1 for S1,1 and ι(α, β) = 2 for S0,4). Thus,
G(Σ) is a Farey graph, which we can identify with the 1-skeleton of a regular ideal
tessellation of the hyperbolic plane, H2.

We can takeM(Σ) to be the dual 3-regular tree. Its vertices are at the centres
of the ideal triangles, and its edges are geodesic segments. In this way, an element
of R(Σ) consists of a triple of curves {α, β, γ} corresponding to a triangle in G(Σ),
with decorations assigned to these curves, at most one of which is non-zero. We
define a map f : R0 −→ H2 as follows. If all the decorations of {α, β, γ} are 0,
then we map it to the centre, m, of the corresponding triangle. If the decoration
on α, say, is i > 0, then we map it to λ(i log 2) where λ : [0,∞) −→ [0,∞) is the
geodesic ray with γ(0) = m, and tending the ideal point of H2 corresponding to α.
Mapping edges to geodesic segments, we get a map f : R −→ H2, which extends
the inclusion of M into H2. It is easily checked that f is a quasi-isometry.

Note that each curve α ∈ G0 corresponds to a component, C(α), of the com-
plement of M in H2. Now f |H(α) is a quasi-isometry of H(α) to C(α), which is
in turn a bounded Hausdorff distance from a horodisc in H2.
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Finally note that there is a natural Map(Σ)-equivariant identification of H2

(modulo scaling the metric by a factor of 2) with the Teichmüller space of Σ with
the Teichmüller metric.

4. The median construction

The main aim of this section will be to prove the following:

Theorem 4.1. There is a coarsely lipschitz ternary operation µ : R(Σ)3 −→
R(Σ), unique up to bounded distance, such that for all a, b, c ∈ R(Σ) and all X ∈
X , θXµ(a, b, c) agrees up to bounded distance with µX(θXa, θXb, θXc). Moreover,
(R(Σ), µ) is a finitely colourable coarse median metric space of rank ξ(Σ).

As we will see, the median is characterised up to bounded distance by the fact
that all the subsurface projection maps, θX : R(Σ) −→ H(X), are uniform quasi-
morphisms for all X ∈ X . Since this condition is Map(Σ)-equivariant, the median
is necessarily Map(Σ)-equivariant up to bounded distance. Here all bounds de-
pend only on ξ(Σ). In view of Proposition 3.5, we see that this will then imply
Theorem 1.1.

It is not hard to deduce the existence of medians on R(Σ) from the existence of
medians inM(Σ). However, the approach we take here is to verify the properties
laid out in [Bo4]. The statement then follows directly from Theorem 1.4 of that
paper. We begin with a general discussion of decorated markings.

To summarise so far, we have a graph, (R, ρ), and a collection of uniformly
hyperbolic spaces, (H(X), σX), indexed by the set, X , of subsurfaces of Σ, together
with uniformly coarsely lipschitz maps θX : R(Σ) −→ H(X). The maps θX were
constructed out of the uniformly lipschitz maps θ∧X : M(Σ) −→ G(X), for the
family of graphs, (G(X), σ∧X). Note that these constructions are all Map(Σ)-
equivariant up to bounded distance.

Given a, b ∈ R, we will often abbreviate σX(a, b) = σX(θXa, θXb) and σ∧X(a, b) =
σ∧X(ā, b̄) = σ∧X(θ∧X ā, θ

∧
X b̄). We also write θXa = θX ā. If γ is a curve in Σ, we will

abbreviate σγ = σX(γ), σ
∧
γ = σ∧X(γ), θγ = θX(γ), θ

∧
γ = θ∧X(γ), etc. We write

G(γ) = G(X(γ)), H(γ) = H(X(γ)), etc.
The following two statements are immediate consequences of Proposition 4.8

below, though we offer a more direct proofs which only use properties of the
decorated marking complex.

Lemma 4.2. There is some l0 ≥ 0 such that for all a, b ∈ R(Σ), {X ∈ X |
σX(a, b) ≥ l0} is finite.

Proof. This is a simple consequence of the corresponding statement for M(Σ)
[MaM2], given in Lemma 2.1 here. This tells us immediately that there are only
finitely many such X ∈ XN for large enough l0. We therefore need only consider
X ∈ XA. Now, â ∪ b̂ is finite, so we can assume that the core curve of X does
not lie in â ∪ b̂. But in this case, the second coordinates of θXa and of θXb are
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bounded, so σX(a, b) is bounded above in terms of σ∧X(a, b). Lemma 2.1 again tells
that there are only finitely many such X provided the lower bound is sufficiently
large. �

Lemma 4.3. For all l ≥ 0, there is some l′ ≥ 0, depending only on l and ξ(Σ)
such that if a, b ∈ R satisfy σX(a, b) ≤ l for all X ∈ X , then ρ(a, b) ≤ l′.

Proof. First note that we can assume that â = b̂. For suppose that α ∈ â \ b̂.
Let X(α) be the regular neighbourhood of α. Since ηb(α) = 0. we have ηa(α) ≤
σX(α)(a, b) ≤ l. Let a0 = a0(α) ∈ R0 (i.e. we reset the decoration on α to 0).
Thus, ρ(a, a0) = ηa(α) ≤ l, and â0 = â \ {α}. We now replace a with a0. We

continue with this process for all curves in â\ b̂ and in b̂\ â, until â and b̂ are both
equal to some (possibly empty) multicurve, τ , say. Note that this process does
not change ā or b̄, and moves a and b each a bounded amount. The hypotheses
are still satisfied (since the maps θX are coarsely lipschitz).

If X is not a regular neighbourhood of any element of τ , then σ∧X(ā, b̄) = σX(a, b)
is bounded in terms of l. Moreover, if β ∈ τ , we can find some r(β) ∈ Z such

that σ∧β (b̄, t
r(β)
β ā) is bounded (since G(X) is quasi-isometric to the real line). Let

g be the composition of the twists t
r(β)
β as β ranges over τ , and set e = ga ∈ R0.

We now get that σ∧X(b̄, ē) is bounded for all X ∈ X . Therefore by Lemma 2.2, we
get ρ∧(b̄, ē) is bounded in terms of l. We are therefore reduced to the case where
ā = b̄.

But now, |ηa(β)− ηb(β)| ≤ σβ(a, b) is bounded for all β ∈ τ = â = b̂. In other
words, all decorations differ by a bounded amount, so σ(a, b) is bounded (using
edges of type (E2a)). �

The following is an analogue of Behrstock’s Lemma [Be], given as Lemma 2.3
here.

Lemma 4.4. There is a constant, l1, depending only on ξ(Σ) with the follow-
ing property. Suppose that X, Y ∈ X with X t Y , and that a ∈ R0

T . Then
min{σX(a, Y ), σY (a,X)} ≤ l1.

Proof. Suppose, for contradiction, that σX(a, Y ) and σY (a,X) are both large.
Now by Lemma 2.3, we can assume, without loss of generality that σ∧X(a,X)
is bounded. This can only happen if X = X(γ) for some curve γ ∈ â. By
assumption, γ crosses Y , so we see that σ∧Y (a,X) is also bounded. We must
therefore have Y = X(β) for some β ∈ â. But β t α, giving a contradiction, since
â is assumed to be a multicurve. �

We will write

〈x, y:z〉σ =
1

2
(σ(x, z) + σ(y, z)− σ(x, y))

for the Gromov product of x, y with basepoint z. We will write 〈x, y:z〉X =
〈θXx, θXy:θXz〉σX , and 〈x, y:z〉∧X = 〈θ∧Xx, θ∧Xy:θ∧Xz〉σ∧

X
.
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The following is an analogue of Lemma 11.4 of [Bo1]:

Lemma 4.5. There are some l1, l2, depending only on ξ(Σ), with the following
property. Suppose that X, Y ∈ X with Y ≺ X, and suppose that a, b ∈ R(Σ) with
〈a, b:Y 〉X ≥ l1. Then σY (a, b) ≤ l2.

Proof. Note that X ∈ XN , so we have that 〈a, b:Y 〉∧X = 〈a, b:Y 〉X is large. From
the bounded geodesic image theorem of [MaM2] (see Lemma 11.4 of [Bo1]), it
follows that σ∧Y (a, b) is bounded. If Y ∈ XN , σY (a, b) = σ∧Y (a, b) and we are done.
So suppose that Y = X(γ) for some curve γ. If σγ(a, b) is large, then we must

have γ ∈ â ∪ b̂, and so we suppose γ ∈ â ⊆ ā. But then 〈a, b:Y 〉X ≤ σX(a, Y ) is
bounded, giving a contradiction. �

If X ∈ XN , we set R(X) to be the decorated marking complex of X (defined
intrinsically to X). We have the map χX : R(X) −→ H(X), defined up to
bounded distance, where χX(a) just selects a curve from the marking, ā. If X ∈
XA, we set R(X) = H(X), and in this case, take χX : R(X) −→ H(X) to be the
identity map.

Next, we need to define maps, ψX : R(Σ) −→ R(X) for X ∈ X . As noted
in Section 2.2, we already have corresponding maps ψ∧X : M(Σ) −→ M(X).
Suppose, first that X ∈ XN , and that a ∈ R0(Σ). Write τ = {γ ∈ â | γ ≺ X}.
As noted in Section 2.2, we can suppose that τ ⊆ ψ∧X ā. Now let ψXa be the
decorated marking with decorations determined by ηa|τ . It is easily seen that ψX
is uniformly coarsely lipschitz, so we also get a map ψX : R(Σ) −→ R(X). Note
also that χX ◦ ψX ∼ θX : R(Σ) −→ H(X). In the case where X ∈ XA, we set
R(X) = H(X) and ψX = θX . In this case, we set χX to be the identity map,
(so trivially, χX ◦ ψX = θX). Note that we can perform the above constructions
intrinsically to any X ∈ X ; so if Y � X, we get maps ψY X : R(X) −→ R(Y ), with
χY ◦ ψY X ∼ θY . It is also immediate from the construction (and corresponding
fact in M(Σ)) that if Z � Y � X, then ψZY ◦ ψY X ∼ ψZX .

We are now in a position to apply the results of [Bo4], which give a set of
conditions which imply the existence of a coarse median on a geodesic space. Let
us begin by summarising the current set-up.

Our spaces are indexed by the set, X , of subsurfaces of Σ.
Given X ∈ X , we write X (X) = {Y ∈ X | Y � X}. For each X we have

geodesic metric spaces, (R(X), ρX) and (H(X), σX) and a map χX : R(X) −→
H(X). If Y ∈ X (X), we have a map ψY X : R(X) −→ R(Y ). Also, if Z ∈ X with
Z t X or Z ≺ X, we have an element θXZ ∈ H(X).

We set θY X = χX ◦ ψY X : R(X) −→ H(Y ). Given a, b ∈ R(X) and Y, Z,W ∈
X (X), we abbreviate σX(a, b) = σX(χXa, χXb), ρY (a, b) = ρY (ψY Xa, ψY Xb),
σY (a, b) = σY (θY Xa, θY Xb), σY (a, Z) = σY (θY Xa, θYZ) and σY (W,Z) = σY (θYW, θYZ).
We write 〈a, b:Y 〉X for the Gromov product, 〈χXa, χXb:θXY 〉 in (H(X), σX).

We list the following properties (most of which we have already verified in the
context of the present paper).
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(A1): (∃k ≥ 0)(∀X ∈ X ) H(X) is k-hyperbolic.

(A2): (∃k1, k2 ≥ 0)(∀X ∈ X )(∀a, b ∈ R(X)) σX(a, b) ≤ k1ρX(a, b) + k2.

(A3): (∃k1, k2 ≥ 0)(∀X ∈ X )(∀Y ∈ X (X))(∀a, b ∈ R(X)) ρY (a, b) ≤ k1ρX(a, b) +
k2.

(A4): There is some t ≥ 0 such that if X, Y, Z ∈ X with Z ≺ Y ≺ X and
a ∈ R(X), then ρZ(a, ◦ψY Xa) ≤ t.

(A5): (∃t ≥ 0)(∀X ∈ X ) if Y, Z ∈ X with Y ∧ Z or Y ≺ Z, then σX(Y, Z) ≤ t,
whenever this is defined.

(A6): (∃r ≥ 0)(∀X ∈ X )(∀a, b ∈ R(X)) the set of Y ∈ X (X) with ρY (a, b) ≥ r is
finite.

(A7): (∀r ≥ 0)(∃r′ ≥ 0)(∀X ∈ X )(∀a, b ∈ R(X)) if σY (a, b) ≤ r for all Y ∈ X (X),
then ρX(a, b) ≤ r′.

(A8): (∃r ≥ 0)(∀X ∈ X )(∀Y ∈ X (X))(∀a, b ∈ R(X)) if 〈a, b:Y 〉X ≥ r then
σY (a, b) ≤ r.

(A9): (∃r ≥ 0)(∀X ∈ X )(∀Y, Z ∈ X (X)) if Y t Z and a ∈ R(X) then
min{σY (a, Z), σZ(a, Y )} ≤ r, and if W ∈ X (X) with W t Y and W t Z,
then min{σY (W,Z), σZ(W,Y )} ≤ r.

(A10): (∃r ≥ 0)(∀X ∈ X ) if Y ⊆ X (X) with Y ∧Z for all distinct Y, Z ∈ Y , and if
to each Y ∈ Y we have associated some aY ∈ R(X), then there is some a ∈ R(Y )
with ρY (aY , ψY Xa) ≤ r and σW (a, Y ) ≤ r for all Y ∈ Y and all W ∈ X (X) with
W t Y .

In [Bo4] is shown that the properties (A1)–(A10) allow us to define a ternary
operation, µX , on each space R(X) to give it the structure of a coarse median
space, and such that the maps χX and ψY X are all coarse median homomorphisms.
A more precise statement of the conclusion is given as Theorem 4.7 below.

First we note that all these properties hold here. Properties (A1)–(A4) we have
already observed. Property (A5) is an elementary general property of subsurface
projection (given that in this case, X ∈ XN). Properties (A6), (A7) and (A8)
are respectively Lemmas 4.2, 4.3 and 4.5 here. The first assertion of (A9) is
Lemma 4.4 here, and the second is just the standard form of Behrstock’s lemma.
It remains to prove (A10). We may as well assume that X = Σ (since it can be
interpreted as a statement intrinsic to X).

Lemma 4.6. There is some r0 ≥ 0, depending only on ξ(Σ) with the following
property. Suppose that Y ⊆ X is a collection of pairwise disjoint subsurfaces, and
to each Y ∈ Y, we have associated some element, aY ∈ R(Y ). Then there is some
a ∈ R(Σ) with ρ(aY , ψY a) ≤ r0 and with σW (a, Y ) ≤ r0 for all W ∈ X satisfying
W t X.
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Proof. Despite the somewhat technical statement, this is really an elementary
observation about combining decorated markings on disjoint subsurfaces. It was
verified in [Bo4] that the corresponding statement holds in M(Σ). In particular,
we can find a marking ā ∈ Map(Σ) with ι(ā, τ) bounded, and with ψ∧Y ā ∼ āY for
all Y ∈ Y . Here, τ is the union of all relative boundary components of elements
of Y . In fact, we can assume that ā contains each āY for Y ∈ Y ∩ XN as well as
the core curve of each element of Y ∩XA. Note that

⋃
Y âY together with all these

core curves form a multicurve in Σ, and we assign the prescribed decorations to
its components. We set all other decorations equal to 0. It is now easily verified
that the resulting decorated marking, a, has the required properties. �

We have now verified the hypotheses of Theorem 1.4 of [Bo4]. We deduce:

Theorem 4.7. There is a ternary operation, µX , defined on each space R(X)
such that (R(X), ρX , µX) is a coarse median space, and such that the maps θY X :
R(X) −→ H(Y ) for Y � X are all median quasimorphisms. The median µX is
unique with this property, up to bounded distance. The maps ψY X : R(X) −→
R(Y ) for Y � X are also median quasimorphsims. The coarse median space
(R(X), ρX , µX) is finitely colourable, and has rank at most ξ(X). Moreover, all
bound depend only on ξ(Σ).

In particular, this implies Theorem 1.1.
For future reference (see Section 7), we note the following variation, due to Rafi,

the distance formula of Masur and Minsky, mentioned in Section 2.
Given a, b ∈ R(Σ) and r ≥ 0, let A(a, b; r) = {X ∈ X | σX(a, b) > r}. We have

noted that this is finite. We have:

Proposition 4.8. There is some r0 ≥ 0 depending only on ξ(Σ) such that for all
r ≥ r0, then for all a, b ∈ R(Σ), ρ(a, b) �

∑
X∈A(a,b;r) σX(a, b).

The corresponding statement for Teichmüller space is proven in [Ra]. A direct
proof for the augmented marking complex is given in [D1]. Given that these
spaces are quasi-isometric [Ra, D1] these statements are equivalent, and both are
equivalent to the corresponding statement for the decorated marking complex as
we have described it. We note that another proof of this distance estimate can be
found in [BeHS2].

We can apply these results to the extended asymptotic cone.
We write R∞(Σ) ⊆ R∗(Σ) for the asymptotic cone and extended asymptotic

cone of R(Σ). We similarly have spaces G∞(Σ) ⊆ G∗(Σ) etc.
For the remainder of this section, we will refer to an element of the ultrapoduct,
UG0(Σ), as a curve and to an element of G(Σ) as a standard curve. We will
similarly refer to elements of UX and X as subsurfaces and standard subsurfaces
respectively. We apply similar terminology to multicurves etc.

Note that UMap(Σ) acts by isometry ofR∗(Σ), and U0 Map(Σ) acts onR∞(Σ).
Unlike the case of the marking graph, however, these spaces are not homogeneous
(as we will see in Section 6).
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In fact, we have a UMap(Σ)-invariant thick part, R∗T , of R∗ (that is, the ultra-
limit of the set RT ⊆ R). We say that a component, R∞(Σ), of R∗(Σ) is thick
if R∞(Σ) ∩ R∗T (Σ) 6= ∅, in which case, we denote R∞(Σ) ∩ R∗T (Σ) by R∞T (Σ).
In fact, UMap(Σ) acts transitively on R∗T (Σ). Note that R∗T (Σ) contains the
standard basepoint of R∗(Σ). It follows that every thick component of R∗(Σ) is
a UMap(Σ)-image of the standard component.

The various coarsely lipschitz quasimorphisms we described in Section 4 now
give rise to lipschitz median homomorphisms. Specifically, we have maps: θ∗X :
R∗(Σ) −→ H∗(X), and ψ∗X : R∗(Σ) −→ R∗(X), for all X ∈ UX .

If γ ∈ G0 is a standard curve in Σ, we write H = H(γ) = H(X(γ)). Recall
that H0

T = {a ∈ H0 | ηa(γ) = 0} (where ηa(γ) is the second coordinate of a) and
that HT ⊆ H is the complete subgraph on HT . We define hγ : H −→ [0,∞) by
hγ(a) = ρ(a,HT ). Thus, if a ∈ H0, then hγ(a) = ηa(γ).

We have noted that H(γ) is quasi-isometric to a horodisc in the hyperbolic
plane, H2; via a quasi-isometry which sends HT to the boundary horocycle. The
map hγ then corresponds to a horofunction.

Now the extended asymptotic cone, H∗, is an R∗-tree. The map hγ gives rise
to a 1-lipschitz map h∗γ : H∗ −→ R∗, which h∗γ(x) ≥ 0 for all x ∈ H∗.

Let H∞ be a component of H∗. We write ρ∞ for the metric on H∞. Thus,
(H∞, ρ∞) is a complete R-tree. The map h∗γ|H∞ is a Busemann function on H∞.
That is, it is 1-lipschitz, and for all x ∈ H∞ and all t ∈ [0,∞) there is a unique
y ∈ H∞ satisfying h∗γ(y) − h∗γ(x) = ρ∞(x, y) = t. (Note that h∗γ(y) − h∗γ(x) ∈ R
for all x, y ∈ H∞.) Writing y = xt, the map [t 7→ xt] gives a flow on H∞ for
t ∈ [0,∞) ⊆ R. (Such a flow will converge on an ideal point of H∞.)

Up to isomorphism, there are two possibilities for H∞. The first is the “thick”
case, where h∗γ(H∞) ⊆ [0,∞). Write H∞T = (h∗γ)

−1(0). In this case, H∞T 6= ∅.
Every point of H∞T is an extreme point (has valence 1), and each point of H∞\H∞T
has valence 2ℵ0 .

The second is the “thin” case. Here, h∗γ(H∞)∩R = ∅, and H∞ is the complete

2ℵ0-regular tree. (Note the Busemann cocycle [(x, y) 7→ h∗γ(x)− h∗γ(y)] still takes
real values.)

Note that, in both cases, H∞ is almost furry (i.e. there are no points of valence
2). This will allow us to aplly Proposition 4.6 (see the proof of Lemma 8.2).

By a branch of an R-tree we mean a closed subset with exactly one point in its
topological boundary. A branch is necessarily a subtree. In the above, if H∞ is
thick, then every branch of H∞ intersects H∞T . If H∞ is thin, then every branch
of H∞ contains points, y, with h∗γ(x) − h∗γ(y) an arbitrarily large real number,
where x ∈ H∞ is an arbitrary basepoint.

We will later refer again to the special case where Σ = S1,1 or Σ = S0,4. In this
case, we saw that R(Σ) is quasi-isometric to the hyperbolic plane. Thus, R∗(Σ)
is a complete R∗-tree. Any component R∞(Σ) is the complete 2ℵ0-regular tree.
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We write R∞T = R∗T ∩ R∞(Σ). Here, we just note that if R∞T 6= ∅, then every
branch of R∞ meets R∞T .

5. Some applications of the coarse median property

In this section, we describe a few immediate consequences of what we have
shown. In particular, we will give proofs of Theorems 1.2, 1.3, and 1.8, and the
“if” part of Theorem 1.4. Theorems 1.2, 1.8 and the “only if” part of 1.3 are
simple consequences of the preceding discussion, so we discuss these first.

The first result is a coarse isoperimetric inequality. This is a quasi-isometrically
invariant property which one could equivalently formulate in a number of different
ways. For definiteness we will say that a geodesic space, Λ, satisfies a coarse
quadratic isoperimetric inequality if the following holds. There is some r ≥ 0 and
some k ≥ 0 such that if γ is any closed path in Λ of length at most nr, where
n ≥ 1 is some natural number, then we can find a triangulation of the disc with
at most kn2 2-simplices and a map of its 1-skeleton into Λ such that the image of
every 1-cell has length at most r and such that the map restricted to the boundary
agrees with γ (thought of as a map of the boundary of the disc into Λ). One can
easily check that this property is quasi-isometry invariant.

It is shown in [Bo1] (Proposition 8.2) that any coarse median space has this
property. We immediately deduce from Theorem 1.1 that:

Proposition 5.1. R(Σ) has a coarse quadratic isoperimetric inequality.

This is, of course, equivalent to Theorem 1.2.
In fact, one can give versions which fit more naturally with the usual riemannian

notion. For example:

Proposition 5.2. There is some λ > 0, depending only on the topological type of
Σ, with the following property. Suppose that γ is a riemannian circle of length l,
and that f : γ −→ T(Σ) is a 1-lipschitz map. Then, we can identify γ with the
boundary of a riemannian disc, D, inducing the same riemannian metric on γ,
and of area at most λl2, so that f extends to a 1-lipschitz map, f : D −→ T(Σ).

In fact, one can also arrange that D has bounded curvature and injectivity
radius bounded below (in terms of Σ).

We suspect that λ can be made independent of Σ, but will not address that
issue here.

Proof. Given the coarse quadratic inequality (Theorem 1.2) it is enough to show
that the statement holds for some area bound, that is, where the bound λl2 is
replaced by some function of l which assumed to be O(l2) only on a small scale.

To see this holds, note first that T(Σ) satisfies a (linear) isodiametric inequal-
ity. In fact, we can cone any curve over any point using Teichmüller geodesics.
Moreover, it is known that T(Σ) has locally bounded geometry. Specifically, The-
orem 8.2 of [Mc] shows that the Teichmüller metric is bilipschitz equivalent to a
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riemannian (Kähler) metric, with curvatures bounded above and below, and with
injectivity radius bounded below. The set of such metrics possible on a set of
bounded diameter is precompact. Now standard precompactness argumements
in riemannian geometry tell us that our curve must bound a disc whose area
is bounded above by some function of its length which is quadratic on a small
scale. �

We next observe that Theorem 1.8 also follows. In fact, we have already made
the relevant observations in Sections 1 and 2.4. Given that R(Σ) is a finitely
colourable coarse median space, it follows that R∗(Σ) with the limiting metric
and ternary operation is a median algebra satisfying the hypotheses of Lemma
2.5. It follows that it bilipschitz equivalent to a median metric space. (For more
details, see [Bo2].) It in turn follows that it is bilipschitz equivalent to a CAT(0)
metric [Bo3]. Note that, in view of Theorem 4.1, this applies in particular to any
asymptotic cone of R(Σ), hence also any asymptotic cone of T(Σ). This proves
Theorem 1.8.

Some other consequences follow on from the fact that R∗T (Σ) is a locally convex
topological median algebra of finite rank. For example, the topological dimension
of any locally compact subset of any asymptotic cone of R∞T (Σ) is at most ξ(Σ)
(see Theorem 2.2 and Lemma 7.6 of [Bo1]). In particular, it does not admit any
continuous injective map of Rξ+1. From this we get the following. (A similar
statement can be found in [EMR1].) Write Bn

R for the ball of radius r in the
euclidean space Rn.

Proposition 5.3. Given parameters of quasi-isometry, there is some constant
r ≥ 0, such that there is no quasi-isometric embedding of Bξ+1

r into R(Σ) with
these parameters.

Proof. This is a standard argument involving asymptotic cones. Suppose that, for
each i ∈ N, the ball, Bi, of radius i admits a uniformly quasi-isometric embedding,
φi : Bi −→ R(Σ). Now pass to the asymptotic cone with scaling factors, i. We
end up with a bilipschitz map, φ∞ : B1 −→ R∞(Σ), contradicting the dimension
bound. �

(Indeed, the above holds in any coarse median space of rank at most ξ.)
An immediate consequence is that R(Σ) does not admit any quasi-isometric

embedding of a euclidean (ξ(Σ) + 1)-dimensional half-space. This proves the
“only if” part of Theorem 1.3.

For the “if” part, we need to construct such an embedding in dimension ξ(Σ).
We use the same construction as in [EMR1], though base the proof on the argu-
ments here. This will show, in addition, that the image can be assumed quasi-
convex in the coarse median structure.

Given any a ∈M0(Σ), and any t ⊆ a, let Oa(t) = {b ∈ R0(Σ) | b̄ = a, b̂ ⊆ t} ⊆
R(Σ). In other words, we take take all possible decorations on a subject to the
constraint that all the decorated curves must lie in t.
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Lemma 5.4. Oa(t) is quasiconvex in R(Σ).

Proof. We define a map ω : R(Σ) −→ Oa(t) as follows. Given x ∈ R0(Σ), let
τ = x̂ ∩ t ⊆ a. Let b ∈ R0 be such that b̄ = a, ηb|τ = ηx|τ and ηb|(b̄ \ τ) ≡ 0, and
set ωx = b. In other words, we take the base marking a, and decorate curves in
a if and only if they also happen to be decorated curves of x. We claim that ω is
a coarse gate map.

To this end, let c ∈ Oa(t), so ĉ ⊆ t. If γ ∈ τ , then θγωx ∼ θγx, so θγµ(x, ωx, c) ∼
θγωx. If γ ∈ ĉ \ τ , then γ /∈ x̂ (otherwise γ ∈ ĉ ∩ x̂ ⊆ t ∩ x̂ = τ) and so θγωx ∼
θγa ∼ θγc (since c̄ = a), and θγµ(x, ωx, c) ∼ θγωx. Finally, if X ∈ X does not
have the form X(γ) for such γ, then θXc ∼ θXa ∼ θXωx, so θXµ(x, ωx, c) ∼ θXωx.
By Lemma 4.3, µ(x, ωx, c) ∼ ωx as claimed. �

Given a multicurve τ ∈ S, write O(τ) = [0,∞)τ and O0(τ) = Nτ ⊆ O(τ). Note
that O(τ) is a median algebra with the product structure, and that O0(τ) is a
subalgebra.

Suppose a ∈ M0 ≡ R0
T , with τ ⊆ a. Define a map λ = λa : O0(τ) −→ R(Σ)

by setting λa(v) = b where b̄ = ā, b̂ = τ , ηa|τ = v, and ηa|(a \ τ) ≡ 0. (In other
words, we take the base marking a, with decorations determined by v.) The map
λ is easily seen to be a quasimorphism. Note that Oa(τ) = λ(O0(τ)). Also, if
x ∈ R(Σ), then ω(x) = λ(u), where u ∈ O(τ) is defined by u|(τ ∩ x̂) = ηx|(τ ∩ x̂)
and u|(τ \ x̂) ≡ 0.

By Lemma 5.4, Oa(τ) is quasiconvex in R(τ). Moreover, it follows that λ
extends to a quasi-isometric embedding of O(τ) into R(Σ).

We have shown that:

Lemma 5.5. The map λa : O(τ) −→ R(Σ) is a quasi-isometric embedding with
quasiconvex image.

If we take τ to be any complete multicurve and a to be any marking containing
it, then we get a quasi-isometric embedding of a ξ-orthant (or ξ-dimensional half-
space).

This proves the “if” part of Theorem 1.3.
Note that this shows that R(Σ) has coarse median rank exactly ξ(Σ) (given the

observation after Proposition 5.3).
For the “if” part of Theorem 1.4, we want to construct a quasi-isometric em-

bedding of Rξ, in the cases described. (We will deal with the “only if” part in
Section 9.)

Suppose that Υ is a finite simplicial complex. We can construct a singular
euclidean space, O(Υ), by taking an orthant for every simplex of Υ and gluing
them together in the pattern determined by Υ. This has vertex o and we can
identify Υ as the spherical link of o in O(Υ). (For example, the cross polytope
gives a copy of euclidean space.) Note that if Υ is bilipschitz equivalent to the
standard (n − 1)-sphere, then O(Υ) is bilipschitz equivalent to Rn. We write
O0(Υ) for the set of integer points in O(Υ).
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Now let C(Σ) be the curve complex associated to Σ. This is the flag complex
with 1-skeleton G(Σ). In particular, C0(Σ) = G0(Σ). We can identify the set of
simplices of C(Σ) with the set, S \ {∅}, of non-empty multicurves in Σ.

Given a finite subcomplex, Υ, of C(Σ), write S(Υ) ⊆ S for the set of multicurves
corresponding to the simplices of Υ. Write Υ0 =

⋃
S(Υ) for the set of vertices. If

τ ∈ S, we can identify O(τ) as a subset of O(Υ), and O0(τ) as a subset of O0(Υ).
Suppose a ∈ M0 is marking of Σ with Υ0 ⊆ a. We can define a map λ = λa :
O0(Υ) −→ R(Σ) by combining the maps λa : O0(τ) −→ R(Σ) for γ ∈ S. Write
O(Υ) = λ(O(Υ)) =

⋃
τ∈S(Υ)Oa(τ).

Suppose now that Υ is a full subcomplex of C(Σ) (in other words, if the vertices
of a simplex in C(Σ) are contained in Υ0, then the whole simplex is contained in
Υ). In this case, we have O(Υ) = O(Υ0) as previously defined. In particular,
Lemma 5.4 tells us that O(Υ) is coarsely convex.

As in the case of a single orthant, we now see:

Lemma 5.6. If Υ is a full subcomplex of C(Σ), with Υ0 ⊆ a ⊆ M0, then O(Υ)
is quasiconvex in R(Σ).

We see that λa extends to a quasi-isometric embedding of O(Υ) into R(Σ).
(In fact, one can show that λa is a quasi-isometric embedding even if we do not
assume that Υ is full, though of course, its image need not be quasiconvex in this
case.)

Note that if Υ is PL homeomorphic to the standard (n − 1)-sphere, we get a
bilipschitz embedding of Rn into R(Σ).

We will show:

Proposition 5.7. C(Σ) contains a full subcomplex PL homeomorphic to the stan-
dard (ξ(Σ)−1)-sphere if and only if Σ has genus at most 1, or is the closed surface
of genus 2.

This is based on results and constructions in [Har]. (For further related discus-
sion, see [Br].) If Σ ∼= Sg,p, write ξ′(Σ) = 2g + p− 2 if g, p > 0, ξ′(Σ) = 2g − 1 if
p = 0 and ξ′(Σ) = p− 3 if g = 0. (Here, we are assuming that ξ(Σ) ≥ 2.)

Note that ξ′(Σ) ≤ ξ(Σ) with equality precisely in the cases described by Propo-
sition 5.7.

It is shown in [Har] (Theorem 3.5) that C(Σ) is homotopy equivalent to a
wedge of spheres of dimension ξ′(Σ)− 1. In particular, the homology is trivial in
dimension ξ′(Σ). (It does not matter which homology theory we use here.) Now
C(Σ) has dimension ξ(Σ), so if ξ′(Σ) < ξ(Σ), it follows that C(Σ) cannot contain
any (ξ(Σ)− 1)-dimensional homology cycle, and so in particular, no topologically
embedded closed (ξ(Σ)−1)-manifold. This proves the “only if” part of Proposition
5.7 (indeed without the “full” requirement).

For the “if” part, we need to construct such a sphere. In the planar (genus-
0) case there is a simple explicit construction described in [AL], which involves
doubling the arc complex of a disc. The latter is known to be homeomorphic to a
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sphere, see [S]. (Another proof of this is given in [HuM]. Although not explicitly
stated, it is easily checked that this gives a PL sphere.) However, it is unclear how
to adapt this to the genus-1 case. Below, we give an argument which deals with
all cases. It is based on an idea in Harer’s proof of the result mentioned above.
We first show:

Lemma 5.8. Suppose g, p, n ∈ N and p ≥ 2. Suppose that C(Sg,p) contains a full
subcomplex PL homeomorphic to the standard n-sphere. Then C(Sg,p+1) contains
a full subcomplex PL homeomorphic to the standard (n+ 1)-sphere.

Proof. For this discussion, it will be convenient to view Sg,p as a closed surface,
S, of genus g, with a set A ⊆ S of p preferred points. Let Υ ⊆ C(Sg,p) be a
full subcomplex PL homeomorphic to the standard n-sphere. Now realise the
elements of Υ0 as closed curves in S \ A, so that no three curves intersect in a
point, and such that the total number of intersections is minimal, subject to this
constraint. (It is well known that this necessarily minimises pairwise intersection
numbers.)

Now let I ⊆ S be an embedded arc meeting A precisely at its endpoints, a, b,
say. We may assume that no point of I lies in two curves of Υ0 and that (subject
to this constraint) the total number, m, of intersections, I∩

⋃
Υ0 ⊆ Σ, is minimal,

in the homotopy class of I in S \A relative to its endpoints. Let I0, I1, . . . , Im, be
the components of I \ ({a, b} ∪

⋃
Υ0), consecutively ordered, so that a and b lie

respectively in the closures of I0 and Im.
Choose any point ci ∈ Ii and an arbitrary point d ∈ I \{a, b}. Let B = A∪{d},

and think of Sg,p+1 as S with the points of B removed.
The following can be thought of intuitively as sliding the point d from a to b

along I. However, formally it is better expressed as keeping d fixed and applying
an isotopy to the curves, as we now describe.

Given any i ∈ {0, . . . ,m}, we obtain a map fi : Υ −→ C(Sg,p+1) as follows. Take
an isotopy of S supported on a small neighbourhood of the interval [d, ci], fixing I
setwise, and carrying ci to d. At the end of the isotopy we get a map sending each
curve in Υ0 to a curve in S \ B, and so gives rise to a map fi : Υ0 −→ C(Sg,p+1).
Note that postcomposing with the map which forgets the point d, we get the
inclusion of Υ0 into C(Sg,p). Now it is easily seen that fi preserves disjointness of
curves, and so extends to a map fi : Υ −→ C(Sg,p+1), which maps Υ isomorphically
to a full subcomplex Υi = fi(Υ) ⊆ C(Sg,p+1). Now let α and β be, respectively,
the boundary curves of small regular neighbourhoods of [a, d] and [d, b] in I. Let
Ω0 = {α, β} ∪

⋃m
i=0 Υ0

i , and let Ω be the full subcomplex of C(Σ) with vertex set
Ω0. We claim that Ω is PL homeomorphic to the standard (n+ 1)-sphere.

Note first that Υ0
0 and Υ0

m are respectively the sets of points adjacent to α and
β.

Now, given i ∈ {0, . . . ,m}, let Ω0
i = {α} ∪

⋃i
j=0 Υ0

j , and let Ωi be the full

subcomplex with vertex set Ω0
i . Now Ω0 is the cone on Υ0 with vertex α, and

so PL homeomorphic to a ball with boundary Υ0. We claim that, for all i,
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there is a PL homeomorphism of Ω0 to Ωi whose restriction to Υ0 is the map
fi ◦ f−1

0 : Υ0 −→ Υm.
Suppose, inductively, that this holds for i. Moving from Υi to Υi+1 corresponds

to pushing one of the curves of Υ0
i across the hole, d, of Sg,p+1. In other words,

there is some γ ∈ Υ0 such that fi|(Υ0 \ {γ}) = fi+1|(Υ0 \ {γ}), but with fi(γ) 6=
fi+1(γ). Let δ = fi(γ) and ε = fi+1(γ). Thus, Ω0

i+1 = Ω0
i ∪ {ε}. Now δ and

ε are clearly adjacent. In fact, it is easily checked that the set of curves in Ωi

adjacent to ε are precisely those of the form fi(ζ), where ζ ∈ Υ0 is equal to or
adjacent to γ. Thus, Ωi+1 is obtained from Ωi by attaching a cone with vertex ε
to the star of δ in Υi. Given that Ωi is a PL (n + 1)-ball with boundary Υi, we
can find a PL homeomorphism of Ωi to Ωi+1 which restricts to fi+1 ◦ f−1

i on Υi.
Precomposing this with the homeomorphism from Ω0 to Ωi proves the inductive
step of the statement.

In particular, we have a PL homeomorphism from Ω0 to Ωm whose restriction
to Υ0 is fm ◦ f−1

0 . Now Ω is obtained from Ωm by coning the boundary, Υm,
with vertex β. Thus, Ω is PL homeomorphic to a suspension of Υ, hence a PL
(n+ 1)-sphere. �

Now it is easy to find a pentagon which is a full subcomplex of C(S0,5) or
equivalently in C(S1,2). Note that these cases correspond to ξ = ξ′ = 2. Therefore,
applying Lemma 5.8 inductively, we find a (ξ − 1)-sphere for all surfaces of genus
at most 1, where ξ ≥ 2. Note that C(S2,0) ∼= C(S0,6) so this deals with that case
also. (An explicit description of a sphere in the case of S2,0 can be found in [Br].)

This completes the proof Proposition 5.7.
To construct our quasi-isometric embedding of Rξ into R(Σ) in these cases,

we could assume that, in defining the marking complex, we have taken the inter-
section bounds large enough so that some marking a contains all the vertices of
a (ξ − 1)-sphere, Υ, in C(Σ). Now construct λa : O(Υ) −→ R(Σ) as above and
apply Lemma 5.6. (Alternatively, we could take different marking containing each
multicurve of S(Υ). Note that these markings are all a bounded distance apart.
Thus, if τ ′ ⊆ τ ∈ S(Υ), then the map of O(τ ′) into R(Σ) agrees up to bounded
distance with the restriction of the map of O(Υ) into R(Σ). Therefore, these
maps again combine to give a quasi-isometric embedding of O(Υ) into R(Σ).)

This proves the “if” part of Theorem 1.4.

6. Product structure and stratification

In this section, we show how the extended asymptotic cone, R∗(Σ) can be par-
titioned into “strata” indexed by (ultralimits of) multicurves. The strata have
a local product structure, where the factors correspond to extended asymptotic
cones of subsurfaces. This structure arises from a kind of coarse stratification of
R(Σ). The basic idea is that when there is a set of curves in a decorated marking
which have large decorations then R(Σ) locally splits a direct product. (The anal-
ogous statement for Teichmüller space is that when we have a set of very short
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curves on a hyperbolic surface, then the Teichmüller space in a neighbourhood
of that surface splits coarsely as a product of the Teichmüller spaces of the com-
plementary pieces, together with hyperbolic discs corresponding to twisting and
shrinking these curves.)

Properties of this stratification will be used in Sections 7 and 8. We begin by
describing a coarse product structure based on multicurves.

Recall that S is the set of all multicurves in Σ. We allow ∅ ∈ S. If τ ∈ S, we
will use the following notation (as in [Bo4]). We write XA(τ) = {X(γ) | γ ∈ τ}.
We write XN(τ) for the set of components of Σ \ τ which are not S0,3’s, and set
X (τ) = XN(τ) ∪ XA(τ). We write XT (τ) = {Y ∈ X | Y t τ}; that is, there is
some γ ∈ τ with γ t Y or γ ≺ Y .

Let τ be a (possibly empty) multicurve. Let L(τ) be the set of a ∈ R0(Σ) such
that τ ⊆ ā and τ does not cross â (so that τ ∪ â is a multicurve). Thus a ∈ L(â)
for all a ∈ R0(Σ). Note that if τ ⊆ τ ′, then L(τ ′) ⊆ L(τ).

Given r ≥ 0, let L(τ ; r) = {a ∈ R(Σ) | ι(ā, τ) ≤ r}. One can check that for all
sufficiently large r (in relation to ξ(Σ)), the Hausdorff distance between L(τ) and
L(τ ; r)) is bounded. As in Lemma 9.1 of [Bo4], we see that a ∈ R(Σ) is a bounded
distance from L(τ) if and only if σY (θY a, θY τ) is bounded for all Y ∈ XT (τ).

Let L(τ) =
∏

X∈X (τ)R(X). We give this the l1 metric (though any quasi-

isometrically equivalent geodesic metric would serve for our purposes). Note that
this has a product coarse median structure. Combining the maps ψX : R(Σ) −→
R(X), we get a coarsely lipschitz quasimorphism ψτ : R(Σ) −→ L(τ).

In the other direction, Lemma 4.6 gives us a map, υτ : L(τ) −→ R(Σ), so that
ψY ◦ υτ gives us a prescribed element of R(Y ) for each coordinate Y ∈ X (τ).
In other words, ψτ ◦ υτ is the identity up to bounded distance. Note that υτ is
necessarily a quasimorphism. Note that, by construction, υτ (L(τ)) ⊆ L(τ).

We now set ωτ = υτ ◦ψτ : R(Σ) −→ L(τ). It is now an immediate consequence
of Lemma 9.3 of [Bo4] that this is a coarse gate map to the set L(τ); that is,
ρ(ωτx, µ(x, ωτx, c)) is bounded for all x ∈ R(Σ) and all c ∈ L(τ).

Note that ρ(a,RT (Σ)) is the sum of the decorations in a. In other words, in
the notation of Section 3, we have ρ(a,R∗T ) =

∑
γ∈â ηa(γ) =

∑
γ∈â hγ(a).

We note that if a ∈ L(τ), then we can write h(υτa) =
∑

X∈X (τ) hX(a), where

h(a) = ρ(a,RT (Σ)) (as defined above), and where hX is the corresponding func-
tion defined intrinsically on each of the factors, R(X), of L(X). This comes
directly from the construction of υτ . Recall that this combines the decorations on
each of the factors: every decorated curve lies in exactly one such X. Moreover,
for any decorated marking, a, h(a) is exactly the sum of the decorations on a.
This applies in R(Σ), and each of the factors, R(X).

We now move on to the extended asymptotic cone, R∗(Σ). Recall that we have
maps: θ∗X : R∗(Σ) −→ G∗(X) and ψ∗X : R∗(Σ) −→ R∗(X) for all X ∈ UX .
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If τ is a multicurve, we have ψ∗τ : R∗(Σ) −→ L∗(τ) and υ∗τ : L∗(τ) −→ L∗(Σ)
with ψ∗τ ◦ υ∗τ the identity. We write ω∗τ = υ∗τ ◦ ψ∗τ : R∗(Σ) −→ R∗(Σ). Note that
L∗(τ) is a direct product of the spaces R∗(X) as X varies in UX (τ).

Write L∗(τ) = υ∗τ (L∗(τ)) = ωτ (R∗(Σ)). This is also the limit of the sets
(L(τζ))ζ . Note that L∗(τ) is median convex in R∗(Σ), and that ωτ : R∗(Σ) −→
L∗(τ) is the gate map (that is ω∗τ (x) ∈ [x, c] for all x ∈ R∗(Σ) and all c ∈ L∗(τ)).
In particular, ω∗τ |L∗(τ) is the identity. Note that if τ ⊆ τ ′, then L∗(τ ′) ⊆ L∗(τ).

Note that if τ is big (that is, all complementary components have complexity
at most 1), then L∞(τ) is the direct product of ξ almost furry R-trees. (Since in
this case each factor of L(τζ) is quasi-isometric to either a hyperbolic plane or a
horodisc.)

We now move on to describe the stratification.
Let S be the set of standard multicurves in Σ. We allow ∅ ∈ S. Given τ ∈ S,

let Θ(τ) = {a ∈ R(Σ) | â = τ}. Thus Θ(τ) ⊆ L(τ), and Θ(∅) = RT (Σ).

Lemma 6.1. Given any τ, τ ′ ∈ S and any a ∈ Θ(τ) and b ∈ Θ(τ ′), there is some
c ∈ Θ(τ ∩ τ ′) with µ(a, b, c) ∼ c.

Proof. Let d ∈ R0(Σ) be obtained from a by setting d̄ = ā, resetting the decora-
tions on τ \ τ ′ ⊆ â equal to 0, and leaving all other decorations on a unchanged.
Thus d ∈ Θ(τ ∩ τ ′). Now apply Dehn twists to d about the curves of τ \ τ ′ to give
c ∈ R0(Σ), so that θγc ∼ θγb for all γ ∈ τ \τ ′. We also have c ∈ Θ(τ∩τ ′). Suppose
X ∈ X . If X = X(γ) for some γ ∈ τ \τ ′, then θXc ∼ θXb. If X is not of this form,
we get θXc ∼ θXa. In all cases, we have θXµ(a, b, c) ∼ µ(θXa, θXb, θXc) ∼ θXc. It
follows by Lemma 4.3 that µ(a, b, c) ∼ c. �

We now pass to the asymptotic cone. Write US for the ultraproduct of S.
Recall that we have an intersection operation defined on US.

Given any τ ∈ US, let Θ∗(τ) be the limit of (Θ(τζ))ζ . Note that Θ∗(τ) is closed,
and Θ∗(τ) ⊆ L∗(τ). Also, clearly R∗(Σ) =

⋃
τ∈US Θ∗(τ).

Lemma 6.2. Given any τ, τ ′ ∈ US, and any a ∈ Θ∗(τ), b ∈ Θ∗(τ ′), then [a, b] ∩
Θ∗(τ ∩ τ ′) 6= ∅.

Proof. Choose aζ ∈ Θ(τ) and bζ ∈ Θ(τ ′) with aζ → a and bζ → b. Let cζ ∈
Θ(τ ∩ τ ′) be as given by Lemma 6.1. Then cζ → c ∈ Θ∗(τ ∩ τ ′) and µ(a, b, c) = c;
that is, c ∈ [a, b]. �

In particular, it follows that Θ∗(τ) ∩Θ∗(τ ′) ⊆ Θ∗(τ ∩ τ ′). Therefore, given any
a ∈ R∗, there is a unique minimal τ ∈ US with a ∈ Θ∗(τ). We write τ(a) = τ .
Since the sets Θ∗(τ) are all closed, we see that the map τ : R∗(Σ) −→ US is lower
semicontinuous. Moreover, given any a, b ∈ R∗(Σ), there is some c ∈ [a, b] with
τ(c) ⊆ τ(a) ∩ τ(b).

More generally, suppose that C ⊆ R∗ is convex. Choose a ∈ C with τ(a)
minimal. If b ∈ C, then there is some c ∈ [a, b] ⊆ C with τ(c) ⊆ τ(a) ∩ τ(b), so
τ(a) = τ(c) ⊆ τ(b). We write τ(C) = τ(a). Thus, τ(C) is uniquely determined by
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the property that τ(C) ⊆ τ(b) for all b ∈ C and τ(C) = τ(a) for some a ∈ C. Note
that this applies in particular, if C is a component of R∗. Note that a component,
C, of R∗ is thick (i.e. C ∩R∗T (Σ) 6= ∅) if and only if τ(C) = ∅.

Now, given τ ∈ US, let Ξ(τ) = {a ∈ R∗(Σ) | τ(a) = τ}. Clearly, Ξ(τ) ⊆ Θ∗(τ)
and Ξ(∅) = Θ∗(∅) = R∗T . Since τ : R∗ −→ US is lower semicontinuous, we have
that Ξ(τ) is open in Θ∗(τ). Also:

Lemma 6.3. For all τ ∈ US, Ξ(τ) is dense in Θ∗(τ).

Proof. Let a ∈ Θ∗(τ), and choose aζ ∈ Θ(τζ), with aζ → a. Thus τ(aζ) ⊆ τζ .
Given any i ∈ N, let ai,ζ ∈ R be the decorated multicurve with āi,ζ = āζ , and
resetting the decoration, ηαi,ζ(γ), on each γ ∈ τζ equal to ηaζ(γ) + i. Now (ai,ζ)i
is a (quasi)geodesic sequence in R with a0,ζ = aζ and with N(ai,ζ ; i) ⊆ Θ(τζ) for
all i. In fact, ρ(ai,Θ(τ ′ζ)) ≥ i for all τ ′ 6= τ .

Passing to the asymptotic the cone, we see that from any a ∈ Θ∗(τ), there is a
bilipschitz embedded ray, λ, emanating for which λ(t) ∈ Ξ(τ) for all t > 0. �

In fact, the argument shows that Ξ(τ) ∩ C is dense in Θ∗(τ) ∩ C for any com-
ponent, C of R∗.

Write SC ⊆ S for the set of standard complete multicurves, and write USC ⊆
US for the set of complete multicurves.

Note that, if τ ∈ SC , then any multicurve which does not cross τ must be
contained in τ . Thus, L(τ) = {a ∈ R(Σ) | â ⊆ τ ⊆ ā}. In particular, we see that
L(τ) is a bounded Hausdorff distance from Θ(τ). It follows that if τ ∈ USC , then
L∗(τ) = Θ∗(τ).

Note that, if a ∈ R(Σ), then (by the assumption on our marking graph) a is
a bounded distance from a marking, b, which contains a complete multicurve,
τ ⊇ â. Thus

⋃
τ∈SC Θ(τ) is cobounded in R(Σ). We deduce:

Lemma 6.4. R∗(Σ) =
⋃
τ∈USC Θ∗(τ).

From this, we immediately get:

Lemma 6.5. If τ ∈ USC, then Ξ(τ) is open in R∗. Also
⋃
τ∈USC Ξ(τ) is dense

in any component of R∗.

In this way, we see that (Ξ(τ))τ∈US defines a stratification of R∗.
We also note:

Lemma 6.6. For all τ ∈ US, Ξ(τ) lies in the interior of L∗(τ) in R∗(Σ).

Proof. For all a, b ∈ Ξ(τ), then by lower semicontinuity, there is some open U ⊆
R∗ with τ(b) ⊇ τ for all b ∈ U . So b ∈ L∗(τ(b)) ⊆ L∗(τ). This shows that
U ⊆ L∗(τ). �

Another way to say this is that for all a ∈ R∗(Σ), a lies in the interior of
L∗(τ(a)) in R∗(Σ).
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In what follows, letR∞(Σ) be any component of any extended asymptotic cone,
R∗(Σ) of R(Σ).

Recall that SB is the set of big multicurves in Σ. If τ ∈ USB, then L∞(τ)
is a closed convex subset which is a direct product of ξ almost furry R-trees, as
defined in Section 2.4. Directly from Proposition 2.6, we get:

Lemma 6.7. Suppose that f : R∞(Σ) −→ R∞(Σ) is a homeomorphism and that
τ ∈ USB. Then f |L∞(τ) is a median isomorphism onto its range, L∞(τ), which
is convex.

For reference in Section 8, we also note the following. Recall that we have
a 1-lipschitz map, h∗ : R∗(Σ) −→ R∗, taking non-negative values. Suppose we
identify L∗(τ) with

∏
X∈UX (τ)R∗(X), via the map υ∗τ , as described above. Then

if a ∈ L∗(τ), we have h∗(a) =
∑

X∈UX (τ) h
∗
X(a), where h∗X is the corresponding

map in the factor R∗(X). Here the sum is taken in the ordered abelian group
R∗. (In practice, we are only really interested in the cocycles [(x, y) 7→ h∗(x) −
h∗(y)], which take real values on any component ofR∗(Σ).) The statement follows
immediately from the fact that the same formula holds for the maps h and hX
defined on R(Σ) and on R(X). If τ is a complete multicurve, then we get h∗(a) =∑

γ∈τ h
∗
γ(a), where hγ(a) = ηa(γ), as defined in Section 3.

7. Quasi-isometric maps on the thick part

In this section, we apply the results of Section 6 to quasi-isometries between
Teichmüller spaces. In particular, we give proofs of Theorems 1.5 and 1.6.

Let M be a topological median algebra. We say that a subset P ⊆ M is
square-free if there is no square in M with a side contained in P .

Recall, from Section 2.4, that a gate map to P is a (necessarily continuous)
map ω : M −→ P such that for all x ∈ M and y ∈ P we have ω(x) ∈ [x, y]. In
particular, it follows that P is convex and ω|P is the identity.

Note that if P is square-free and x, y ∈ M with [x, y] ∩ P = ∅, then ωx =
ωy (otherwise, we would have a square ωx, ωy, µ(x, y, ωy), µ(x, y, ωx) with side
{ωx, ωy} in P ). If M is weakly locally convex, it then follows that ω : M −→ P
is locally constant on M \ P .

Lemma 7.1. Suppose that M is a weakly locally convex topological median algebra,
and P ⊆M is closed convex and square-free and admits a gate map. If p, x, y ∈ P ,
and p separates x from y in P , then it also separates x from y in M .

Proof. Let ω : M −→ P be the gate map, which we have seen is a locally constant
retraction. Now, ω−1(p) \ {p} is open M . Thus, if P \ {p} = U t V is an open
partition of P \ {p}, then M \ {p} = (ω−1(U ∪ {p}) \ {p}) t ω−1V is an open
partition of M \{p}. Taking U, V so that x ∈ U and y ∈ V , the claim follows. �

In particular, any cut point of P will also be a cut point of M .
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In our situation, R∞ is certainly (weakly) locally convex. (This holds since it
is bilipschitz equivalent to a median metric, or more directly the property given
as the hypotheses to Lemma 2.5 here. See [Bo1] for more explanation.)

We now consider some constructions of such P .

Definition. We say that a set P ⊆ R(Σ) is k-square-free if given any square, Q,
and any k-quasimorphism, φ : Q −→ R(Σ), which maps some side of Q into P ,
there is a (possibly different) side, c, d, of P with ρ(φc, φd) ≤ k. We say that P is
coarsely square-free if it is k-square-free for some k ≥ 0.

Definition. Given k ≥ 0 and P ⊆ R(Σ), we say that P is k-straight if diam θX(P ) ≤
k for X ∈ X \{Σ}. We say P is coarsely straight if it is k-straight for some k ≥ 0.

Note that by the distance formula of Rafi (Proposition 4.8 here), we see that
if a, b ∈ P , then ρ(a, b) � σΣ(a, b). (Here � denotes agreement to within linear
bounds depending on k.) In other words, the map θΣ : P −→ H(Σ) = G(Σ) is a
quasi-isometric embedding.

Lemma 7.2. A coarsely straight set is coarsely square-free.

Proof. Let Q = {a, b, d, c} be a square, with sides, {a, b} and {a, c}, and let
φ : Q −→ R be a quasimorphism, with φa, φb ∈ P . Now θΣ ◦ φ : Q −→ H(Σ)
is also a quasimorphism. If ρ(φa, φb) � σΣ(φa, φb) is sufficiently large, then an
elementary property of hyperbolic spaces (essentially the fact the median is rank-
1) tells us that σΣ(φa, φc) and σΣ(φb, φd) are both bounded.

Suppose X ∈ X . Again, if σΣ(φa, φb) is large, then at least one of σΣ(φa,X) or
σΣ(φb,X) is large. In the former case, the Gromov product 〈σΣφa, σΣφb:σΣX〉Σ
is large. By Lemma 4.5, σX(φa, φb) is bounded. Since θX ◦ φ : Q → H(X) is a
quasimorphism, and H(X) is hyperbolic, it follows (as above) that σX(φb, φd) is
also bounded. In the latter case (that is, σΣ(φb,X) is large), it similarly follows
that σX(φa, φc) and σX(φb, φd) are both bounded. Since this holds for all X ∈ X ,
it follows by Lemma 4.3 that ρ(φa, φc) and ρ(φb, φd) are bounded.

In summary, we have shown that either ρ(φa, φb) or ρ(φa, φc) is bounded as
required. �

Lemma 7.3. Suppose that P is coarsely straight. Then P is quasiconvex in R(Σ)
if and only if θΣP is coarsely median convex in G(Σ).

Proof. The “only if” part is an immediate consequence of the fact that θΣ :
R(Σ) −→ G(X) is a quasimorphism. For the converse, suppose a, b ∈ P and
c ∈ R. Since P is quasiconvex, there is some d ∈ P with θΣd ∼ µ(θΣa, θΣb, θΣc),
and so θΣd ∼ θΣµ(a, b, c). If X ∈ X \ {Σ}, then θXa ∼ θXb ∼ θXd ∼ θXµ(a, b, c),
and so θXd ∼ µ(θXa, θXb, θXc) ∼ θXµ(a, b, c). It follows by Lemma 4.3, that
d ∼ µ(a, b, c). In other words, this shows that the coarse interval [a, b] lies in a
bounded neighbourhood of P as required. �
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Clearly, if P is quasiconvex and coarsely square free, then P∞ is closed convex
and square-free in R.

We can construct examples of such P from coarsely straight sequences.

Definition. We say that a bi-infinite sequence, (ai)i∈Z, inR(Σ) is coarsely straight
if ρ(ai, ai+1) is bounded above for all i, and if σΣ(ai, aj) is bounded below by an
increasing linear function of |i− j|.

Note that, since the first condition implies also that σX(ai, ai+1) is bounded
above, the second condition is equivalent to saying that the sequence (θΣai)i is
quasigeodesic in G(Σ).

Lemma 7.4. If (ai)i is a coarsely straight sequence, then the set {ai | i ∈ Z} is
coarsely straight in R(Σ).

Proof. Let X ∈ X \ {Σ}. Since (θΣai)i is quasigeodesic in the hyperbolic space
G(Σ), we can find m < n ∈ Z, with n −m bounded, and with 〈ai, am:X〉Σ ≥ l1
and 〈aj, an:X〉Σ ≥ l1 for all i ≤ m and all j ≥ n, where l1 is the constant from
Lemma 4.5. (Of course, this might hold for all i, j ∈ Z.) By Lemma 4.5, it follows
that σX(ai, am) and σX(aj, an) are bounded for all i ≤ m and all j ≥ n. Also,
if m ≤ i ≤ j ≤ n, then ρ(ai, aj) is bounded, so σX(ai, aj) is bounded. It follows
that σX(ai, aj) is bounded for all i, j ∈ Z as required. �

It now follows that if (ai)i is coarsely straight, then it is also quasiconvex, and
it is also quasigeodesic in R(Σ).

We can also define a coarse gate map to P = {ai | i ∈ Z}. Given c ∈ R,
we can find n ∈ Z such that µ(θΣan, θΣc, θΣai) ∼ θΣan for all i ∈ Z. Then
θΣµ(an, c, ai) ∼ θΣan. Also, for all X ∈ X \ {Σ}, we have θXai ∼ θXan, so
θXµ(an, c, ai) ∼ θXan. It follows that by setting ω(c) = an we obtain a coarse
gate map ω : R(Σ) −→ P .

Now P ∗ is a convex subset of R∗(Σ) median isomorphic to R∗. Restricting to
the standard component, R∞(Σ), of R∗(Σ), we see that P∞ = P ∗ ∩ R∞(Σ) is
closed and convex in R∞(Σ) and median isomorphic to R. In particular, it is a
bi-lipschitz embedding of R. Moreover, P∞ is square-free and admits a gate map,
ω∞ : R∞(Σ) −→ P∞. It follows, by Lemma 7.1, that any point of P∞ is a cut
point of R∞(Σ).

Finally, note that if g ∈ Map(Σ) is pseudoanosov, then the 〈g〉-orbit of any
point of G(X) is quasigeodesic (see [MaM1]). We see that if a ∈ R(Σ), then (gia)i
is a coarsely straight sequence, hence quasiconvex by the above. This gives rise
to a line in R∞(Σ) all of whose points are cut points of R∞T .

Since UMap(Σ) acts transitively on R∗T , we deduce:

Lemma 7.5. Each point of R∗T is a cut point of the component of R∗ in which it
lies.

In fact, we have a converse:
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Lemma 7.6. If x ∈ R∗ \R∗T , then x is not a cut point of the component in which
it lies.

Proof. Let τ = τ(x) ∈ S. By assumption, τ 6= ∅. By Lemma 6.6, x lies in the
interior of L∞(τ) in R∞. Therefore, if x were a cut point of R∗, it would also be
an intrinsic cut point of L∞(τ). But L∞(τ) is a median, hence topological, direct
product of at least two non-trivial path-connected spaces, and so any two points
of L∞(τ) lie in an embedded disc in L∞(τ). �

We see that R∗T is determined by the topology of R∗ as the set of cut points.
We deduce:

Lemma 7.7. Suppose that Σ,Σ′ are compact surfaces, and f : R∗(Σ) −→ R∗(Σ′)
is a homeomorphism, then f(R∗T (Σ)) = R∗T (Σ′).

(Given that ξ is the locally compact dimension of R∞(Σ), if such a homeomor-
phism exists, then ξ(Σ) = ξ(Σ′).)

Note that the above holds for any extended asymptotic cones, for any choice of
scaling factors.

Now suppose that Σ and Σ′ are compact surfaces of complexity at least 2
and that φ : R(Σ) −→ R(Σ′) is a quasi-isometry. This induces a (bilipschitz)
homeomorphism, f = φ∗ : R∗(Σ) −→ R∗(Σ′).
Lemma 7.8. There is some k ≥ 0 such that the Hausdorff distance between
φ(RT (Σ)) and RT (Σ′) is at most k.

Proof. By symmetry (swapping the roles of Σ and Σ′), it’s enough to show that
φ(RT (Σ)) lies in a bounded neighbourhood of RT (Σ′). Suppose to the contrary
that we can find an N-sequence, (xi)i∈N, in RT (Σ) with ri = ρ(φ(xi),RT (Σ′)) →
∞. Let R∞(Σ) and R∞(Σ′) be asymptotic cones with Z = N, scaling factors
(1/ri)i and basepoints (xi)i and (φxi)i. We get a homeomorphism, f = φ∞ :
R∞(Σ) −→ R∞(Σ′) with ρ(f(x),R∞T (Σ′)) = 1. But f(x) ∈ f(R∞T (Σ)) = R∞T (Σ′),
giving a contradiction. �

To see that k depends only on ξ(Σ) and the constants of quasi-isometry of
φ, we apply the usual argument — allowing the maps to vary. In other words,
we get a sequence, φi : R(Σ) −→ R(Σ′), of uniform quasi-isometries, and xi ∈
RT (Σ), with ri = ρ(φi(xi),RT (Σ′)) → ∞. We get a limiting homeomorphism,
f : R∞(Σ) −→ R∞(Σ′), and derive a contradiction as before.

This proves Theorem 1.6.
It now follows that φ is a bounded distance from a map from RT (Σ) to RT (Σ′).

Recall (Lemma 3.4) that RT (Σ) is a uniformly embedded copy of the marking
complex, M(Σ), of Σ. Thus φ gives rise to a quasi-isometry from M(Σ) to
M(Σ′).

Now, ifM(Σ) andM(Σ′) are quasi-isometric, then Σ and Σ′ are homeomorphic,
under the conditions described by Theorem 1.5. This follows using the result of
[BeKMM, Ham], and is shown directly in [Bo4].
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This proves Theorem 1.5.

8. Quasi-isometric rigidity

In this section, we complete the proof of quasi-isometric rigidity of the Te-
ichmüller metric.

In view of Theorem 1.5, we can assume that Σ = Σ′. Let φ : R(Σ) −→ R(Σ)
be a quasi-isometry. By Theorem 1.6, φ(RT (Σ)) is a bounded Hausdorff distance
from RT (Σ). As noted at the end of the previous section, this gives rise to a
quasi-isometry from M(Σ) to itself. By quasi-isometric rigidity of the marking
graph, [BeKMM, Ham], there is some g ∈ Map(Σ) such that ρ(gx, φx) is bounded
for all x ∈ RT (Σ). Postcomposing with g−1, we may as well assume that g is the
identity, so ρ(x, φx) is bounded. Thus, up to bounded distance, we can assume
that φ|RT (Σ) is the identity.

Henceforth in this section we will assume that φ is the identity on RT (Σ). We
want to show that it is a bounded distance from the identity everywhere.

The basic idea is as follows. Points at any bounded distance from the thick
part, RT (Σ), get displaced a bounded distance by φ. On the other hand, “most”
of R(Σ) has locally the structure of a direct product of hyperbolic spaces (namely
the decorated complexes associated to curves or to complexity-1 subsurfaces). It
is known that a quasi-isometry of a product of hyperbolic spaces of this type
preserves the product structure up to bounded distance (and permutation of the
factors). This means that if a point is moved a large distance in one of the
factors, then a nearby point must get moved an even larger distance. (This arises
from a general observation about quasi-isometries of hyperbolic spaces.) We can
take care to arrange that this new point is no further from the thick part than
the original. In this way, we can derive a contradiction to the statement about
bounded displacement. Of course, to make sense of this, one would need a very
careful elaboration of the results about quasi-isometries of products. Rather that
attempt to formulate this, we will reinterpret these ideas in the asymptotic cone,
where most of the argument will be carried out.

To begin, recall that we have a 1-lipschitz map, h : R(Σ) −→ [0,∞) defined by
h(a) = ρ(a,RT (Σ)). This gives rise to a 1-lipschitz map h∗ : R∗(Σ) −→ R∗, with
h∗ ≥ 0 and with (h∗)−1(0) = R∗T . If R∞(Σ) is any component of R∗(Σ), then
h∗(x)− h∗(y) ∈ R, for all x, y ∈ R∞(Σ).

The map φ gives rise to a bilipschitz map, φ∗ : R∗(Σ) −→ R∗(Σ), fixing R∗T (Σ).
Suppose a ∈ R∗(Σ) is moved a limited (i.e. real) distance by φ∞. LetR∗(Σ) be the
component of R∗(Σ) containing a, and let f = φ∗|R∞(Σ). Then f is a billipschitz
self-homeomorphism of R∞(Σ). As usual, we write ρ∞ for the metric on R∞(Σ).
(At this stage, R∞(Σ) may, or may not, be the component of R∗(Σ) containing
R∗T (Σ).)

The following technical lemma will constitute the bulk of what remains of the
proof.
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Lemma 8.1. Suppose that f : R∞(Σ) −→ R∞(Σ) is a bilipschitz homeomor-
phism, and that there is some a ∈ R∞(Σ) with fa 6= a. Then, given any k ∈
[0,∞) ⊆ R, there is some b ∈ R∞(Σ) with h∗(b) ≤ h∗(a) and with ρ∞(b, fb) ≥ k.

We will eventually apply this when ρ∞(a, fa) = 1 and k = 2, though this does
not matter to the discussion at present.

Before starting on the proof of the lemma, we recall some more general facts
about R∞ = R∞(Σ), as we have outlined in Section 2. We have noted that R∞
is a topological median algebra of rank ξ = ξ(Σ). From [Bo2], we know that all
intervals in R∞ are compact, and so any closed convex subset of R∞ admits a
gate map.

It will also be convenient to note, again from [Bo2] (see Lemma 2.5 here) that
R∞(Σ) admits a bilipschitz equivalent median metric, ρM , which induces the same
median structure. Note that Lemma 8.1 is equivalent to the same statement with
ρ∞ replaced by ρM , which is what we will actually prove. (Though we retain then
orignial definition of h∗.)

By Lemma 6.4, we have a ∈ L∗(τ) for some complete multicurve, τ ∈ USC .
Writing τ = {γ1, . . . , γξ}, we see that L∗(τ) can be identified, via a bilipschitz

median isomorphism with
∏ξ

i=1H∗(γi). As described at the end of Section 6, if

x ∈ L∗(τ), then h∗(x) =
∑ξ

i=1 h
∗
i (x), where h∗i = h∗γi : H∗(γi) −→ R∗ is the map

described towards the end of Section 4.
Now let D = L∞(τ) = L∗(τ) ∩ R∞(Σ). For each i ∈ {1, . . . , ξ}, let ∆i be the

factor of D parallel to H∞(γi) which contains a. In this way, we can identify

D ≡
∏ξ

i=1 ∆i, via a bilipschitz median isomorphism.
(We remark that since D is convex, and ρ∞ is already a median metric on D

(as the l1 product of R-trees), we can assume that ρM is equal to ρ∞ on D. In
this case, the map [(x, y) 7→ h∗(x)− h∗(y)] is a Busemann cocycle with respect to
the metric ρM . However, this is not formally needed the proof we give below.)

Now D is a direct product of ξ almost furry trees, so by Proposition 2.6, we
see that f |D is a median isomorphism onto its range, D′ = f(D). Moreover, D′

is closed and convex in R∞. In particular, it follows that for each i, f |∆i is a
median isomorphism to ∆′i = f(∆i), which is also closed and convex in R∞. As
observed above, there are gate maps, ωi : R∞ −→ ∆i and ω′i : R∞ −→ ∆′i.

We first reduce to the case where ∆i and ∆′i are parallel. We state this formally
as follows:

Lemma 8.2. Suppose that the conclusion of Lemma 8.1 fails. Given any i, then
∆i and ∆′i are parallel, and f |∆i = ω′i|∆i.

Proof. Following the discussion of Section 2.4, we let Ci = ωi∆
′
i ⊆ ∆i and C ′i =

ω′i∆i ⊆ ∆′i. These are closed convex subsets. Let λi = ωiω
′
i : R∞ −→ Ci and λ′i =

ω′iωi : R∞ −→ C ′i. These are also gate maps: in this case, just the nearest point
projections to the subtrees Ci and C ′i. Now Ci, C

′
i are parallel, with inverse parallel

isomorphisms, ω′i|Ci and ωi|C ′i. (Of course, possibly Ci = C ′i.) Also, as observed
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in Section 2.4, if b ∈ ∆i and b′ ∈ ∆′i, then ρM(b, b′) ≥ ρM(b, Ci) + ρM(b′, C ′i).

Case(1): ∆i is thin.

We first consider the case where ∆i is thin (in the sense defined at the end of
Section 4 — recall that ∆i is an isometric copy of H∞(γi)). In this case, ∆i is a
complete 2ℵ0-regular R-tree. Moreover, the map [x 7→ h∗(x)−h∗(y)] has no lower
bound on any branch of ∆i.

If Ci 6= ∆i, then there is a branch, T , of ∆i, with T ∩ Ci = ∅. This must
contain points b, with h∗i (a) − h∗i (b) arbitrarily large (real) and also ρM(b, Ci)
arbitrarily large. In particular, we can find b ∈ T with h∗i (b) ≤ h∗i (a) and with
ρM(b, Ci) ≥ k. Now, b ∈ ∆i, fb ∈ ∆′i, and so, as observed in Section 2.4, we have
ρM(b, fb) ≥ ρM(b, Ci) + ρM(fb, C ′i). In particular, ρM(b, fb) ≥ ρM(b, Ci) ≥ k.

Moreover, we have h∗j(b) = h∗j(a) for all j 6= i. Since h∗ =
∑ξ

i=1 h
∗
i , we have

h∗(b) ≤ h∗(a). We have arrived at the conclusion of Lemma 8.1 in this case. We
therefore have that Ci = ∆i.

Suppose now that C ′i 6= ∆′i. In this case, we have a branch T ′ of ∆′i, with
T ′ ∩ C ′i = ∅. Now f−1T ′ is a branch of ∆i. We can find points b ∈ f−1T ′ with
h∗i (a)−h∗i (b) arbitrarily large, and with ρM(fb, C ′i) arbitrarily large. In particular,
we can suppose that h∗i (b) ≤ h∗i (a) so h∗(b) ≤ h∗(a), and that ρM(fb, C ′i) ≥ k. So
as in the previous case, we have ρM(b, fb) ≥ ρM(fb, Ci) ≥ k, again proving the
the conclusion of Lemma 8.1 in this case (which is formally a contradiction to the
hypotheses of Lemma 8.2).

We can therefore assume that Ci = ∆i and C ′i = ∆′i. In other words, ∆i,∆
′
i

are parallel (hence either equal or disjoint). The parallel map ωi : ∆′i −→ ∆i is
an isometry in the metric ρM . Note that if x ∈ ∆i and y ∈ ∆′i, then ρM(x, y) =
ρM(x, ωiy) + ρM(∆i,∆

′
i). Consider the map g = ωif : ∆i −→ ∆i. This is a

bilipschitz self-homeomorphism. If g is not the identity, then we can easily find
a branch, T , of ∆i with T ∩ gT = ∅. We can now find points b ∈ T , with
h∗i (a) − h∗i (b) and ρM(b, gb) both arbitrarily large (real). In particular, we can
suppose h∗(b) ≤ h∗(a) and that ρM(b, fb) ≥ ρM(b, gb) ≥ k, as required.

We can therefore assume that ∆i,∆
′
i are parallel, and that g is the identity

map. In other words, f |∆i = ω′i|∆i, proving Lemma 8.2 in this case.

Case(2): ∆i is thick.

This means that h∗i (∆i) = [0,∞) ⊆ R. Now, (h∗i )
−1(0) is the set of extreme points

of ∆i. All other points have valence 2ℵ0 .
In this case, let τ ′ = τ \ {γi}. This is a big multicurve. Let X ∈ UX be the

complementary component of τ ′ which contains γi. This is a (non-standard) S0,4

or S1,1. This case was discussed at the end of Section 4. In particular, R∞(X)
is a complete regular 2ℵ0-tree, and every branch of R∞(X) meets R∞T (X). Let

D̂ = L∞(τ ′) = L∗(τ ′)∩R∞(Σ). We can identify D̂ as the direct product,R∞(X)×∏
j 6=iH∗(γj) of almost furry R-trees, via a bilipschitz median isomorphism. Let
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∆̂ be the factor of D̂ parallel to R∞(X) and containing a. Thus, we can identify

D̂ ≡ ∆̂ ×
∏

j 6=i ∆j. Now, ∆̂ is a closed convex subset, isometric to an R-tree,

and containing ∆i. Note that the map h∗i : ∆i −→ [0,∞) extends to a map

h∗i : ∆̂ −→ [0,∞) (defined as for h∗ on H∗(Σ), intrinsically to ∆̂, as discussed
at the end of Section 4). Note that R∗T (X) gets identified with (h∗i )

−1(0), and so

every branch of ∆̂ meets this set. Also, from the discussion at the end of Section
6, we have h∗(x) =

∑ξ
i=1 h

∗
i (x) for all x ∈ D̂.

By Proposition 2.6 (similarly as with D above) we see that f |D̂ is a median

isomorphism onto its range, D̂′ = f(D̂). Moreover, D̂′ is closed and convex in

R∞. Let ∆̂′ = f(∆̂). This is also closed and convex, and f |∆̂ : ∆̂ −→ ∆̂′ is a
median isomorphism.

We now proceed to argue as before, with ∆̂ playing the role of ∆i. Instead of
saying that we can find b with h∗i (a)− h∗i (b) arbitrarily large, we now claim that
our b will satisfy h∗i (b) = 0. Since h∗i (a) ≥ 0 and h∗j(b) = h∗j(a) for all j 6= i, we
again get that h∗(b) ≤ h∗(a). We finally conclude, as before, that (we can assume

that) ∆̂ and ∆̂′ are parallel, and that f |∆̂ = ω′i|∆̂. Restricting to ∆i, we get also
that ∆i,∆

′
i are parallel, and f |∆i = ω′i|∆i. �

Proof of Lemma 8.1. We again assume that the conclusion of Lemma 8.1 fails.
Since Lemma 8.2 holds for all i ∈ {1, . . . , ξ}, it follows that D and D′ are parallel,
and that f |D is the parallel (gate) map from D to D′.

Now either D = D′ or D∩D′ = ∅. But in the latter case, R∞(Σ) would contain
a (ξ+ 1)-cube. (Take any ξ-cube, Q in D, then Q∪ fQ would be a (ξ+ 1)-cube.)

This contradicts the fact that the rank of R∞ is equal to ξ.
Thus, D = D′, and f |D is the identity map on D. Since, by construction,

a ∈ D, this contradicts the hypothesis that fa 6= a. �

Proof of Theorem 1.7. Let R(Σ) −→ R(Σ) be a quasi-isometry, which we can
assume fixes RT (Σ). Note that, for a ∈ R(Σ), ρ(a, φa) is (linearly) bounded
above in terms of h(a) = ρ(a,RT (Σ)). Given n ∈ N, let m(n) = max{ρ(a, φa) |
a ∈ R0(Σ), h(a) ≤ n}. For simplicity, we assume that this is attained, though
it makes no essential difference to the argument. We want to show that m(n) is
bounded, independently of n.

Suppose, for contradiction, that m(n) → ∞ as n → ∞. Choose an ∈ R0(Σ),
with h(an) ≤ n and with ρ(an, φan) = m(n). Let Z = N, with any non-principal
ultrafilter, and let R∗(Σ) be the extended asymptotic cone with scaling fac-
tors 1/m(n). Let a ∈ R∗(Σ) be the limit of (an)n. By construction, we have
ρ∗(a, φ∗a) = 1. Let R∞(Σ) be the component containing a (hence also φ∗a).
Writing f = φ∗|R∞(Σ), we have that f : R∞(Σ) −→ R∞(Σ) is a bilipschitz
homeomorphism with respect to the metric R∞.
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We are now in the situation described by Lemma 8.1, with ρ∞(a, fa) = 1. Set
k = 2, and let b be the point obtained with h∗(b) ≤ h∗(a) and with ρ∞(b, fb) = 2.
(Any real number bigger than 1 would do.)

We claim that we can find a sequence, (bn)n in R(Σ), with bn → b (in the sense
of ultralimits) and with h(bn) ≤ h(an) for almost all n. To see this, start with any
sequence, (cn)n, converging on b. Note that (h(an)−h(cn))/m(n) tends to h(a)−
h(b) ∈ [0,∞) ⊆ R. We take bn to be the point a distance max{0, h(cn) − h(an)}
along a shortest geodesic in R(Σ) from cn to RT (Σ). In this way, h(bn) ≤ h(an),
and ρ(cn, bn)/m(n) = max{0, (h(cn)−h(an))/m(n)} → max{0, h∗(b)−h∗(a)} = 0.
Since cn → b, we also have bn → b as required.

In particular, h(bn) ≤ n and so ρ(bn, φbn) ≤ m(n). Passing to the ultralimit,
we get ρ∞(b, fb) ≤ 1, contradicting ρ∞(b, fb) = 2.

We conclude that m(n) is bounded, by some constant, m, say. It now follows
that ρ(a, φa) ≤ m for all a ∈ R0(Σ).

It remains to note that the bound, m, above depends only on ξ(Σ) and the quasi-
isometric constants of φ. This follows by the usual modification of the argument.
If it were not bounded, we could find a sequence of uniform quasi-isometries,
φn : R(Σ) −→ R(Σ), all fixing RT (Σ) but with arbitrarily large displacement
somewhere. The argument now proceeds as before, except that the map φ∗ arises
as a limit of the maps (φn)n, rather than from a single map. We again, derive a
contradiction in the same way. �

9. Conclusion of the proof of Theorem 1.4

In this section, we prove the “only if” part of Theorem 1.4. Recall that this
states that if Rξ(Σ) quasi-isometrically embeds in T(Σ), then Σ has genus at most
1, or is a closed surface of genus 2.

We begin with some observations, which are valid in a quite general context (cf.
[Bo4]). Recall that we have a collection of spaces, R(X), H(X) and maps, θX ,
χX and ψY X indexed by the set, X , of subsurfaces of Σ, and satisfying properties
(A1)–(A10) as discussed in Section 4. In fact, we have in addition, the distance
formula of [Ra, D1], given as Proposition 4.8 here (which we have noted implies
(A6) and (A7)). This allows us to bring various results of [Bo4] into play, some
of which we have already noted. In particular, R∞(Σ) is a rank-ξ topological
median algebra, and ρ∞ is bilipschitz equivalent to a median metric ρM .

If Q ⊆ R∗(Σ) is an n-cube, we can partition its sides into n parallel classes.
In particular, if c, d and c′, d′ are ith faces, then the intervals, [c, d] and [c′, d′]
are parallel: that is, the maps [x 7→ µ(c′, d′, x)] and [x 7→ µ(c, d, x)] are inverse
median isomorphisms between [c, d] and [c′, d′].

Now, if n = ξ, and c, d is an ith face of Q, the [c, d] is a rank-1 median algebra
(that is, a totally ordered set), in this case, isomorphic to an interval in R∗. More-
over, the convex hull, hull(Q), of Q is a median direct product of such intervals.
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In particular, if Q ⊆ R∞(Σ), then hull(Q) is median-isomorphic to the real cube
[−1, 1]ξ.

In general, by a real n-cube in a topological median algebra, M , we mean a
closed convex subset median-isomorphic to [−1, 1]n. If M is median metric space
(for example, (R∞(Σ), ρM)), this is isometric to an l1 product of compact real
intervals. We say that a subset of M is cubulated if it is a locally finite union
of cubes. After subdivision, we can assume that, in the neighbourhood of any
given point, these cubes form the cells of a cube complex embedded in M . The
following was proven in [Bo4] (see [BeKMM] for a related statement in the case
of the mapping class group).

Proposition 9.1. Let M be a complete median metric space of rank n, and let
Φ ⊆M be closed subset homeomorphic to Rn. Then Φ is cubulated.

In particular, this applies to R∞(Σ) with n = ξ.
Returning to R∗(Σ), recall that we have maps ψ∗X = ψ∗XΣ : R∗(Σ) −→ R(X)

for all X ∈ X . Given any subset, P ⊆ R∗(Σ), write D(P ) = {X ∈ UX |
ψ∗X |P is injective}. We write D0(P ) = D(P ) ∩ UG0(X), which we can identify
with the set of curves γ ∈ UG0 such that θ∗γ|P is injective. (Recall that θ∗γ = ψ∗γ.)

Now, if Q ⊆ R∗(Σ) is a cube, and c, d and c′, d′ are ith faces, then since [c, d]
and [c′, d′] are parallel, we have D([c, d]) = D([c′, d′]). We denote this set by
Di(Q). We similarly define D0

i (Q) = D0([c, d]) = Di(Q) ∩ UG0.
The following was shown in [Bo4].

Proposition 9.2. Let Q ⊆ R∗(Σ) be a ξ(Σ)-cube. For any i, the set D0
i (Q) is

either empty or consists of a single curve γi ∈ UG0. If it is empty, then there
is a unique complexity-1 subsurface Yi ∈ Di(Q). If the γi are all disjoint, and
they form a big multicurve τ(Q). The Yi are also disjoint, and are precisely the
complexity-1 components of Σ \ τ(Q).

We note, in particular, that γi or Yi is completely determined by any face of Q,
without reference to Q itself.

For the proof of Theorem 1.4, we also note the following:

Lemma 9.3. Suppose that γ ∈ UG0, and that a, b, c ∈ R∗(Σ), with c ∈ [a, b] \
{a, b}, and with θ∗γa, θ∗γb and θ∗γc all distinct. Then c /∈ R∗T (Σ).

Proof. Take γζ ∈ G0(Σ) with γζ → γ and aζ , bζ , cζ ∈ R(Σ) with aζ → a, bζ → b
and cζ → c. If c ∈ R∞T , then we could also take cζ ∈ RT . Let dζ = µ(aζ , bζ , cζ).
Thus dζ → c. Since θγζ is a median quasimorphism, θγζdζ is a median of θγζaζ ,
θγζbζ , θγζcζ in H(γζ). Since H(γζ) is quasi-isometric to a horodisc, it is easily
seen that min{σγζ(aζ , cζ), σγζ(bζ , cζ)}, is bounded above by a linear function of
σγζ(cζ , dζ). Passing to the limit, we see that min{σ∞γ (a, c), σ∞γ (b, c)} = 0, so
θ∗γc ∈ {θ∗γa, θ∗γb}, giving a contradiction. �

We now proceed to the proof of the “only if” part of Theorem 1.4.
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Suppose that φ : Rξ −→ R(Σ) is a quasi-isometric embedding. Passing to an
asymptotic cone with fixed basepoint, we get a map f = φ∞ : Rξ −→ R∞(Σ),
which is bilipschitz onto its image, Φ = f(Rξ). Note that the basepoint, o, of
R∞(Σ) lies in Φ ∩R∞T (Σ).

By Proposition 9.1, Φ is cubulated. In fact, we can find a neighbourhood of
the basepoint o ∈ Φ, which has the structure of a finite cube complex, where each
ξ-dimensional cell is the convex hull of a ξ-cube.

Now consider the link, ∆, of o in Φ. This is a simplicial complex which is a
homology (ξ − 1)-sphere. In particular, the (ξ − 1)th dimensional homology of ∆
is non-trivial.

Let ∆0 be its vertex set. Each x ∈ ∆0 corresponds to a 1-cell of Φ, with
one vertex o and the other denoted a(x) ∈ Φ ⊆ R∞(Σ). Note that this 1-cell
is precisely the median interval, [o, a(x)]. Now, as noted after Proposition 9.2,
we can canonically associate to x, either a curve γ(x) ∈ UG0, or a complexity-1
subsurface, Y (x) ∈ UX . (To be specific, either D0([o, a(x)]) = {γ(x)}, or else
D0([o, a(x)]) = ∅ and Y (x) is the unique complexity-1 surface in D([o, a(x)]).)
Any (ξ− 1)-simplex in ∆ corresponds to a ξ-cube, and so, by Proposition 9.2, we
see that the curves γ(x) or subsurfaces Y (x) are all disjoint, as x ranges over the
vertices of the simplex.

Lemma 9.4. Suppose that x, y ∈ ∆0 are distinct, and that both correspond to
curves, γ(x) and γ(y). Then γ(x) 6= γ(y).

Proof. Suppose, for contradiction, that γ(x) = γ(y) = γ, say. Since the intervals
[o, a(x)] and [o, a(y)] meet precisely in o, it follows that o = µ(a(x), a(y), o); in
other words, o ∈ [a(x), a(y)]. Moreover, θ∞γ |[o, a(x)] and θ∞γ |[o, a(y)] are both
injective (by construction of γ(x) and γ(y)), and so, in particular, it follows that
θ∞γ o, θ

∞
γ a(x) and θ∞γ a(y) are all distinct. We now apply Lemma 9.3 to give the

contradiction that o /∈ R∞T . �

Lemma 9.5. Each x ∈ ∆0 corresponds to some γ(x) ∈ UG0(Σ).

Proof. Suppose, to the contrary, that x ∈ ∆0 corresponds to a complexity-1 sub-
surface, Y (x). Let Q be any ξ-cube of the cubulation containing a(x); so that
{o, a(x)} is a face. (This corresponds to a (ξ− 1)-simplex in ∆.) Let τ = τ(Q) be
the big multicurve described by Proposition 9.2. Let γ ∈ τ be a boundary curve
of Y (x) in Σ. Thus, γ = γ(y) for some y ∈ Q (adjacent to x in ∆0). Let Q0 ⊆ Q
be the (ξ − 1)-face containing o but not containing a(x). (This corresponds to a
(ξ− 2)-simplex of ∆.) Now, given that Φ is homeomorphic to Rξ, it is easily seen
that there must be a (unique) ξ-cube, Q′, of the cubulation with Q ∩ Q′ = Q0.
Let z ∈ ∆0 be the unique vertex with a(z) ∈ Q′ \ Q0. Let τ ′ = τ(Q′). Now τ ′ is
obtained from τ by replacing γ(y) by γ(z) and leaving all other curves alone. Note
also that all complexity-1 components of the complement also remain unchanged
(since these are the subsurfaces Y (w) for those vertices w which do not correspond
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to curves). It therefore follows that, in fact, we must have γ(z) = γ(y) = γ, con-
tradicting Lemma 9.4. In other words, this situation can never arise, and so each
x ∈ ∆0 must correspond to a curve γ(x). �

By Lemmas 9.5 and 9.4, we therefore have an injective map [x 7→ γ(x)] : ∆0 −→
UG0(Σ) = UC0(Σ). Now (again since Φ is homeomorphic to Rξ), every edge of
∆ lies inside some (ξ − 1)-simplex. So if x, y ∈ ∆0 are adjacent, a(x), a(y) lie in
some cube of the cubulation, and so γ(x), γ(y) are distinct and disjoint. Now the
ultraproduct, UC(Σ), of the curve complex C(Σ) is a flag complex (since C(Σ) is)
so we get an injective simplicial map of ∆ into UC(Σ). This gives us an injective
map of ∆ into C(Σ). Since C(Σ) has dimension ξ − 1, it follows that C(Σ) has
non-trivial homology in dimension ξ − 1. But by the result of [Har] referred to in
Section 5, the homology is trivial in all dimensions at least ξ′ (as discussed after
Proposition 5.7). It now follows that ξ = ξ′, and so Σ has genus at most 1, or is
a closed surface of genus 2.

This proves the “only if” part of Theorem 1.4.
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